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Abstract— This paper is concerned with the problem of fault-
tolerant estimation in cyber-physical systems. In cyber-physical
systems, such as critical infrastructures, networked embedded
sensors are widely used for monitoring and can be exploited
by an adversary to deceive the control center by modifying
measured values. The deception is modeled as a bias; i.e.,
there is a misalignment between the objective functions of
the control center and the adversarial sensor. Different from
previous studies, a Stackelberg equilibrium of a cheap talk setup
is adapted to the attacker-defender game setting for the first
time. That is, the defender (control center), as a receiver, is the
leader, and the attacker (adversarial sensor), as a transmitter,
is the follower. The equilibrium strategies and the associated
costs are characterized for uniformly distributed variables and
quadratic objective functions, and an analysis on the uniqueness
of the equilibrium is provided. It is shown that the attacker and
defender costs at the equilibrium are increasing with the bias
and decreasing with the number of quantization levels. Our
results surprisingly show that, under certain conditions, the
attacker prefers a public bias rather than a private one.

I. INTRODUCTION

Modern critical infrastructures (CI), such as electric power
systems, gas and water distribution, are prominent examples
of cyber-phisycal systems (CPS). They depend on large-scale
industrial control systems for safe and efficient operation,
often referred to as Supervisory Control and Data Acquisition
(SCADA) systems. SCADA systems collect measurement
data from remote terminal units and deliver the measurement
data to a master station located at a control center. At the
control center the data are typically fed into a state estimator
(SE), which provides an accurate estimate of the system’s
state despite noisy or faulty measurement data collected by
the SCADA system [1], and control actions are taken based
on the estimated state. As an example, enabled by recent de-
velopments in measurement and communication technology,
the operation of electric power systems increasingly relies
on high frequency real-time monitoring and SE [2].

Ensuring the security of SE is thus fundamental for CIs,
but it is a significant challenge due to the emergence of cyber-
physical attacks, as those could often remain undetected [3].
One approach for ensuring proper operation despite attacks

This work was supported in part by the Swedish Research Council (grant
2016-00861), and the Swedish Civil Contingencies Agency (MSB) through
the CERCES project.
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is to treat attacks as faults, and to design control systems
capable of maintaining a desired level of performance despite
faults. Such a control technique is referred to as fault tolerant
control (FTC). FTC strategies can be classified into two
categories: passive and active methods [4]. In a passive
approach, the control system is designed so that it maintains
the designed performance under healthy as well as faulty
system situations that have been considered at the design
stage, without any change in the control law. Therefore,
the controller, which remains fixed during the entire system
operation (i.e., does not require a reconfiguration), is able
to maintain the stability of the system with an acceptable
degradation of its performance, whatever the system situation
(healthy or faulty). In contrast, an active approach reacts to
each fault situation immediately by properly adapting the
controller design.

Going beyond random faults typically considered in FTC,
an attacker with knowledge of the system would arguably
induce a worst case fault for a given FTC strategy. This
calls for a modeling approach that considers the strategic
interaction between the attacker and FTC. To address this,
in this paper we consider a fault-tolerant estimation problem
in the presence of a strategic adversary that is capable of
manipulating sensory data, and her objective is to introduce
adversarial bias in estimation. Such adversarial bias could
result in, e.g., the manipulation of generation dispatch and
of power markets [5], but it could also be used to hide that
the power system is in an unsafe state and could eventually
lead to cascading failures.

In our model the control center (i.e., the defender) aims at
designing a passive fault-tolerant estimator for the underlying
state/physical variable, while the objective of the adversary
is to introduce a bias in the estimate. As a consequence
the objectives of the control center and of the adversary
are misaligned, akin to the problem of cheap talk signaling
studied in the economics literature initiated by Crawford and
Sobel [6]. Contrary to existing works on cheap talk [6]–
[14] in our work we formulate the problem as a Stackelberg
game, where the receiver is the leader and the transmitter
is the follower. We argue that this modeling assumption
is necessary in a security context in order to capture the
worst case attack [15], and is consistent with Kerckhoffs’s
principle and Shannon’s assumption that ”the enemy knows
the system” [16]. To the best of our knowledge, we are the
first to propose a cheap-talk Stackelberg game formulation of
the attacker-defender problem in the context of fault-tolerant
and secure estimation.



A. Related Work
Early works on cheap talk investigated Nash equilibrium

strategies, i.e., the attacker and the defender announce their
strategies simultaneously, and found that surprisingly, under
some technical conditions on the objective functions of the
players, the cheap talk problem only admits equilibrium
strategies that are essentially quantized [6]. This is in sig-
nificant contrast with the case where the objective functions
are aligned. Subsequent works considered extensions of the
Nash equilibrium of cheap talk, e.g., [8], [12] with similar
observations.

Another line of works considered the Stackelberg equilib-
rium of cheap talk [7]–[14]. In these works the transmitter
(i.e., the attacker) is the leader of the game, whereas the
receiver (i.e., the defender) is the follower. This is, how-
ever, inconsistent with the usual modeling framework in the
security domain [17], where the defender is the leader and
acts first by committing to a strategy, while the attacker is the
follower and chooses how and where to attack after observing
the defender’s choice [18]. Our work thus complements
existing work on cheap talk by considering the Stackelberg
equilibrium for attacker-defender scenarios common in the
security domain, where the defender is the leader.

A brief overview of on passive, active, and hybrid fault-
tolerant estimation and control can be found in [19]. Several
passive FTC methods have been proposed in the litera-
ture, mainly based on robust theory; however, due to their
inflexibility and low performance, the active and hybrid
methods are more popular for fault-tolerant estimation [4].
Among them, the (active) fault-tolerant estimation prob-
lem is addressed by means of the reconfiguration of the
sensor network, a strategy by which only the subset of
healthy sensors is used in [20], [21]. Furthermore, related
to ours are works on secure estimation for CPS, where
the CPS is typically modeled as a linear time-invariant
(LTI) system in which multiple sensors measure the same
physical variable, and some sensors might be under attack.
By utilizing combinatorial-type approaches (which are active
FTC methods), a characterization of the number of attacked
sensors that can be tolerated was investigated under different
assumptions [22]–[24]. Different from these studies, our
work focuses on the game theoretic aspect of estimation
using passive methods, rather than the combinatorial problem
of choosing sensors to be attacked or protected.

B. Contributions
The main contributions of this work are as follows:
(i) The fault-tolerant and secure estimation problem under

adversarial bias is formulated as a cheap talk problem,
and the Stackelberg equilibrium of the corresponding
cheap talk setup is adapted to the attacker-defender
game setting for the first time.

(ii) Equilibrium strategies and the associated costs are
characterized for uniformly distributed variables and
quadratic objective functions, and the effects of the
(public and private) bias and the number of quantiza-
tion levels on the equilibrium costs are investigated.

(iii) It is shown that the control center is always better off
with a public bias. However, contrary to expectations,
the adversarial sensor also prefers a public bias, rather
than a private one, for a small bias.

The rest of the paper is organized as follows. We present
the problem formulation in Section II, and analyze the
Stackelberg equilibria with public and private bias in Section
III and Section IV, respectively. In Section V we provide
numerical examples, and Section VI concludes the paper.

II. PROBLEM FORMULATION

The cheap talk problem can be formulated as the follow-
ing 2-player game. An informed player (adversarial sensor)
knows the value of the X-valued state/source X (e.g., voltage
level) and transmits the M-valued message M to the other
player (control center), who takes her X-valued optimal
action U (e.g., secure estimation in the current formulation)
upon receiving the message M . The strategies of the ad-
versarial sensor and the control center are assumed to be
deterministic; i.e., M = f(X) and U = g(M) = g(f(X)).
Let ca(x, u) and cd(x, u) denote the (Borel measurable)
objective functions of the attacker (adversarial sensor) and
the defender (control center), respectively, when the action
u is taken for the corresponding state x. Then, for the given
strategies, the attacker’s induced expected cost is Ja (f, g) =
EX [ca(X,U)], whereas the defender’s induced expected cost
is Jd (f, g) = EX

[
cd(X,U)

]
.

As opposed to the original cheap talk formulation in
[6], we investigate the Stackelberg equilibrium: the defender
(control center) is the leader, while the attacker (adversar-
ial sensor) is the follower1. Consequently, the defender’s
strategy is known to the attacker, and this fact is known
to the leader. Note that assuming the opposite, i.e., that
the attacker does not know the defender’s strategy, would
be equivalent to assuming that the defender’s strategy is a
cryptographic secret, which is unrealistic considering that it
is an algorithm. Since the attacker chooses her strategy based
on the strategy of the defender, the strategy of the attacker
can be represented by M = fg(X), where fg represents
the dependency of the attacker strategy on the defender
strategy. Then, a pair of strategies (f∗g∗ , g

∗) is a Stackelberg
equilibrium [15] if

Jd(f∗g∗ , g
∗) ≤ Jd(f∗g , g) ∀g ∈ Γd ,

where f∗g satisfies

Ja(f∗g , g) ≤ Ja(fg, g) ∀fg ∈ Γa ,

where Γa and Γd are the sets of all deterministic (and
Borel measurable) functions from X to M and from M to
X, respectively. In the Stackelberg game, the leader cannot
backtrack on her commitment (which validates a passive
fault-tolerant approach; i.e., the estimator/controller does not
require a reconfiguration during the entire system operation),

1Throughout the manuscript, the terms control center, defender, and leader
are used interchangeably. Similarly, the terms adversarial sensor, attacker,
and follower are used interchangeably.



but has a leadership role since she can manipulate the
follower by anticipating the follower’s actions.

We assume real valued variables and quadratic objective
functions; i.e., X = M = R, ca (x, u) = (x− u− b)2

and cd (x, u) = (x− u)
2, where b denotes a bias that

is strategically introduced to the system by an adversarial
sensor.

The state X to be estimated by the control center is as-
sumed to be a uniform random variable (r.v.) (see Section II-
A), and without loss of generality, it can be assumed to be
a standard uniform r.v.; i.e., X ∼ U [0, 1]. The bias b can be
private or public. When the bias is private, i.e., known to the
adversarial sensor only, the control center’s prior is that b is
uniformly distributed on [−1, 1]; i.e., b ∼ U [−1, 1], which is
independent2 of X . For the public bias case, b is available to
both players; i.e., both players know each other’s objective
functions. Considering the case of the public bias provides
an insight about the relation between the defender’s strategy
and the attacker’s objective, which can be helpful to make
comparisons with the private bias case. In some scenarios,
the adversarial sensor may also have a well-known incentive
(economical, for instance) to add a certain bias.

A. Motivational Example

Consider a smart electric power grid3: the control cen-
ter has to ensure that the voltage level at some nodes
(clients/households) is in the allowed range by collecting
voltage data from the sensors located around the nodes.
The nodes may prefer to report an incorrect or a biased
measurement within the allowed range. For example, even
though the voltage level rises, individual households who
produce energy from photovoltaics (PV) may report a lower
voltage in order to sell more energy to the system (notice
that the bias can be modeled as public for this case since the
control center may be aware of such incentives). Assuming
that volt/VAR control (VVC) is integrated to the smart power
distribution systems, voltage levels can be preserved within
acceptable ranges (95 to 105 % of nominal) [26]. Since the
nominal voltage levels are between 220−240 Volts, it can be
assumed that each voltage is equally likely for the analysis.
Regarding the problem formulation above, X is the actual
voltage level, M is the transmitted (biased) measurement,
and U is the control center’s estimate.

III. EQUILIBRIA WITH A PUBLIC BIAS
In this section, the Stackelberg equilibrium is analyzed

for a fixed and public bias; i.e., b is known by both
the attacker and the defender. For an announced defender
strategy g, the goal of the attacker is to minimize her
cost Ja(fg, g) = EX

[
(X − g(fg(X))− b)2

]
. On the other

2For this case, even though the biased measurement X − b is out of the
interval [0, 1], the estimate of the control center is always on the interval
[0, 1] (the voltage levels are assumed to be preserved within an acceptable
range, see Section II-A). The extension to the correlated bias and source is
left as a future study.

3Under a smart grid scenario with a quite similar setting but slightly
modified objective functions, the Nash equilibria of a signaling game
between a consumer and an electricity aggregator are investigated in [25].

hand, due to the leadership role, by anticipating the op-
timal attacker strategy f∗g , the defender aims to minimize

Jd(f∗g , g) = EX
[(
X − g(f∗g (X))

)2]
. Before presenting the

technical results, we provide the following observation which
is valid for any type of source distribution with a public bias.

Observation 3.1: For any given invertible defender strat-
egy g(M), the optimal attacker strategy is f∗g (X) =
g−1(X − b), which implies Ja(f∗g , g) = 0. In this case, the
defender cost becomes Jd(f∗g , g) = b2.

The observation above shows that if the defender uses an
invertible strategy, the incurred cost to the defender is always
b2. We thus investigate whether a lower cost can be achieved
with other types of strategies. As the simplest one, suppose
that g(M) = c, where c is a real constant. The optimal choice
of c is given in the following observation, and is valid for
any type of source distribution with public bias.

Observation 3.2: For a given defender strategy g(M) =
c, the incurred cost to the attacker is Ja(fg, g) =

EX
[
(X − c− b)2

]
, which is independent of the strategy

of the attacker. Therefore, the cost to be minimized by the
defender is Jd(fg, g) = EX

[
(X − c)2

]
, which results in

c∗ = EX [X] as the optimal defender strategy. In this case,
the costs of the attacker and the defender at the equilibrium
are Ja(fg∗ , g

∗) = Var(X) + b2 and Jd(fg∗ , g∗) = Var(X),
respectively, where Var(·) denotes the variance of a r.v..

Notice that under the equilibrium described in Observa-
tion 3.2, the attacker’s actions are irrelevant and the defender
takes an action based only on her priors. Such an equilibrium
is called as a non-informative (babbling) equilibrium [6].
Further, as it can be seen, as long as Var(X) < b2, the
defender prefers a non-informative equilibrium over any
equilibria with an invertible strategy. At this point, it is worth
to analyze the equilibrium costs when the defender has more
than one action to choose from.

Observation 3.3: For a uniform source X ∼ U [0, 1]
and a given defender with two actions u1 and u2 such
that 0 ≤ u1 ≤ u2 ≤ 1, the attacker minimizes her
cost Ja(fg, g) = EX

[
(X − g(fg(X))− b)2

]
by minimizing

(x− g(fg(x))− b)2 for every possible value of X with
a proper choice of strategy fg(X). The attacker prefers
g(fg(x)) = u1 if (x − u1 − b)2 < (x − u2 − b)2 ⇒ x <
u1+u2

2 + b, and g(fg(x)) = u2 if x ≥ u1+u2

2 + b. Note
that, the attacker is indifferent between g(fg(x)) = u1 and
g(fg(x)) = u2 when x = u1+u2

2 +b. Further, if u1+u2

2 +b ≤
0, the best response of the attacker satisfies g(f∗g (x)) = u2

for every x ∈ [0, 1]; hence, the optimal defender action is
u∗2 = EX [X] = 1

2 . Similarly, if u1+u2

2 + b ≥ 1, the optimal
attacker and defender actions are g(f∗g (x)) = u1 and u∗1 = 1

2 ,
respectively. Thus, the optimal attacker strategy satisfies

g(f∗g (x)) =


u2

u1+u2

2 + b ≤ 0 , ∀x ∈ [0, 1]

u1 0 ≤ x < u1+u2

2 + b

u2
u1+u2

2 + b ≤ x < 1

u1
u1+u2

2 + b ≥ 1 , ∀x ∈ [0, 1]

. (1)

The observation above shows that, unless 0 < u1+u2

2 +b <



1, the defender with two actions is essentially equivalent to
the defender with a single action (see Observation 3.2). Oth-
erwise; i.e., when 0 < u1+u2

2 + b < 1 holds, the interaction
between the attacker and the defender can be represented as
a quantization game4 in which the reconstruction values (i.e.,
quantization levels) are determined by the leader (defender)
and the boundaries are determined by the follower (attacker).
Namely, as shown in Fig. 1, the defender selects the optimal
quantization levels u1 and u2 by anticipating the boundaries
(that are determined by the attacker via the nearest neighbor
condition), and thus, the voltage levels are quantized at the
equilibrium.

Fig. 1: The best response of the attacker is represented for the defender
actions (i.e., quantization levels) u1 = 0.3 and u2 = 0.8 when b = 0.2.
Notice that the optimal boundary is chosen as u1+u2

2
+ b = 0.75 by the

attacker.

The following theorem investigates the equilibrium (i.e.,
the optimal quantizer for the defender) with two defender ac-
tions (i.e., quantization levels). The proof is in Appendix A.

Theorem 3.1: For a uniformly distributed source X ∼
U [0, 1] and publicly known bias b, suppose that the defender
has two quantization levels such that 0 ≤ u1 ≤ u2 ≤ 1.
Then, the equilibrium is characterized as follows:

u∗
1 u∗

2 Ja(f∗
g∗ , g∗) Jd(f∗

g∗ , g∗)

|b| < 1
2

1
4
+ b2 3

4
− b2 3

(
b2 + 1

12

)2 −
(
b2 − 1

4

)2
+ 1

12

|b| ≥ 1
2

1
2

1
2

b2 + 1
12

1
12

Theorem 3.1 describes the equilibrium with two quanti-
zation levels. The following theorem characterizes equilibria
with N > 2 quantization levels. The proof is in Appendix B.

Theorem 3.2: For a uniformly distributed source X ∼
U [0, 1] and publicly known bias b, suppose that the de-
fender has N > 2 quantization levels such that u[1:N ] ,
u1, u2, . . . , uN with 0 ≤ u1 ≤ u2 ≤ . . . ≤ uN ≤ 1. Let
t , N − 1, A ,

√
4b2(t2 − 1) + 1, and ∆ = t−A

t2−1 .
(i) If |b| < 1

2 , the optimal quantization levels are u∗1 =
−1+At
2(t2−1) and u∗i = u∗1 + (i − 1)∆ for i = 1, 2, . . . , N ,
and the corresponding attacker and defender costs are
Ja(f∗g∗ , g

∗) = 4tA3−3A2+t2−6tA+4
12(t2−1)2 and Jd(f∗g∗ , g

∗) =
−2tA3+3t2A2−2t2+1

12(t2−1)2 , respectively.

4Note that the quantization strategy of the attacker is not an arbitrary
choice among non-invertible strategies, it is the best response for a given
defender strategy with countably many actions.

(ii) Otherwise; i.e., |b| ≥ 1
2 , there exist only babbling

equilibria under which u∗i = 1
2 for i = 1, 2, . . . , N ,

Ja(f∗g∗ , g
∗) = b2 + 1

12 and Jd(f∗g∗ , g
∗) = 1

12 .
Theorem 3.2 characterizes the non-babbling equilibrium

for |b| < 1
2 . Therefore, there are two extreme conditions to

investigate:
Corollary 3.1: (i) For b = 0, the costs of the attacker

and the defender become the same. Then, for any N , it
follows that A = 1, u∗1 = 1

2N , ∆ = 1
N , and Jd(f∗g∗ , g

∗) =
1

12N2 . Notice that the attacker partitions the source as
[0, 1

N ], . . . , ( tN , 1], which is a uniform quantizer.
(ii) For |b| = 1

2 case, for any N > 2, it follows that A =
N − 1, ∆ = 0, u∗1 = . . . = u∗N = 1

2 , and Jd(f∗g∗ , g
∗) = 1

12 .
As it can be seen, N different quantization levels converge
into the one, resulting in a babbling equilibrium.

Theorem 3.2 characterizes the equilibrium depending on
the number of quantization levels N and bias b, and allows
us to analyze their impact on the attacker and the defender:

Corollary 3.2: The costs of the attacker and the defender
are increasing functions of |b| and decreasing functions of
N . Thus, both the attacker and the defender prefer a smaller
|b| and a larger number of quantization levels N .

Remark 3.1: (i) Regarding Observation 3.1, there are
infinitely many invertible strategies of the defender resulting
in the same cost for both players, thus the corresponding
equilibria are outcome equivalent.

(ii) Regarding Observation 3.2, there are infinitely many
possible strategies of the attacker resulting in the same
cost for both players, thus the corresponding equilibria are
outcome equivalent.

(iii) Regarding Theorem 3.1 and Theorem 3.2, there are
infinitely many strategy pairs (f∗g∗ , g

∗) resulting in the unique
optimal quantizer levels u∗i and unique equilibrium costs
Ja(f∗g∗ , g

∗) and Jd(f∗g∗ , g
∗) for fixed N and b, thus the

corresponding equilibria are outcome equivalent for fixed N
and b.

Remark 3.2: (i) For a fixed number of quantization levels
N , there is a critical value b̃ such that as long as |b| < b̃,
the defender prefers an invertible strategy over a quantized
one with N quantization levels. This follows from the fact
that as b → 0, the quantized defender cost converges
to limb→0 J

d(f∗g∗ , g
∗) = 1

12N2 (i.e., a uniform quantizer);
whereas, the cost of the defender with an invertible strategy
converges to 0: limb→0 J

d(f∗g∗ , g
∗) = b2 → 0.

(ii) For a fixed bias b, there is a critical value Ñ such that
the defender prefers a strategy with N > Ñ quantization
levels over an invertible one. This follows from the fact that
as N → ∞, A → 2|b|(N − 1) and Jd(f∗g∗ , g

∗) → b2(1 −
4|b|
3 ) < b2.
(iii) If we let t = N − 1→∞ and b→ 0 simultaneously

with |bt| = C � 1, where C is a fixed constant, since
A→ 2|b|t, we have

lim
t→∞, b→0
tb=C�1

Jd(f∗g∗ , g
∗) ≈ b2 , lim

t→∞, b→0
tb=C�1

Ja(f∗g∗ , g
∗)→ 0 .

This shows that when t→∞ and b→ 0 simultaneously with
|bt| = C � 1, the costs converge to those in Observation 3.1.



(iv) Ja(f∗g , g
∗) = Jd(f∗g , g

∗) + b2(4u∗1 − 1) holds by
Theorem 3.2. Thus, the attacker cost is greater than or equal
to the defender cost iff u∗1 ≥ 1

4 . Note that, for N = 2,
since u∗1 = 1

4 + b2, this condition is always satisfied.
However, this does not necessarily hold for N > 2. Since

u∗1 =
−1+t
√

4b2(t2−1)+1

2(t2−1) , Ja(f∗g , g
∗) < Jd(f∗g , g

∗) holds if
16b2t2−t2+1 < 0. In particular, for a fixed b, if t2 > 1

1−16b2 ,
then the attacker has a lower cost. Similarly, for a fixed t, if
b2 < t2−1

16t2 , then the attacker has a lower cost.

IV. EQUILIBRIA WITH A PRIVATE BIAS

In this section, the Stackelberg equilibrium is analyzed for
a random and private bias; i.e., the prior of the defender is the
distribution of the bias, which is assumed to be b ∼ U [−1, 1].
Due to the random bias, the defender does not know the
attacker’s objective function perfectly, and the defender cost
includes the expectation with respect to both X and b; i.e.,
Jd(f∗g , g) = EX,b

[(
X − g(f∗g (X))

)2]
. On the other hand,

since the realization of b is available to the attacker, her cost
remains Ja(fg, g) = EX

[
(X − g(fg(X))− b)2

]
. Before

presenting the technical results, we provide the following
observations, which are valid for any type of source distri-
bution with a private bias.

Observation 4.1: For any given invertible defender strat-
egy g(M), the optimal attacker strategy is f∗g (X) =
g−1(X − b), which results in Ja(f∗g , g) = 0. In this case,
the defender cost is Jd(f∗g , g) = Eb[b2].

Observation 4.2: For a defender with a single action (i.e.,
quantization level), the optimal strategy is g∗(M) = c∗ =
EX [X], which results in Ja(fg∗ , g

∗) = Eb[Var(X) + b2] =
Var(X) + Eb[b2] and Jd(fg∗ , g∗) = Var(X), respectively.

The equilibrium with a private bias when the defender
has two quantization levels is analyzed below. The proof is
in Appendix C.

Theorem 4.1: For a uniformly distributed source X ∼
U [0, 1] and bias b ∼ U [−1, 1] (which is independent of X),
whose realization is available only to the attacker, suppose
that the defender has two quantization levels such that 0 ≤
u1 ≤ u2 ≤ 1. Then, the optimal quantization levels are
u∗1 = 5

12 and u∗2 = 7
12 , and, as a function of the realization

of b, the corresponding equilibrium costs are as follows:

|b| < 1
2

|b| ≥ 1
2

Ja
b (f∗

g∗ , g∗) 5b2

6
+ 7

144
b2 − |b|

6
+ 13

144

Jd
b (f∗

g∗ , g∗) b2

6
+ 7

144
13
144

The analysis with two quantization levels in Theorem 4.1
can be extended to N quantization levels as follows. The
proof is in Appendix D.

Theorem 4.2: For a uniformly distributed source X ∼
U [0, 1] and bias b ∼ U [−1, 1] (which is independent of X),
whose realization is available only to the attacker, suppose
that the defender has N > 2 quantization levels such that
u[1:N ] , u1, u2, . . . , uN with 0 ≤ u1 ≤ u2 ≤ . . . ≤ uN ≤ 1.

Let t , N − 1, A ,
√

2t2+1
3 , and ∆ = t−A

t2−1 . Then the

optimal quantization levels can be characterized as u∗1 =
−1+At
2(t2−1) and u∗i = u∗1 + (i− 1)∆ for i = 1, 2, . . . , N .

Remark 4.1: Similar to Remark 3.1, the outcome equiva-
lence of the equilibria can be established for Observation 4.1,
Observation 4.2, Theorem 4.1, and Theorem 4.2.

V. NUMERICAL EXAMPLE AND DISCUSSION

In this section, we present an example, Fig. 2, to illustrate
the analytical results and make comparisons between the
scenarios with a public and a private bias. As it can be seen
from Fig. 2, for a public bias, both the defender and the
attacker prefer the equilibrium with greater number of quan-
tization levels (see Corollary 3.2). The same behavior can
be observed for a private bias (considering the realizations
of b), too. Furthermore, as shown in Remark 3.2.(iv), for a
public bias, the attacker has a lower cost than the defender
for b2 < 22−1

16×22 ⇒ |b| < 0.2165 when the defender has three
quantization levels; whereas, the attacker has always a higher
cost when the defender has two quantization levels. Again,
the same behavior can be observed for a private bias, too.

If the defender knows the bias, intuitively, she optimizes
her cost better than in the case when she knows only the
distribution of the bias; i.e., the defender cost with a private
bias is higher than with a public one. Indeed, for the two
quantization levels case and |b| ≤ 1

2 , −
(
b2 − 1

4

)2
+ 1

12 ≥
b2

6 + 7
144 is always true, with equality holding only when

b2 = 1
6 , as depicted in Fig. 2. On the other hand, for the two

quantization levels case, unexpectedly, the attacker prefers a
public bias, rather than a private one, for smaller bias values;
i.e., she has a higher cost for a private bias. Accordingly, the
attacker prefers a public bias when 3

(
b2 + 1

12

)2 ≤ 5b2

6 +
7

144 ⇒ b2 ≤ 1
6 .

Fig. 2: Comparison of the attacker and defender costs with respect to
the bias under different scenarios (public and private bias) and number of
quantization levels (1, 2, and 3).

VI. CONCLUSIONS AND FUTURE WORKS

A fault-tolerant and secure estimation problem under
strategic adversarial bias was modeled as a cheap talk game



between the control center and an adversarial sensor. Stackel-
berg equilibria of the corresponding game were investigated
under the public and private bias assumptions, the conditions
for outcome equivalence and uniqueness of the equilibria
were established, and the equilibrium strategies and the
associated costs were characterized. It was shown that the
cost of the attacker and of the defender is an increasing
function of bias and a decreasing function of number of
quantization levels. Our results surprisingly show that, under
certain conditions, the attacker prefers a public bias rather
than a private one.

For the public bias case, when the defender decides an
invertible strategy, the cost of the defender is b2 whereas
the attacker achieves zero cost (see Observation 3.1). On
the other hand, a non-invertible (e.g., quantized) defender
strategy allows to share the cost between the players. Even
though the total cost of the players increases, the attacker
cost becomes more than zero, which can be desirable by the
defender, and the defender even decreases her own cost from
b2 by using quantized strategies (see Remark 3.2.(ii)).

Our model has many possible interesting extensions. Of
particular interest are the case when the source and the bias
are correlated, the case of more general (e.g., unbounded)
source and bias distributions, such as Gaussian, and the case
of dynamic (multi-stage) interaction. Furthermore, the setup
can be extended to multiple control centers (i.e., hierarchical
or distributed SE) and/or multiple sensors (that can be either
honest or adversarial).

APPENDIX

A. Proof of Theorem 3.1

Due to Observation 3.3 and (1), for the given quantization
levels u1 and u2 with 0 < u1+u2

2 + b < 1, the corresponding
defender cost is

Jd(f∗g , g) =

∫ u1+u2
2 +b

0

(x− u1)2dx+

∫ 1

u1+u2
2 +b

(x− u2)2dx

=
1

12
+

(
u2 −

1

2

)2

+ (u2 − u1)

(
b2 − (u2 + u1)2

4

)
.

(2)

The defender aims to minimize (2) by selecting the optimal
actions u1 and u2 under the constraints 0 ≤ u1 ≤ u2 ≤ 1
and 0 ≤ u1+u2

2 +b ≤ 1. Since the 2×2 Hessian matrix H =[
∂2Jd(f∗

g ,g)

∂ui∂uj

]
of (2) is positive semi-definite, Jd(f∗g , g) in (2)

is a convex function of u1 and u2. Further, the inequality
constraints are convex (actually they are affine). Thus, the
optimization problem of the defender is convex [27]. The
corresponding Lagrangian function is expressed as

L (u1, u2, λ, µ, ν, γ, ζ) =
1

12
+

(
u2 −

1

2

)2

+ b2(u2 − u1)

− (u2 − u1)(u2 + u1)2

4
− λu1 + µ(u1 − u2) + ν(u2 − 1)

− γ
(
u1 + u2

2
+ b

)
+ ζ

(
u1 + u2

2
+ b− 1

)
,

and the dual function is given by

h(λ, µ, ν, γ, ζ) , inf
u1,u2

L (u1, u2, λ, µ, ν, γ, ζ) ,

and the Lagrangian dual problem is defined as

min
λ,µ,ν,γ,ζ

h (λ, µ, ν, γ, ζ) s.t. λ , µ , ν , γ , ζ ≥ 0 .

Since the optimization problem is convex, the duality gap
between the solutions of the primal and the dual problem
is zero. Then, the Karush-Kuhn-Tucker (KKT) conditions
(stationarity, primal feasibility, dual feasibility, and comple-
mentary slackness) can be obtained as (3)-(6), respectively.

∂L (u1, u2, λ, µ, ν, γ, ζ)

∂ui
= 0 for i = 1, 2 , (3)

− u1 ≤ 0 , u1 − u2 ≤ 0 , u2 − 1 ≤ 0 ,

−
(
u1 + u2

2
+ b

)
≤ 0 ,

u1 + u2

2
+ b− 1 ≤ 0 ,

(4)

λ ≥ 0 , µ ≥ 0 , ν ≥ 0 , γ ≥ 0 , ζ ≥ 0 , (5)
λu1 = 0 , µ(u1 − u2) = 0 , ν(u2 − 1) = 0 ,

γ

(
u1 + u2

2
+ b

)
= 0 , ζ

(
u1 + u2

2
+ b− 1

)
= 0 .

(6)

By utilizing the conditions above, 0 < u1 < u2 < 1 and
λ = ν = γ = ζ = 0 are obtained, and (3) reduces to u2

1 =
(u2−1)2 ⇒ u1 = 1−u2. Then, the stationarity condition in
(3) becomes ∂L(u1,u2,λ,µ,ν,γ,ζ)

∂u1
= 0⇒ u1 = b2 + 1

4 − µ and
u2 = 3

4 − b
2 +µ. Due to (6), µ 6= 0 implies u1 = u2 ⇒ µ =

b2− 1
4 . Thus, if b2 ≥ 1

4 , it follows that u∗1 = u∗2 = 1
2 , which

is a babbling equilibrium as described in Observation 3.2,
and the corresponding attacker and defender costs become
Ja(f∗g∗ , g

∗) = b2 + 1
12 and Jd(f∗g∗ , g

∗) = 1
12 , respectively.

On the other hand, µ = b2− 1
4 contradicts with (5) if b2 <

1
4 . Therefore, if b2 < 1

4 , we can conclude that µ = 0, and the
corresponding optimal quantization levels become u∗1 = b2+
1
4 and u∗2 = 3

4 − b
2. Then, the corresponding defender cost

in (2) becomes Jd(f∗g∗ , g
∗) = −

(
b2 − 1

4

)2
+ 1

12 . Similarly,
the corresponding attacker cost can be calculated.

B. Proof of Theorem 3.2

For the given quantization levels of defender u[1:N ], the
best response of the attacker is characterized as g(fg(x)) =
arg minũ=u[1:N]

(x− ũ− b)2, which is equivalent to

g(f∗g (x)) =


u1 0 ≤ x ≤ u1+u2

2 + b

ui
ui−1+ui

2 + b < x ≤ ui+ui+1

2 + b

uN
uN−1+uN

2 + b < x < 1

, (7)

for i = 2, 3, . . . , N − 1. Note that
• if u1+u2

2 + b ≤ 0, then the optimal attacker response
satisfies g(f∗g (x)) = u2 for 0 ≤ x ≤ u2+u3

2 +b, and the
quantization level g(fg(x)) = u1 cannot be utilized.

• if uN−1+uN

2 + b ≥ 1, then the optimal attacker satisfies
g(f∗g (x)) = uN−1 for uN−2+uN−1

2 +b < x ≤ 1, and the
quantization level g(fg(x)) = uN cannot be utilized.

Therefore, unless 0 < u1+u2

2 + b and uN−1+uN

2 + b < 1,
the N -level quantization setup reduces to the (N − 1)-level



quantization setup. Then, for 0 < u1+u2

2 +b and uN−1+uN

2 +
b < 1, the corresponding defender cost is

Jd(f∗g , g) =

N−1∑
i=2

∫ ui+ui+1
2 +b

ui−1+ui
2 +b

(x− ui)2dx


+

∫ u1+u2
2 +b

0

(x− u1)2dx+

∫ 1

uN−1+uN
2 +b

(x− uN )2dx

=
1

12
+

(
uN −

1

2

)2

+ b2(uN − u1)

− 1

4

N∑
i=2

(ui − ui−1)(ui + ui−1)2 .

(8)

The defender aims to minimize (8) by selecting the optimal
actions u[1:N ] under the constraints 0 ≤ u1 ≤ u2 ≤ . . . ≤
uN ≤ 1, 0 ≤ u1+u2

2 + b and uN−1+uN

2 + b ≤ 1. Since
the N × N Hessian matrix H =

[
∂2Jd(f∗

g ,g)

∂ui∂uj

]
of (8) is

symmetric and diagonally dominant matrix with real non-
negative diagonal entries; its eigenvalues are real, and by
Gershgorin’s circle theorem, all of its eigenvalues are non-
negative. Thus, H is positive semi-definite, which implies
that Jd(f∗g , g) in (8) is a convex function of u[1:N ]. Further,
the inequality constraint functions are convex. Thus, the
optimization problem of the defender is convex [27]. The
corresponding Lagrangian function is expressed as

L
(
u[1:N ], λ, µ[1:N−1], ν, γ, ζ

)
=

1

12
+

(
uN −

1

2

)2

+ b2(uN − u1)− 1

4

N∑
i=2

(ui − ui−1)(ui + ui−1)2

− λu1 +

(
N−1∑
i=1

µi(ui − ui+1)

)
+ ν(uN − 1)

− γ
(
u1 + u2

2
+ b

)
+ ζ

(
uN−1 + uN

2
+ b− 1

)
,

and the dual function and the Lagrangian dual problem
can be defined in a similar way to that in the proof of
Theorem 3.1. Since the optimization problem is convex, the
duality gap between the solutions of the primal and the dual
problem is zero. Then, by letting ∆i = ui+1 − ui, the KKT
conditions (stationarity, primal feasibility, dual feasibility,
and complementary slackness) can be obtained as (9)-(12),
respectively.

∂L
(
u[1:N ], λ, µ[1:N−1], ν, γ, ζ

)
∂ui

= 0 for i = 1, . . . , N , (9)

− u1 ≤ 0 , −∆i ≤ 0 for i = 1, . . . , N − 1 , uN − 1 ≤ 0 ,

−
(
u1 + u2

2
+ b

)
≤ 0 ,

uN−1 + uN
2

+ b− 1 ≤ 0 , (10)

λ ≥ 0 , µi ≥ 0 for i = 1, 2, . . . , N − 1 , ν ≥ 0 , (11)
λu1 = 0 , µi∆i = 0 for i = 1, . . . , N − 1 , ν(uN − 1) = 0 ,

γ

(
u1 + u2

2
+ b

)
= 0 , ζ

(
uN−1 + uN

2
+ b− 1

)
= 0 .

(12)

By utilizing the conditions above, 0 < u1 ≤ u2 ≤ . . . ≤
uN < 1 and λ = ν = γ = ζ = 0 are obtained, and (9)
reduces to u2

1 = (uN−1)2 ⇒ u1 = 1−uN . Then, the station-

arity condition in (9) becomes
∂L(u[1:N],λ,µ[1:N−1],ν,γ,ζ)

∂ui
=

0⇒ ∆2
i−1

4 −µi−1 =
∆2

i

4 −µi for i = 2, 3, . . . , N−1. Hence,

∆2
1

4
− µ1 =

∆2
2

4
− µ2 = . . . =

∆2
N

4
− µN (13)

holds. In (13), if any ∆j = 0, then
∆2

j

4 − µj ≤ 0 by (12),
which requires ∆2

i

4 −µi ≤ 0 for all i = 2, 3, . . . , N−1. Thus,
it must hold that ∆1 = . . . = ∆N−1 = 0, which implies
u1 = . . . = uN and µ1 = . . . = µN−1. Since u1 + uN = 1,
we have u1 = . . . = uN = 1

2 . Further, the stationarity

condition in (9) becomes
∂L(u[1:N],λ,µ[1:N−1],ν,γ,ζ)

∂u1
= 0 ⇒

µ1 = . . . = µN−1 = b2 − 1
4 . Thus, if b2 ≥ 1

4 , it follows
that u∗1 = . . . = u∗N = 1

2 , which is a babbling equilibrium as
described in Observation 3.2, and the corresponding attacker
and defender costs become Ja(f∗g∗ , g

∗) = b2 + 1
12 and

Jd(f∗g∗ , g
∗) = 1

12 , respectively.
On the other hand, µ = b2 − 1

4 contradicts with (11) if
b2 < 1

4 . Therefore, if b2 < 1
4 , ∆i > 0 must hold for i =

1, 2, . . . , N − 1, which implies µ1 = . . . = µN−1 = 0 ⇒
∆1 = . . . = ∆N−1 , ∆. Thus, the relation between the
optimal quantization levels becomes ui = u1 + (i− 1)∆ for
i = 1, 2, . . . , N . Since u1 + uN = 1, the interval between
the quantization levels is ∆ = 1−2u1

N−1 . Then, by letting t ,
N−1 and A ,

√
4b2(t2 − 1) + 1, the stationarity condition

with respect to u1 in (9); i.e.,
∂L(u[1:N],λ,µ[1:N−1],ν,γ,ζ)

∂u1
= 0,

implies(
1− 1

t2

)
(u1)2 +

1

t2
u1 −

(
b2 +

1

4t2

)
= 0 . (14)

Since u1 > 0, the only possible solution of the quadratic
equation in (14) is u∗1 = −1+At

2(t2−1) . Then, ∆ =
1−2u∗

1

N−1 =
t−A
t2−1 and u∗i = u∗1 + (i − 1)∆ are obtained. Further,
the condition 0 ≤ u∗

1+u∗
2

2 + b reduces to b ≥ − 1
2 , and

u∗
N−1+u∗

N

2 + b ≤ 1 reduces to b ≤ 1
2 . Therefore, the b2 < 1

4
assumption holds. Then, the optimal defender cost in (8)
becomes Jd(f∗g∗ , g

∗) = −2tA3+3t2A2−2t2+1
12(t2−1)2 . Similarly, the

corresponding attacker cost can be calculated.

C. Proof of Theorem 4.1

Since the attacker has a perfect observation of b, for every
realization of b, her optimal strategy satisfies (1). Then, the
corresponding average defender cost becomes

Jd(f∗g , g) = Pr

(
−1 ≤ b ≤ −u1 + u2

2

)∫ 1

0

(x− u2)2dx

+ Pr

(
−u1 + u2

2
< b < 1− u1 + u2

2

)
× Eb

[ ∫ u1+u2
2 +b

0

(x− u1)2dx

+

∫ 1

u1+u2
2 +b

(x− u2)2dx

∣∣∣∣− u1 + u2

2
< b < 1− u1 + u2

2

]



+ Pr

(
1− u1 + u2

2
≤ b ≤ 1

)∫ 1

0

(x− u1)2dx

=
1

12
+

(
u2 −

1

2

)2

+ (u2 − u1)

(
1

6
− (u2 + u1)2

4

)
.

(15)

Due to the resemblance between (2) and (15), the corre-
sponding optimal quantization levels are u∗1 = 5

12 and u∗2 =
7
12 , and the optimal average defender cost is Jd(f∗g∗ , g

∗) =
11
144 . Then, the corresponding defender and attacker costs can
be derived as a function of the realization of b.

D. Proof of Theorem 4.2

If uN−1+uN

2 +b ≤ 0, then the best response of the attacker
will always end up with the quantization level uN ; i.e.,
g(f∗g (x)) = uN ∀x ∈ [0, 1]. However, if uN−2+uN−1

2 +b ≤ 0,
then her best response will result in 2 different quantization
levels uN and uN−1; in particular, g(f∗g (x)) = uN if x ∈
[0, uN−1+uN

2 +b], and g(f∗g (x)) = uN−1 if x ∈ (uN−1+uN

2 +

b, 1]. Note that it is impossible to have ui+ui+1

2 + b ≤ 0 and
uj+uj+1

2 + b ≥ 1 simultaneously for any i, j = 1, 2, . . . , N ,
unless b = 0 (which has zero measure). Then, proceeding
similarly, the optimal attacker strategy can be characterized
by utilizing Table I.

TABLE I: The optimal attacker strategy and available quantization levels
(for k = 2, 3, . . . , N − 1)

Condition Available Quantization Levels
−1 ≤ b ≤ −uN−1+uN

2
uN

−uk+uk+1

2
< b ≤ −uk−1+uk

2
uN , uN−1, . . . , uk

−u1+u2
2

< b ≤ 1− uN−1+uN

2
uN , uN−1, . . . , u1

1− uk+uk+1

2
< b ≤ 1− uk−1+uk

2
uk, uk−1, . . . , u1

1− u1+u2
2

< b ≤ 1 u1

The attacker determines her best response by considering
the quantization levels available to the defender, which is
indicated in Table I; e.g., if 1− uk+uk+1

2 ≤ b ≤ 1− uk−1+uk

2 ,
then the attacker chooses boundaries between k quantization
levels whose reconstruction values are u1, u2, . . . , uk, similar
to that in (7). Then, by utilizing (8), the corresponding
average defender cost can be calculated as

Jd(f∗g∗ , g
∗) =

1

12
+

(
uN −

1

2

)2

+
uN − u1

6

− 1

4

N∑
k=2

(uk − uk−1)(uk + uk−1)2 .

(16)

Due to the resemblance between (8) and (16), the cor-
responding optimal quantization levels are u∗1 = −1+At

2(t2−1) ,
∆ = t−A

t2−1 , and u∗i = u∗1 +(i−1)∆ for i = 1, 2, . . . , N , with

t = N − 1 and A =
√

2t2+1
3 .
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