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Abstract—Precise time synchronization of Phasor Measure-
ment Units (PMUs) is critical for monitoring and control of smart
grids. Thus, time synchronization attacks (TSAs) against PMUs
pose a severe threat to smart grid security. In this paper we
present an approach for detecting TSAs based on the interaction
between the time synchronization system and the power system.
We develop a phasor measurement model and use it to derive
an accurate closed form expression for the correlation between
the frequency adjustments made by the PMU clock and the
resulting change in the measured phase angle, without an attack.
We then propose one model-based and three data-driven TSA
detectors that exploit the change in correlation due to a TSA.
Using extensive simulations, we evaluate the proposed detectors
under different strategies for implementing TSAs, and show
that the proposed detectors are superior to state-of-the-art clock
frequency anomaly detection, especially for unstable clocks.

Index Terms—PMU, time synchronization attacks, phasor mea-
surements, security, cyber-physical systems, correlation, clock
synchronization, data-driven detection, machine learning.

I. INTRODUCTION

Measurements taken by Phasor Measurement Units (PMUs)
have been employed in many smart grid applications in
the past years (e.g., power oscillation damping, phase angle
separation monitoring, and power system state estimation). For
the reliable operation of these applications, the measurements
taken by PMUs should be accurate, which requires precise
time synchronization. Traditionally, time synchronization for
PMUs is achieved through space based (e.g., GPS) or through
network based time synchronization (e.g., PTPv2 [1]). How-
ever, both solutions have been shown to be vulnerable to time
synchronization attacks (TSAs), both in theory and in practice.
The signal from a GPS satellite or a PTP grandmaster can
be spoofed [2], [3]. Moreover, PTPv2 is also vulnerable to
the manipulations of the delays [4], which does not require
breaking any cryptographic protection [5]. TSAs can have
detrimental impact on the stability of the power grid [6], [7],
thus it is of utmost importance to mitigate and detect them.

Existing methods that could be used to detect TSAs against
GPS or PTPv2 depend on either information from the time
synchronization system [8], [9] and the PMU clock [10],
[11], or on information from the underlying power system
(measured synchropasors) [12]–[14]. In this paper, we argue
that combining information from both the PMU clock and the
power system can significantly improve the detection accuracy
of TSAs. We propose a model for the interaction between
the PMU clock and the measured phase angle of the phasor.

Based on the model, we derive a closed form expression for the
correlation between changes in the PMU clock and resulting
changes in the measured phase angle, and we show that the
expression is accurate for a wide range of realistic clocks.
We then propose four TSA detectors that analyze data from
both the PMU clock and the power system; (1) a threshold-
based detector based on the model, (2) a threshold-based data-
driven detector, (3) a data-driven detector based on unsuper-
vised machine learning, and (4) a data-driven detector based
on supervised machine learning. The proposed detectors are
shown to perform better than Cumulative Sum (CUSUM) [15],
which is a state-of-the-art change detection method, for a wide
range of possible variants of TSAs. Our results also show
that the two low-complexity threshold-based detectors can
achieve comparable performance to computationally extensive
machine learning algorithms.

The rest of the paper is organized as follows. In Section II,
we review the related work in TSA detection. We then intro-
duce the phase angle model of the synchrophasor measurement
in Section III. In Section IV, we analyse the model to estimate
the correlation between the phasor measurement and the clock
frequency adjustments, and validate this analysis. In Section
V, we present the proposed TSA detectors. We then present
the considered attack strategies, along with the performance
of the proposed detectors in Section VI. Finally, we conclude
the paper in Section VII.

II. RELATED WORK

Previous work on detecting TSAs can be divided into
three main categories: (1) mitigation and detection of GPS
spoofing, (2) mitigation and detection of attacks on PTP, and
(3) detection of clock anomalies. For GPS spoofing detection,
authors in [8] exploited the doppler shift between a GPS
transmitter and a receiver, while authors in [9] proposed a
method based on the direction of arrival (DOA) of the signal
compared to an expected value predicted by a Kalman filter.
Most recently, authors in [16] proposed GPS time verification
utilizing the known positions of the GPS receivers. For net-
work time synchronization, [17] proposed a game theoretical
framework for modeling the interaction between an attacker
and a defender in a network using PTP. As mitigation, links
suspected of malicious activity are put in ”quarantine mode”
in order to investigate the cause of the anomaly. Moreover, [3]
proposed countermeasures to common security vulnerabilities



of PTP. The authors also proposed an extension of the PTP
standard, including the use of efficient elliptic-curve public-
key signatures for message authentication.

Several recent works considered the problem of clock fre-
quency anomaly detection [10], [11]. Authors in [10] proposed
a technique for anomaly detection in atomic clocks using
the Dynamic Allan Variance (DAVAR), which is a measure
of clock stability. Furthermore, a recursive frequency jump
detector based on double exponential smoothing was presented
in [11]. The detector takes into account the frequency drift, and
detects changes in both drift and variance. Nevertheless, these
techniques are based on variables that are not easily observable
in PMU clocks (e.g., the clock frequency).

One common characteristic of the above approaches is that
they all have considered the problem from the side of the
time synchronization system and the clock. Another possible
approach for the detection of TSAs could be utilizing infor-
mation from the power system through PMU-based Linear
State Estimation (LSE) [18]. If the deployed PMUs allow
for observability of the power system, then the measurements
taken by the PMUs could be used to estimate the state of
the system, and to identify corrupted data using Bad Data
Detection (BDD) techniques [18]. BDD techniques were orig-
inally developed for detecting faulty and noisy measurements.
Since then, many research articles have proposed enhancing
and tailoring BDD techniques to detect TSAs [19] and even
to correct the malicious measurements [20]. Nonetheless,
recent research has shown that TSAs could be designed to
be undetectable by BDD [7], [21], [22]. Similarly, [12] has
considered monitoring the correlations between measurements
of electrically close PMUs to detect spoofing attacks (not
necessarily TSAs). Other works have considered applying
unsupervised [13] and supervised [14] machine learning al-
gorithms on the power flow measurements in the power grid
to detect spoofing attacks. Nonetheless, these works have not
considered monitoring variables from the PMU clock system.
One additional advantage of our approach is that it does not
depend on information from multiple PMUs, and can therefore
pinpoint exactly which PMU is attacked.

All existing approaches depend on either information from
the time synchronization system and the clock, or on infor-
mation from the power system (measured synchrophasors).
To the best of our knowledge, no previous research has
proposed leveraging information from both the clock and
the power system to detect TSAs. In [23], we showed that
combining information from the PMU clock and the power
system can significantly improve the detection accuracy of
TSAs. We introduced a model for the measured phase angle
of synchrophasor measurements, and used it to derive an
analytical result for the correlation between the measured
phase angle and the periodical frequency adjustments made by
the PMU clock. We then utilized this correlation to develop
a threshold-based TSA detector. In this paper, we extend the
work done in [23] by (1) extending the analytical correlation
result to a variety of realistic clocks, (2) proposing and
evaluating two additional detectors based on data analytics and

machine learning, and (3) considering different strategies that
an attacker can follow to implement its attack and evaluating
their effect on the detection performance.

The efficient detection of TSAs is not only beneficial to the
reliability of phasor measurements in smart grid applications,
but would also be beneficial for other time synchronization-
dependent applications. For example, in sensor networks de-
ployed for object tracking, the sensors are required to be
accurately time synchronized to estimate the object loca-
tion [24]. A TSA would change the time perceived by the
sensor, and thus the estimation of the location would be
inaccurate. Another example of time-sensitive applications is
in the growing field of collaborative robots, which also rely on
precise time synchronization [25]. We believe that the ideas
presented in this paper could be inspiring for developing TSA
detectors for those time-sensitive applications, by monitoring
data from both the time synchronization system and the
collected physical quantities.

III. SYSTEM MODEL

We consider a PMU that periodically measures a voltage
or current phasor. The true phase angle measured in radians
at time instant ti is denoted by αp(ti), and the corresponding
zero crossing time lag w.r.t. a reference signal is denoted by
Op(ti), where αp(ti) = 2πfOp(ti), and f is the nominal
oscillation frequency of current and voltage signals in the
system. In the following we express all quantities in terms of
time lag. The measured phase angle is dependent not only on
the true phase Op(ti) but also on the accuracy of the metering
device and the accuracy of the PMU clock. In what follows
we present models for these factors.

A. Process and Measurement Model

We adopt a widely used measurement model in power
systems that assumes that the phase angle, and hence Op(ti)
follows a random walk [26]. Thus, Op(ti) = Op(ti−1) +
ωp(ti), where ωp(ti) ∼ N (0, σp) is zero mean normally
distributed process noise. Furthermore, the measurement error
can be modelled by additive white gaussian noise ωn(ti) ∼
N (0, σn) [26]. Therefore, the measured phase angle for a
perfectly synchronized PMU clock can be expressed as

Oz(ti) = Op(ti) + ωn(ti) (1)
= Oz(ti−1) + ωz(ti),

where ωz(ti) = ωp(ti) + ωn(ti)− ωn(ti−1) ∼ N (0, σz), and
σz =

√
σ2
p + 2σ2

n. Note that ωz(ti) is a sequence of identically
distributed, but not independent Gaussian random variables.

B. Clock Offset Model

When the PMU clock is not perfectly synchronized, the
measured phase angle Om(ti) can be given by

Om(ti) = Oz(ti) +Oc(ti), (2)

where Oc(ti) denotes the time offset between the PMU clock
and the correct time. Oc(ti) depends on two factors: (1) the



accuracy of the PMU clock determined by the clock frequency
drift, and (2) the synchronization mechanism that adjusts the
PMU clock frequency based on a time reference.

1) Clock Drift Model: We model the clock frequency
deviation, denoted by γ(t), by an Ornstein-Uhlenbeck (OU)
process, which was shown to be a suitable model for this
purpose [27]. The OU process is a stationary Gauss-Markov
process, and is given in the discrete and approximated form
by the Euler-Marugama method [28] as

γ(ti) = γ(ti−1)+θ(µ−γ(ti−1))(ti−ti−1)+ωγ(ti)
√
ti − ti−1,

(3)
where µ is the long term mean of the process, θ > 0 is the
speed of reversion, which determines how fast γ(t) drifts to
µ, ωγ(ti) ∼ N (0, σγ), and ti − ti−1 is the time duration
between samples. For example, in PTP ti− ti−1 = 1 seconds,
which is the time duration between synchronization messages.
Therefore, without loss of generality, in what follows we
replace ti and ti−1 by t and t− 1, respectively. Moreover, for
simplicity we assume that γ(0) = µ. Therefore, (3) becomes

γ(t) = γ(t− 1) + θ(γ(0)− γ(t− 1)) + ωγ(t)

= θγ(0) + (1− θ)γ(t− 1) + ωγ(t), (4)

i.e., a weighted average of the long term mean γ(0) and the
previous value γ(t− 1) in addition to random noise ωγ(t).

2) Clock Servo and Adjustments: Typically, PMU clocks
are synchronized to a time reference by a component called
the clock servo. The function of the clock servo is to adjust the
clock frequency to minimize the raw offset Ôc(t) = τpmu(t)−
τr(t) between the time perceived by the PMU τpmu(t) and
the reference time τr(t), in a smooth and gradual manner.
The clock servo is usually implemented as a P-controller or
a PI-controller, such as the open source PTP implementation
PTPd [29]. We consider the general case of a PI-controller,
defined by two parameters; a proportional gain Kp and an
integrator gain Ki. Typical values are Kp = 0.1 and Ki =
0.001 [29]. The frequency adjustment is then computed based
on the raw offset Ôc(t) as

A(t) = D(t) +KpÔc(t), (5)

where D(t) is the accumulated integrator error of the PI-
controller given by D(t) = D(t− 1) +KiÔc(t).

The true offset Oc(t) between the PMU clock and the
correct time is dependent on both the frequency deviation γ(t)
and the introduced adjustments A(t) according to

Oc(t) = Oc(t− 1) +

∫ t

t−1

γ(t) dt−A(t− 1). (6)

Note that the computed raw offset Ôc(t) is an estimation of
the true offset Oc(t), but the two are not necessarily equal (e.g.
in case of a TSA). Figure 1 summarizes the factors affecting
the measured phase angle Om by a PMU.

C. Attack Model
We consider an attacker that is able to manipulate a time

synchronization source (e.g., spoof a GPS signal or manip-
ulate a PTP synchronization message), and hence change
the reference time sent by the source (c.f. Figure 1). Such
manipulations are realistic as shown in many works, such
as [2] and [4]. We denote by tas and tae the start and end time
of the attack, respectively. The attacker can generate fake time
references τar (t) for t ∈ [tas , t

a
e ], which will affect the measured

raw offsets Ôac (t) = tpmu(t)− τar (t).
Our model does not assume that the attacker knows the

clock servo parameters (Kp,Ki, D(t)). In principle the at-
tacker could know these parameters, as most clock servo
implementations are open source or vulnerable to reverse
engineering, and this knowledge could allow the attacker to
compute the effect of Ôac (t) on the adjustments Aa(t) through
(5). Nevertheless, knowledge of the clock servo parameters is
not necessary to launch the attacks described in this paper.

Our attack model considers a powerful attacker, but is in
accordance with Kerckhoff’s priniple, and allows to identify
information that need to be protected cryptographically in
order to make the system secure.

IV. MODEL-ASSISTED ESTIMATION OF THE CORRELATION

Our proposed TSA detectors are based on analyzing data
from the PMU clock and the power system. This is achieved
through monitoring the correlation between the PMU clock
and the phase angle of the measured phasor, leveraging that
this correlation would be affected by an attack. Therefore, in
the following we set out to obtain a closed-form expression
for the expected value of the correlation between the clock
frequency adjustments A(t−1) made by the PMU clock servo
at time step t− 1, and the resulting change in the phase angle
of the measured phasor at the following time step, denoted
by ∆Om(t) = Om(t) − Om(t − 1) = ∆Oz(t) + ∆Oc(t).
We then evaluate the accuracy of this closed-form expression
in estimating the measured correlation under different model
parameters.

A. Correlation Analysis
In what follows we present an approximate analysis of the

correlation between A(t− 1) and ∆Om(t) without an attack.
To make the analysis tractable, we consider that the clock
servo uses a P-controller instead of a PI-Controller, thus Ki =
0 and D(t) = 0,∀t. Unlike the analysis in [23], which assumes
θ = 1, our analysis is valid for any θ > 0 and it thus applies
to practical clocks, which can typically be modelled by very
small values of θ. In Section IV-B and IV-C we will quantify
the effect of our assumption on the accuracy of the analysis.

Proposition 1. Consider that Ki = 0. Then the correlation
ρ(∆Om(t),A(t−1)) between ∆Om(t) and A(t − 1) can be
approximated as

ρ̃(∆Om(t),A(t−1)) =
cov((∆Om(t), A(t− 1)))

σ∆OmσA
(7)

=
E[(∆Om(t)− µ∆Om)(A(t− 1)− µA)]

σ∆OmσA
,



Fig. 1: Block Diagram of the variables affecting the phase angle measured by a PMU.

where cov((∆Om(t), A(t− 1))), σ∆Om , and σA are given in
(8), with δ = 1 −Kp, β = 1 − θ, ϕ = β+1

β−δ , and fg(x, t) =
1−xt−2

1−x .

Proof. Observe that for Ki = 0 the frequency adjustments can
be computed as A(t) = KpÔc(t). In the absence of TSAs, one
can assume that Oc(t) = Ôc(t), and hence A(t) = KpOc(t).
Furthermore, we can approximate (6) using linear interpolation
between t− 1 and t to obtain

Oc(t) = (1−Kp)Oc(t− 1) +
γ(t) + γ(t− 1)

2
. (9)

This approximation is reasonable since γ is not expected to
change rapidly during one second. Now, assuming A(0) =
Oc(0) = 0, we can rewrite (9) to get

Oc(t) =
( t−1∑
k=1

[
δt−k + ϕ(βt−k − δt−k

)]
∗ ωγ(k)

2

)
+

ωγ(t)

2
+

t−1∑
k=0

δkγ(0).

For very large t, the last term converges to γ(0)
Kp

. Additionally,
we can express

∆Oc(t) =

(
t−2∑
k=1

[
ϕ
(
[βt−k − βt−k−1]− [δt−k − δt−k−1]

)
+ δt−k − δt−k−1

]
∗ ωγ(k)

2

)
+ (δ + 1 + ϕ[β − δ]) ωγ(t− 1)

2
+
ωγ(t)

2
.

(10)

Using ∆Om(t) = ∆Oc(t)+ωz(t) and A(t−1) = KpOc(t−
1) in (7), and using the fact that E[ωγ(i)ωγ(j)] = 0 for
i 6= j, and that µ∆Om = 0, µA = γ(0), after some algebraic
manipulation we obtain (8), which proves the result.

Observe that the expression for ρ̃(∆Om(t), A(t−1)) based
on (8) does not depend on the individual values of σz and
σγ . It depends however on their ratio σ∗ = σz

σγ
. Therefore, we

can write ρ̃(∆Om(t),A(t−1)) = fρ(t, σ
∗,Kp, θ). Observe also

that if the PMU is attacked, then Om(t) 6= Ôm(t), and the

value of the correlation is expected to significantly change.
In what follows we evaluate the accuracy of the proposed
correlation analysis and the obtained closed form expression
fρ(t, σ

∗,Kp, θ).

B. Validation of the Correlation Analysis for Ki = 0

To assess the accuracy of fρ(t, σ∗,Kp, θ) for Ki = 0,
we considered a PMU clock with a P-controller clock servo
(Ki = 0). The results reported are the averages of 5000
simulations of the measured phase angle of a PMU according
to the previously mentioned measurement and clock models.
Figure 2 shows the result of the closed form expression
fρ(t, σ

∗,Kp, θ) and the computed empirical correlation ρN (t)
from the simulations, as a function of σ∗ for various values
of the correlation window size N and the speed of reversion
θ.

The figure shows that the correlation changes very lit-
tle when σ∗ is either very high or very low. Therefore,
fρ(t, σ

∗,Kp, θ) would be insensitive to errors in estimation
of σ∗ in these regions. In fact, when θ is small (θ = 0.01),
the value of the correlation hardly changes for any σ∗.
The figure also shows that the accuracy of fρ(t, σ∗,Kp, θ)
increases when N increases. The reason for the discrepancy
between fρ(t, σ

∗,Kp, θ) and the empirical correlation ρN (t)
is due to the difference between time averages and ensemble
averages. ρN (t) measures the correlation over time between
a sequence of N pairs of random variables. On the con-
trary fρ(t, σ∗,Kp, θ) is the correlation between two variables;
∆Om(t) and A(t − 1) at one time instant. To obtain the
equivalent of fρ(t, σ∗,Kp, θ) numerically, one would have
to compute the correlation between ∆Om(t) and A(t − 1)
across multiple simulations. To show that this is indeed the
case, Figure 2 also shows ρruns(t), which is the correlation
computed across the 5000 simulations. The figure shows that
this ensemble average correlation is an excellent match for
fρ(t, σ

∗,Kp, θ) as expected. Observe that ρruns(t) can not
be computed in practice, as it is impossible to run multiple
copies of the same time synchronization system, but ρN (t)
can be computed efficiently. Overall, the results show that
fρ(t, σ

∗,Kp, θ) is a good approximation of ρN (t) for large
enough window size N .



cov((∆Om(t), A(t− 1))) = Kp

(σγ
2

)2

[ fg(δ
2, t)

(
(1 − 2ϕ+ ϕ2)(δ3 − δ2)

)
+ fg(β

2, t)
(
ϕ2(β3 − β2)

)
+ fg(δβ, t)

(
(ϕ− ϕ2)(δβ2 − 2δβ + δ2β)

)
+ δ − ϕδ + ϕβ − 1 ]

σ2
∆Om =

(σγ
2

)2 [
fg(δ

2, t)
(
(δ4 + δ2 − 2δ3)(1 + ϕ2 − 2ϕ)

)
+ fg(β

2, t)
(
ϕ2(β4 + β2 − 2β3)

)
(8)

+ fg(δβ, t)
(
2(ϕ− ϕ2)(δ2β2 − δ2β − δβ2 + δβ)

)
+ (δ + ϕβ − ϕδ − 1)2 + 1

]
σ2
A =

(Kpσγ
2

)2 [
fg(δ

2, t)
(
δ2(1 + ϕ2 − 2ϕ)

)
+ fg(β

2, t)
(
ϕ2β2) + fg(δβ, t)

(
2δβ(ϕ− ϕ2)

)
+ 1

]
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Fig. 2: Comparison of fρ(t, σ∗,Kp, θ), ρruns, and ρN vs. σ∗.
θ = {0.01, 1},Kp = 0.1, and t = 2000.

C. Validation of the Correlation Analysis for Ki ≥ 0

To evaluate the sensitivity of fρ(t, σ∗,Kp, θ) to the con-
troller integrator gain Ki, Figure 3 shows fρ and ρN as a
function of θ, for various values of σ∗, both for Ki = 0 (P-
controller) and Ki = 0.001 (PI-controller, as used in PTPd).
For Ki = 0 (P-controller), the figure shows that fρ is a
very accurate approximation of ρN as previously concluded
from Figure 2. For Ki = 0.001 the results show that fρ is
a reasonably good approximation, especially for high values
of σ∗. Nevertheless, the approximation is not as accurate as
in the case Ki = 0 since the approximation error has two
sources; (1) the approximation of the ensemble average with
the time average (c.f., Fig 2), and (2) the error due to Ki 6= 0.
We observe also that fρ is a better estimate of ρN for higher
values of θ. Overall, we can conclude that fρ is close to the
empirical correlation ρN despite the approximation.

V. CORRELATION-BASED TSA DETECTORS

In what follows we propose four different detectors for the
detection of TSAs based on the analysis of the sequences of
the clock frequency adjustments A and the measured phase
angles Om. The first detector, a model-based detector, follows
and utilizes the correlation analysis presented in section IV-A,
while the second detector is model-free. These two threshold-
based detectors are based on computing the difference between
the predicted value of the correlation ρ̂ and the measured
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Fig. 3: Comparison of fρ(t, σ∗,Kp, θ), and ρN vs. θ. σ∗ =
{0.1, 1, 10},Kp = 0.1,Ki = 0.001, N = 200, and t = 2000.

value. The third and fourth detectors are based on unsupervised
and supervised machine learning classification algorithms,
respectively.

A. Model-based Detector

In the model-based detector, we compute the predicted cor-
relation ρ̂ using the correlation analysis presented in Section
IV-A. To do that, we estimate σγ , σz (hence σ∗), and θ based
on previous knowledge regarding the PMU clock accuracy, and
the power system stability. The predicted correlation can then
be computed as ρ̂ = fρ(t, σ

∗,Kp, θ) for a sufficiently high
value of t, where Kp is a known clock servo parameter. We
emphasize that the accuracy of the estimated σ∗ and θ plays a
crucial role in the accuracy of the predicted correlation ρ̂. The
empirical correlation ρN (t), on the other hand, is computed
for every time step t based on A(τ − 1) and ∆Om(τ),
τ ∈ {t − N + 1, . . . , t}, where N is the correlation window
length. An alarm is then raised at time t if |ρN (t) − ρ̂| > η,
where η is the detection threshold.

B. Model-free Detector

In the model-free detector the predicted correlation ρ̂ is
computed from the historical values of A(t− 1) and ∆Om(t)
from the actual system, when the PMU is known to be in a
normal state (non-attacked). The computation of the empirical



correlation ρN (t) and the generation of detection alarms
follows the same procedure as the model-based detector.

C. Auto-Encoder Neural Network Detector

The Auto-Encoder Neural Network (AENN) detector [30]
is an example of an unsupervised machine learning anomaly
detector. For this detector, historical values of A(t) and
∆Om(t) are recorded, and are used to learn a neural network
model for non-attacked data. An alarm is raised in real-time
if the data obtained from the PMU does not fit the learned
model well. In an AENN, the input and the output layers of
the neural network have the same dimension, while the hidden
layers have lower dimensions. The objective is then to learn a
network that can encode (compress) the data, and then decode
(decompress) it again with the least root-mean-squared error
(RMSE) between the input and the output layers. An alarm is
raised if RMSE > η, where η is the detection threshold. The
idea of AENNs is similar to Principal Component Analysis
(PCA), but its performance is usually superior to PCA as it is
capable of learning non-linear relations between the input and
the output layers, while PCA is limited to linear relations.

D. Random Forest Detector

The Random Forest (RF) detector [31] is an example of a
supervised machine learning detector, where historical values
of A(t) and ∆Om(t) are recorded, including sequences of
attacked and non-attacked data. The labelled data is then used
to learn a model for classification between attacked and non-
attacked sequences. An RF detector consists of a collection of
decision trees; each tree learns a set of rules to differentiate be-
tween attacked and non-attacked sequences. Given an observed
sequence of A(t) and ∆Om(t), the RF detector outputs a value
Pattack ∈ [0, 1], which is the probability that the sequence is
attacked. Pattack is computed based on averaging the output
of the individual trees. An alarm is then raised if Pattack > η,
where η again is the detection threshold. We chose to use
the RF detector to classify attacked and non-attacked data due
to its simplicity, and due to its resistance to the over-fitting
problem [32].

Unlike the model based detector (detector A), detectors
(B-D) do not depend on the accuracy of the system model.
However, they require access to historical data. For detectors B
and C, the historical data have to be collected when the system
is in a non-attacked state, while detector D requires historical
data for both the attacked and the non-attacked state.

VI. NUMERICAL RESULTS

In this section we evaluate our proposed detectors based on
synthetic data.

A. Attack Strategies

For the evaluation we consider an attacker that aims to
achieve an offset ∆τa = τpmu − τr between the PMU time
and the reference time. We refer to this offset as the attack
goal. Intuition says that an attack should become easier to
detect as ∆τa increases, but at the same time, the rate at

which the attack is performed would likely affect the detection
performance. To cover a wide variety of attack strategies, we
consider a general attacker model, in which the attacker applies
the attack for a duration ∆ta = tae − tas until the target offset
∆τa is reached. For every t ∈ [tas , t

a
e ] we model the computed

raw offset after an attack as Ôac (t) ∼ N (Ôc(t)+µa(t), σa(t)),
where µa 6= 0, and Ôc(t) represents the corresponding
computed raw offset if no attack was present. This allows us
to model an attacker that intends to accelerate (µa > 0) or
decelerate (µa < 0) the clock. Note that the attack rate µa(t)
needed to implement the attack will increase as the attack
duration ∆ta decrease. Therefore, for a given attack goal ∆τa,
an attack should be easier to detect as ∆ta decreases (hence
µa increase).

In order to achieve her goal, we consider that the attacker
increases µa(t) from 0 to the maximum attack rate µmaxa by
time ta1 , and then it decreases µa(t) starting at time ta2 . In the
following we consider three different strategies for increasing
and for decreasing µa(t). In section VI-C, we will investigate
the effect of the chosen strategy on the attack detectability.

1) Rectangular Attack: In the rectangular attack strategy,
ta1 = tas and ta2 = tae , which means that µa(t) is set to a
constant value µa(t) = µmaxa = ∆τa

∆ta ,∀t ∈ [tas , t
a
e ].

2) Triangular Attack: In the triangular attack strategy, ta1 =

ta2 =
tas+tae

2 , and µa(t) is changed in a linear fashion given by

µa(t) = µmaxa

(
1− |t− t

a
1 |

∆ta

2

)
,∀t ∈ [tas , t

a
e ],

where µmaxa = 2∆τa

∆ta .
3) Logistic Attack: In the logistic attack strategy, ta1 =

tas + Γ∆ta and ta2 = tae − Γ∆ta, where Γ ∈ [0, 1] is a
constant value that indicates the midpoint of the logistic curve
w.r.t. ∆ta. Furthermore, µa(t) changes according to a logistic
curve (which is smoother than a linear curve). Therefore, using
µmaxa = ∆τa

∆ta(1−Γ) , we can write µa(t) as
µmaxa

(
1

1+exp(− 50
∆ta (t−tas−Γ

2 ∆ta))

)
t ∈ [tas , t

a
1 [

µmaxa t ∈ [ta1 , t
a
2 [

1− µmaxa

(
1

1+exp(− 50
∆ta (t−tas−

1−Γ
2 ∆ta))

)
t ∈ [ta2 , t

a
e ]

.

Figure 4 shows the frequency adjustments A(t) as com-
puted by the clock servo when implementing the considered
attack strategies. In all strategies the attack goal was set to
∆τa = 1ms and the attack duration was set to ∆ta = 1000
seconds (from tas = 600s to tae = 1600s). Observe that the
adjustments do not follow exactly the shape of the attack
strategy (rectangular, triangular, etc.) due to the smoothing
effect of the PI-controller.

B. Evaluation Methodology

We consider two clocks: clock A is a very accurate clock
characterized by (γ(0) = 100ns, σγ = 10ns), while clock B
is a less accurate clock characterized by (γ(0) = 1µs, σγ =
100ns). The oscillator frequency of both clocks has a speed
of reversion θ = 10−6, which is a reasonable value, as the
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∆ta = 1000s, γ(0) = 100ns, σγ = 10ns, σz = 2.2µs,
Kp = 0.1,Ki = 0.001, and θ = 10−6.

frequencies of real clocks usually have weak, but non-zero
tendencies to revert to the long term mean γ(0). Furthermore,
we consider that the clock servo for both clocks uses a
PI-controller with Kp = 0.1 and Ki = 0.001. Regarding
the PMU metering accuracy, we consider that σz = 2.2µs,
which is a realistic value if the PMU uses a class 0.1 sensor.
Therefore, we get σ∗ = 220 and σ∗ = 22 for clock A and B,
respectively.

For both clocks we used the phase angle model in section III
to generate both attacked and non-attacked sequences of A(t)
and ∆Om(t). Each sequence is 2000 seconds long, and for the
attacked sequences we used tas = 600s and σa(t) = µa(t)/10.
We divided the generated sequences into different scenarios;
each scenario is defined by (1) the attack goal ∆τa, (2) the
attack duration ∆ta, and (3) the attack strategy. For each
scenario, we recorded 1000 non-attacked sequences and 1000
attacked sequences. We refer to the collection of 2000 se-
quences (1000 non-attacked + 1000 attacked) of one scenario
as a dataset.

In order to use the proposed detectors on the datasets,
several detector parameters had to be set. For the model-
based and the model-free detectors, a sliding window of length
N = 200 was used to compute the correlations. For AENN,
the input to the neural network was non-overlapping windows
of length 50 seconds of the recorded non-attacked sequences
of ∆Om and A (in total 100 variables), while the dimension
of the single hidden layer of the AENN was 50 (thus, a
compression ratio of 0.5). Furthermore, we used the logistic
sigmoid function as an activation function for the neurons of
the AENN. For the RF detector, we also used non-overlapping
windows of length 50 of the recorded sequences. Each trained
forest consisted of 20 trees, with a maximum allowed tree
depth of 40. Furthermore, we train one RF detector on the
data from all attack scenarios (datasets). Training a separate

detector for each dataset could possibly improve the detection
performance, but is impractical. First, there is a vast number of
potential attack scenarios. Second, it is unclear which detector
should be used as the attacker’s strategy is unknown a priori.

As a baseline we used CUSUM [15], which is a state-of-the-
art clock frequency anomaly detector. To implement CUSUM
over the adjustment sequences A(t), we computed the mean
adjustment Ā and the standard deviation sA over the first 200
seconds of each sequence. Next, we compute the cumulative
sum of the difference between the adjustments and Ā for each
time instant t as

∑t
k=1A(k)− Ā. An alarm is then generated

if at any time instant t, the cumulative sum exceeds ηsA,
where η is the detection threshold for CUSUM. We have also
experimented with applying CUSUM on the correlation time
series ρN (t). Nevertheless, we observed that this performed
slightly worse than the proposed model-free detector, and thus
we do no not show corresponding results.

To compare the tested detectors, we utilize the area under
the Receiver Operating Characteristic (ROC) curve [33]. The
ROC curve shows the trade-off between the detection power
of a detector and its resistance to false alarms. The x-axis of a
ROC curve shows the false positive rate (FPR) of a detector,
while the y-axis shows the true positive rate (TPR). FPR∈
[0, 1] is defined as the proportion of non-attacked sequences
that gets classified by the detector as attacks. TPR∈ [0, 1]
(also called the recall) is the proportion of attacked sequences
that gets classified by the detector as attacks. Each point on
the ROC curve is obtained by using a different value of the
detection threshold η. Setting very low values of η makes the
detector generate an alarm for many sample data, resulting in
TPR and FPR very close to 1, which corresponds to the upper-
right corner of the ROC curve. On contrary, very high values of
η would not let the detector generate any alarms, thus resulting
in TPR and FPR very close to 0, which corresponds to the
lower-left corner of the ROC curve. The range of thresholds
that should be used depends on the detector. For example,
for the correlation-based detectors, the threshold corresponds
to the difference between the expected correlation and the
measured one (|ρN (t)− ρ̂|). Since the correlation values lie in
the range [−1, 1], the difference between them cannot exceed
2. In practice, η is usually set to achieve a certain desired FPR.

The area under the ROC curve (AUC) is a widely accepted
performance measure of detectors. If a threshold value η∗

that classifies all attacked sequences as such (TPR=1), without
generating any false alarms (FPR=0) exists, then AUC=1 and
the detector is called a perfect detector. Another interesting
case arises when AUC=0.5, which means that the evaluated
detector does not perform better than random guessing. For
more information regarding ROC curves and their interpreta-
tions, we refer to [33].

C. Detector Performance

Figure 5 shows the ROC curves obtained by CUSUM and
the 4 proposed detectors for attack target ∆τa = 100µs, and
attack duration ∆ta = 100 seconds, using the rectangular
attack strategy against clock A. The values of the AUC are
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shown in the legends. The figure shows that for this scenario
the model-based and the model-free detectors outperform all
other detectors, even the RF classifier (which is trained on the
attacked data). In particular, we see that the ROC curves for
the model-based and the model-free detectors include points
that are very close to the point (TPR=1, FPR=0). Furthermore,
the CUSUM detector is far inferior to all other detectors. In
fact, the performance of CUSUM is very close to a random
detector. In order to gain a more comprehensive view on
the performance of the detectors, in the following we show
performance results on a variety of datasets, corresponding to
different attack scenarios and different clocks.

Figure 6 shows the performance of CUSUM and the 4
proposed detectors for clock A (Figure 6a) and clock B
(Figure 6b). Each plot shows an isoquant (contour curve)
of the AUC obtained by each of the tested detectors, as a
function of the attack duration ∆ta on the x-axis and the
attack goal ∆τa on the y-axis, using the rectangular attack
strategy. To easily understand and compare the curves, recall
that a detector performs better if the area covered by high
AUC values is larger. The annotations show the AUC value
for the dataset with ∆ta = 200s and ∆τa = 100µs, so as
to facilitate the comparison of the detectors for this dataset.
We chose this dataset as it clearly highlights the difference
between the different detectors for the two clocks. From the
figure, we can see several interesting observations. First, for
most of the plots we see an expected pattern that the detectors
perform better when ∆ta is small and when ∆τa is high, as
the attacker will need to increase the rate µa(t) in both cases.
This pattern is not obvious for CUSUM, as the performance
only depends on the attack goal ∆τa. Second, for all detectors,
the performance is better for clock A than for clock B. This
is also an expected result because clock A is a more accurate
(and stable) clock than clock B, and the change arising due to
the attack should be easier to detect.

Additionally, the performance of CUSUM is much inferior
to all the proposed correlation-inspired detectors for both
clocks, especially for clock B, generalizing the observation
from Figure 5. On the other hand, the proposed detectors
perform generally well even for relatively low-rate attacks (low
µa(t),∆τa, and high ∆ta). This shows the importance of our
hypothesis that the relation between A and ∆Om can play an
important role in the detection of TSAs. Besides, the fact that
CUSUM totally fails in detecting attacks against clock B could
be explained by that clock B is not very stable, which makes it
hard for CUSUM to avoid false positives. On the other hand,
the proposed detectors do not suffer from this problem as they
not only depend on the adjustment sequences, but also on the
phasor measurements.

Furthermore, we can observe that among the 4 proposed
detectors, the performance of AENN is clearly inferior to other
detectors. Remember that AENN was only trained on non-
attacked data, and thus only learns a good representation of
what it sees, lacking an idea of how an attack might affect
the data. On the other hand, the remaining proposed detectors
had apriori knowledge about the attack, in the form of training
attacked data (RF detector), or in the form of knowledge
that an attack would change the correlation (model-based and
model-free detectors).

When comparing the model-based and the model-free detec-
tors with the RF detector, we see that their performance is very
close. For clock A, the RF detector performs slightly better for
most of the attack scenarios, unlike for the scenario consid-
ered in Figure 5 (where the model-based and the model-free
detectors outperformed the RF detector). However for clock
B, the proposed correlation-based detectors (model-based and
model-free) perform slightly better, which demonstrates the
sensitivity of the correlation w.r.t. attacks. In general, one
would expect the RF detector to perform better since it uses
much more data (attacked and non-attacked) to learn how
to differentiate between attacked and non-attacked behavior.
Meanwhile, the two correlation-based detectors depend only
on the correlation sequences and on the hypothesis that the
correlation value will change due to an attack. Judging from
the results, it seems like for some scenarios (mostly for
clock B), the information in the correlation values (used
in the two correlation-based detectors) is more useful for
distinguishing between attacked and non-attacked behaviors
than the information in the original raw data (used in the RF
detector).

Finally, the plots also show that even though we simulate
a PI-Controller, the performance of the model-based detector
is comparable to the model-free detector, as long as σ∗ and
θ could be estimated accurately. In general, we can conclude
that the simple correlation-based detectors (model-based and
model-free) perform very well, especially for less stable
clocks. They are also superior to other detectors regarding
their low computational complexity, especially compared to
computationally extensive machine learning algorithms.

The effect of the chosen attack strategy on the detection
performance is shown in Figure 7. Due to lack of space,
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Fig. 6: AUC isoquants for the different detectors, for (a) clock A and (b) clock B.
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Fig. 7: AUC isoquants for the model-based detector when implementing different attack strategies on clock B.

we show only results for the model-based detector on clock
B, but similar behavior can be observed for the other three
proposed detectors and for clock A. The results show that the
rectangular attack is slightly harder to detect than the other
attack strategies. For example, the annotations showing the
AUC at ∆ta = 200s,∆τa = 100µs show that the rectangular
attack strategy is significantly harder to detect than the other
strategies for this dataset, which might seem surprising. One
reason for this is that all other strategies start and end the
attack with lower values of the attack rate µa(t), which means
that µmaxa , and hence the detection probability will be higher.

Another reason for this observation is that an attack might only
be detected when µa(t) is changing. When µa(t) is constant,
an attack cannot be distinguished from a non-malicious PMU
that has a different initial frequency deviation γ(0). While
µa(t) is only changing at tas and tae in the rectangular attack,
it is continuously changing in the intervals t ∈ [tas , t

a
1 [ and

t ∈ [ta2 , t
a
e ] in the other attack strategies, and thus increasing

the detection probability. However, we can conclude in general
that there is no significant difference in performance depending
on the implemented attack strategy, and therefore our four
proposed detectors are robust to a wide variety of attacks.

Finally, the results show that the model-based and the
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Fig. 8: AUC isoquants for the model-based detector under
different mis-estimation levels of σ∗ and θ for clock B.

model-free detectors performed equally well. Recall that the
model-free detector requires access to historical non-attacked
data in order to estimate the expected value of the correlation.
Therefore, if access to such data is limited, it would be better
to use the model-based detector. However if historical non-
attacked data is available, the comparison between the two
detectors would depend on the accuracy of the estimation of σ∗

and θ for the model-based detector. Therefore, in what follows
we evaluate the sensitivity of the model-based detector to a
potential mis-estimation of σ∗ or θ, and hence fρ(t, σ∗,Kp, θ).
For this, we considered the rectangular attack strategy on clock
B (σ∗ = 22, θ = 10−6), and simulated different mis-estimation
levels: (1) only for σ∗ (σ∗ = 2.2, θ = 10−6), (2) only for θ
(σ∗ = 22, θ = 1), and both (σ∗ = 2.2, θ = 1). Figure 8 shows
the detection performance with and without mis-estimation.
From the figure and the annotations at (∆ta = 200s and
∆τa = 100µs) we can see that the performance degradation is
quite insignificant when only one of the two model parameters
is mis-estimated. However, a fairly significant degradation can
be observed when both parameters are mis-estimated (bottom
right plot). Therefore, the model-free detector may provide a
better alternative when it is hard to estimate σ∗ and θ.

VII. CONCLUSIONS

In this paper we proposed a novel approach for detecting
time synchronization attacks on PMUs, leveraging the interac-
tion between the time synchronization system and the power
system. We provided a model for the measured phase angle by
a PMU. We then used the model to obtain a closed-form ex-
pression of the correlation between the frequency adjustments
implemented by the clock and the resulting change in the
measured phase angle. The closed-form expression was shown
to be accurate and valid for a wide variety of realistic clocks.
Furthermore, we proposed four time synchronization attack de-
tectors; two threshold-based and two machine-learning based

detectors, all exploiting the intuition that an attack would
change the correlation value. We evaluated the proposed detec-
tors, under different attack strategies and targets and showed
that they outperform state-of-the-art clock anomaly detection.
Our results also show that low-complexity threshold-based
detectors could achieve comparable performance to computa-
tionally extensive machine learning-based detectors, even for
low-rate TSAs.
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