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Abstract—Distributed state estimation will play a central role

in the efficient and reliable operation of interconnected power

systems. Therefore, its security is of major concern. In this work

we show that an attacker that compromises a single control

center in an interconnected system could launch a denial of

service attack against state-of-the-art distributed state estimation

by injecting false data, and consequently, it could blind the entire

system. We propose a fully distributed attack detection scheme

based on local measurements to detect such a denial of service

attack. We then propose a fully distributed attack localization

scheme that relies on the regions’ beliefs about the attack location,

and performs inference on the power system topology to identify

the most likely attack location. We validate both algorithms on

the IEEE 118 bus power system.

I. INTRODUCTION

Modern power systems are becoming increasingly inter-
connected in order to improve their operational efficiency.
In the future smart grid, it is expected that interconnected
power systems become even more prevalent, and that their
control and supervision becomes fully distributed, without any
central coordinator. The goal of each independent operator of
such an interconnected system is to operate its system in an
efficient and reliable way, and to preserve the system’s stability.
Since the stability of an entire interconnected power system
depends on the stability of its constituent regions, e.g., as
shown by the cascading failures that led to the 2003 North-East
blackout in the U.S., it is important that the operators cooperate
and exchange timely and accurate information about their
systems. However, to safeguard confidential information, the
cooperation and information exchange between the operators
is limited.

One of the most fundamental applications that requires
coordination between operators is power system state estima-
tion (SE). SE is essential for maintaining the power system
stable and for operating it efficiently. The SE uses noisy field
measurements acquired by the Supervisory Control and Data
Acquisition (SCADA) system and a steady-state model of the
power flows in the physical system to provide an accurate
estimate of the state of the system [1], [2]. The SE is a
core component of the Energy Management System (EMS):
the output of the SE is used by various EMS applications.
Examples include contingency analysis, which evaluates how
an outage would affect the system, and optimal power flow,
which computes the optimal generation profile based on some
criteria such as minimization of generation costs.

In the case of distributed SE, each independent operator

performs the SE of its region, but it needs to cooperate
with the operators of neighboring regions so that a consistent
and correct estimate of power flows on the lines connecting
two regions can be obtained. The resulting fully distributed
SE (DSE) [3], [4], [5], [6] are effectively extensions of the
basic SE algorithm [1], [2], and they obtain a consistent state
estimate for the entire interconnected power system. The DSE
typically requires that every operator exchanges only partial
information about the state of its system.

The central role that SE plays in power system operations
makes its security a major concern. The security of standalone
SEs against so called stealth attacks on the measurements
acquired by the SCADA system has been widely studied [7],
[8], [9], [10], [11], [12], [13], [14], [15]. Stealth attacks are
false measurement data injection attacks that bypass the model-
based bad data detection used in the SE [7]. Various mitigation
schemes against stealth attacks have been proposed: protection
of individual data [9], changes to the model-based detec-
tion [10], and the protection of the SCADA infrastructure [11],
[12]. Detection of stealth attacks along with state recovery has
been studied in [15].

The security of DSE against false data injection attacks on
the exchanged data between neighboring operators has been
studied in [16]. It was shown that such attacks can disable the
DSE (prevent it from finding a correct estimate). Furthermore,
a detection scheme was proposed to detect such attacks along
with a simple mitigation scheme where the operators perform
a local state estimation upon detecting the attacks. However,
by using such a mitigation scheme, the power flows connecting
any two regions cannot be correctly estimated.

In this work we address the detection and localization
of false data injection attacks on the DSE. We consider an
attacker that compromises a single control center so that it
can manipulate the data exchanged between the control center
and its neighbors. We apply the attack to one of the most
recent DSE algorithms [6] (outlined in Section II), and show
that the attack can effectively disable the DSE (Section III).
We propose an algorithm to detect the attacks by identifying
discrepancies between the evolution of manipulated data (Sec-
tion IV). Furthermore, we propose a distributed algorithm to
locate the attacks, which relies on the regions’ beliefs about the
attack location, and performs graphical inference on the power
system topology to identify the most likely attack location. To
the best of our knowledge this is the first work to propose a
mitigation scheme for denial of service attacks against power
system DSE.



II. SYSTEM MODEL AND STATE ESTIMATION

We consider an inter-connected power system that consists
of several control areas, which we call regions. We denote
the set of regions by R, and use |R| = R. A region r 2 R
includes a subset of all buses, and a subset of the transmission
lines. Regions have no common buses, but there are shared
transmission lines, which connect two regions. We refer to
the shared transmission lines as tie lines, and to the buses
connected by these lines as border buses.

We consider models of the active power injections at every
bus, and active power flows on transmission lines [1], [2].
The active power injection and flow measurements taken in
region r are denoted by the vector z

r

2 RMr , where M
r

is
the number of measurements in region r. The measurements
equal to the actual power injections/flows plus independent
random measurement noise. The noise is usually assumed to
have a Gaussian distribution of zero mean. We denote by W

r

the diagonal measurement covariance matrix.

The state-estimation problem consists of estimating voltage
phase angles at the buses given the power flow and injection
measurement vector [2]. Typically, one (arbitrary) phase angle
is selected as the reference angle, and its value is fixed to
an arbitrary value, e.g., zero. We describe the phase angles
to be estimated in region r by the state vector x

r

, and we
refer to a component of the vector x

r

as a state variable. The
state variables of the vector x

r

correspond to the phase angles
on buses that belong to region r, and to the phase angles on
border buses in other regions that are needed to describe the
measurements on the tie lines and to describe power injection
measurements at border buses in region r. Consequently, the
sets of state variables defined by vectors x

r

, 8r 2 R, are
overlapping. We denote by x

r,r

0 the vector of state variables
estimated in region r that correspond to state variables shared
between regions r and r0. Observe that all components in the
vector x

r,r

0 are also contained in the vector x
r

. We say that
region r and region r0 are neighbors if the vector x

r,r

0 is non
empty, and we denote the set of all neighbors of region r
by N (r) (|N (r)| = N(r)). For convenience, we introduce
the vector x

r,b

for all state variables that are shared with the
neighboring regions N (r), i.e., all components in the vectors
x
r,r

0 , 8r0 2 N (r) form the vector x
r,b

. The vectors x
r

0
,r

and
x
b,r

can be defined in a similar way.

A. Distributed State Estimation (DSE)

In an inter-connected power system, the control center of
each region obtains a state estimate of its part of the system
using measurements from its region and a model of its region.
A control center needs to estimate only those phase angles that
are necessary to describe its measurements, but it cooperates
with neighboring control centers, typically by exchanging the
state variables of the border buses, to ensure that the power
flows on the tie lines are correctly estimated. In most of the
recently proposed DSE algorithms, e.g., [3], [4], [5], [6], state
variables are exchanged at the beginning or at the end of every
iteration, and are used as an input when calculating the next
state vector update. For the purpose of our study, we consider
a state of the art algorithm proposed in [6], which is highly
robust and can acquire highly accurate estimates of the power
flows on the tie lines. The algorithm works as follows.

The goal of the DSE is to estimate x
r

in every region under
the condition that the estimates of shared state variables match
between neighboring regions. One (arbitrary) phase angle in
the entire interconnected system is selected as the reference
angle, and its value is fixed to zero. Each region estimates
x
r

by minimizing the squares of the weighted deviations of
the estimated active power flows and injections (which are
functions of x

r

) from the measured values (comprehended in
z
r

). Therefore, the distributed state estimation problem can be
formulated as,

min

xr, 8r2R

X

8r2R
[z

r

� f(x
r

)]

T

[W�1
r

][z
r

� f(x
r

)]

s.t. x
r,r

0
= x

r

0
,r

8r 2 R and 8r0 2 N (r),
(1)

where f
r

(x) is the vector of non-linear functions describing
the active power flows and power injections in region r as a
function of the state vector x

r

.

The constraints in (1) couple the estimation across regions.
In order to have a fully distributed algorithm, auxiliary vari-
ables can be introduced so that the problem can be solved using
the alternating direction method of multipliers (ADMM) [6].
The resulting iterative solution scheme is

x(k+1)
r

= (H(k)T
r

W�1H(k)
r

)

�1
(H(k)T

r

z
r

+ cD
r

p(k)
r

), 8r
s(k+1)
r

= U
xr ·

X

8r02N (r)

Y
r,r

0 · x
r

0
,r

p(k+1)
r

= p(k)
r

+ s(k+1)
r

� 1

2

(Y
r,b

· Y T

r,b

· x(k)
r

� s(k)
r

),

where c > 0 is a predefined constant, the matrix H(k)
r

is the
Jacobian of vector f

r

(x(k)
), and matrices D

r

, U
xr , Y

r,r

0 are
defined as follows. D

r

is a diagonal matrix whose element d
i,i

equals to the number of regions sharing the ith component
(state variable) of the vector x

r

. U
xr is a diagonal matrix

whose elements are defined as: u
i,i

equals to the inverse of the
number of regions (if greater than 0) sharing the ith component
(state variable) of the vector x

r

, and zero otherwise. Finally,
Y
r,r

0 is a matrix that determines the connection between vector
x
r

and vector x
r,r

0 , and its elements are: y
i,j

= 1 if the ith
element (state variable) in x

r

corresponds to the jth element
(state variable) in x

r,r

0 , and y
i,j

= 0 otherwise. Consequently,
we have

x
r,r

0
= Y T

r,r

0 · x
r

. (2)

Similar to (2), we introduce the matrix Y
r,b

, which has a
similar structure as Y

r,r

0 so that we have

x
r,b

= Y T

r,b

· x
r

(3)

The matrix Y
b,r

can be defined in a similar way.

The DSE is said to converge when for some k⇤ the
maximum change of the state variables in every region is
smaller than the convergence threshold ✏ > 0, i.e., 8r 2
R, ||x(k⇤+1)

r

� xk

⇤

r

||1 < ✏, where || · ||1 denotes the
maximum norm of a vector. We refer to the number of
iterations k⇤ required for convergence as the convergence time.



III. A DOS ATTACK ON DSE

We consider an attacker whose goal is to disable the DSE.
The attacker compromises the control center of a single region
ra 2 R so that it can manipulate with the data exchanged
between ra and its neighbors N (ra) that are used as an input
to the DSE. The exchanged data are the state variables defined
by the vectors x(k)

r,r

a , 8r 2 N (ra), and the vectors x(k)
r

a
,r

, 8r 2
N (ra). We describe the attack against the state variables sent
from regions r 2 N (ra) to region ra (from ra to r) at the
end of iteration k by the attack vector a(k)

r,r

a (a(k)
r

a
,r

). We define
the attack vector a(k)

r,r

a as the vector of phase angles whose
elements correspond to the value that the attacker adds to that
phase angle, or

x̃(k)
r,r

a = x(k)
r,r

a + a(k)
r,r

a , (4)

where x̃(k)
r,r

a is the resulting corrupted vector of state variables.
The vector x̃(k)

r,r

a is used as input to the next iteration of DSE
in region ra, instead of the originally exchanged vector x(k)

r,r

a .
The attack vector a(k)

r,r

a can be defined in a similar way.

In the rest of this Section, we describe the attack against the
state variables sent to region ra from its neighbors r 2 N (ra).
The attack against the state variables sent from region ra to
its neighbors can be described in a similar way, but we omit
it for brevity. For convenience, we introduce the attack vector
a(k)
b,r

a for the state variables that the region ra receives from
all its neighboring regions

a(k)
b,r

a = [a(k)T
ri1 ,r

a a(k)T
ri2 ,r

a ... ]T 8r
ij 2 N (ra), (5)

and the corresponding corrupted vector of state variables

x̃(k)
b,r

a = x(k)
b,r

a + a(k)
b,r

a , (6)

Fig. 1 illustrates an attack on a power system with three
regions. Observe that x̃(k)

b,r

a is the input to iteration k + 1 of
DSE, and thus, the attack a(k)

b,r

a leads to a corrupted state vector
x̃(k+1)
r

a .

We define the size of the attack as the Euclidean norm
of the attack vector, i.e., ||a(k)

b,r

a ||2. Intuitively, a smaller attack
size implies smaller corruption added to the exchanged values,
which could make the detection and the localization of the
attack harder. Thus, it would be natural for the attacker to
look for the smallest attack vector that prevents the DSE from
converging (k⇤ = 1), or formally

min

a

(k)
b,ra ,k=1,...

� s.t. k⇤ = 1 and � = ||a(k)
b,r

a ||2; 8k.

(7)
Since the distributed state estimation problem is non-linear,
solving (7) is non-trivial.

A. First Singular Vector Attack (FSV)

The FSV attack [16] is an approximation of (7) done by
maximizing the introduced disturbances for a given attack size.
Note that the attack vector a(k)

b,r

a results in corrupted vectors

s̃((k+1)
r

a = s̃((k+1)
r

a + U
xr · Yb,r

a · a(k)
b,r

a

p̃((k+1)
r

a = p̃((k+1)
r

a + U
xr · Yb,r

a · a(k)
b,r

a ,
(8)
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Fig. 1. Interconnected power system with three regions. The attacker corrupts
the control center of Region 1, and tampers with the state variables x

(k)
1,2 and

x

(k)
1,3 sent from Region 1, and the state variables x

(k)
2,1 and x

(k)
3,1 received by

Region 1. The symbol (+) indicates that the components of the attack vector
are added to the corresponding components (phase angles) of the vector of
exchanged state variables. The attacker cannot tamper with the state variables
exchanged between Regions 2 and 3.

which yield a corrupted state vector

x̃(k+1)
r

a = x(k+1)
r

a +K · a(k)
b,r

a , (9)

where K = (H(k)T
r

W�1H(k)
r

)

�1 ·cD
r

U
xrYb,r

a . Note that the
addend in (9) is a vector with the same number of elements as
the vector x(k+1)

r

a , and we refer to it as the addend vector. The
Euclidean norm of the addend vector is maximized if the attack
vector a(k)

b,r

a is aligned with the first right singular vector of the
matrix K, that is, with the singular vector with highest singular
value. The complexity of singular vector decomposition is
O(mn2

) [17], low enough for the computation to be done
on-line. Nevertheless, the computation of the Jacobian H(k)

r

requires knowledge of the current system state x(k)
r

a for the
attacked region ra. Therefore, we approximate H(k)

r

with the
Jacobian calculated at the initial state H(0)

r

.

Observe that in (9) the size of the corrupted vector x̃(k+1)
r

a

depends on the direction of the addend vector, and conse-
quently, on the direction of the first singular vector. Since
the attacker does not know the state vector x(k)

r

a , finding the
correct direction is not trivial. In order to estimate the direction,
the attacker can assume that the estimates of the power flows
on a tie line are closer to their actual values when using
the most recent exchanged state variables. Then, the attacker
applies the attack so that the introduced estimation errors take
the estimates in the direction towards the previous iteration
estimates, i.e., farther from the measured values.

B. Impact of FSV Attack on DSE

We show the impact of the FSV attack on the IEEE 118
bus power system, divided into six regions as shown in Fig. 2.
We consider that the attacker corrupts the control center of
one of the regions, and performs the attacks against the state
variables sent from and to that region. Bus 69, located in region
r6, is used as the reference bus, as specified in the IEEE 118
bus power system. Measurements are taken at every power
injection and power flow, and the convergence threshold is
✏ = 10

�3. The phase angles, thereby the state variables and
the attack vector, are in radians.
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Fig. 2. IEEE 118 bus system divided into six
regions. Neighboring regions are connected by a
line and the number next to the line represents
the number of shared state variables. Note that
the reference bus (69) is not a state variable.
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Fig. 3. Convergence time for cases when the DSE
converges as a function of the attack size.
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Fig. 4. Relative estimation error (50th percentile) for
the upper 50% utilized power flows and injections vs.
convergence time.

Fig. 3 shows the convergence time k⇤ (when the DSE
converges) as a function of the FSV attack size considering
individually each region as the attacked region. The conver-
gence time increases with the attack size. For all considered
cases, the FSV attack can prevent the DSE from converging,
i.e., leads to denial of service. One might expect that the DSE
is more sensitive when the region containing the reference
bus is attacked, since it may be harder for other regions to
synchronize with the reference bus. However, the results show
that this is not the case: there is no significant difference when
the region containing the reference bus is attacked (region r6),
and when some other region is attacked.

Observe that in Fig. 3 it does not take a big FSV attack
to prevent the DSE from converging. For example, the FSV
attack with the size ||a(k)

b,r

a ||2 = 0.07 prevents the DSE from
converging regardless of which region is attacked. This size
corresponds to the average value of the attack vector elements
of 0.0265 radians (1.51 degrees) if the region r1 is attacked,
or 0.019 (1.07 degrees) if the region r6 is attacked.

Although for small attacks the DSE converges, the es-
timated state and thus the estimated power flows could be
erroneous. Fig. 4 shows the 50th percentile of the relative
estimation error compared to the estimate with no attacks for
the highest 50% the power flows as a function of convergence
time (and thus the attack size). The relative estimation error in-
creases monotonically with the convergence time, and thereby
the attack size, but it is reasonably low. The DSE seems highly
robust against the small attacks that admit convergence.

IV. ATTACK DETECTION AND LOCALIZATION

Given the potential of FSV to prevent the DSE from
converging, a natural question is whether an attack can be
detected and the compromised region located. In the following,
we show that both are possible. We focus on attacks that
prevent the DSE from converging, since the ones that admit
convergence introduce relatively low estimation errors.

Detection: Let us start by elaborating on the conver-
gence of the DSE. Recall that in order to solve (1) in a
fully distributed fashion, the right-hand side of the condition
x
r,r

0
= x

r

0
,r

is replaced with an auxiliary variable for each
r 2 R and 8r0 2 N (r). In iteration k and for regions r and
r0, the auxiliary variable equals to the average of the shared
state variables between the regions, i.e., (x(k)

r,r

0 + x(k)
r

0
,r

)/2 [6].
Consequently, the condition in (1) can be expressed as x(k)

r,r

0 =

(x(k)
r,r

0 + x(k)
r

0
,r

)/2, or (x(k)
r,r

0 � x(k)
r

0
,r

)/2 = 0. The resulting

decomposed problem is solved with the ADMM, which guar-
antees convergence if the following criteria are satisfied (based
on [18]).

Proposition 1. If the iterative function J
r

(x
r

) (8r 2 R) is
closed, proper, and convex, and the augmented Lagrangian

L =

X

8r2R
J
r

(x
r

)+yT
x(k)
r,r

0 � x(k)
r

0
,r

2

+c||
x(k)
r,r

0 � x(k)
r

0
,r

2

||22 (10)

(y is Lagrange multiplier) has a saddle point, then the ADMM
converges and ||(x(k)

r,r

0 � x(k)
r

0
,r

)/2||22 ! 0 as k ! 1 [18,
Appendix A,p. 106–110].

Assuming that the conditions in Proposition 1 are satisfied,
and therefore the DSE converges, it does not necessarily hold
that ||(x(k)

r,r

0 � x(k)
r

0
,r

)/2||22 monotonically decreases. However,
for large k and when the DSE approaches a solution, we may
expect that

||(x(k+1)
r,r

0 � x(k+1)
r

0
,r

)/2||22 < ||(x(k)
r,r

0 � x(k)
r

0
,r

)/2||22 (11)

holds for all state variables exchanged between regions. In
the following we investigate if (11) can indicate convergence
problems due to an attack. Furthermore, we investigate if we
can locate the region that causes the convergence problems by
observing the evolution of ||(x(k+1)

r,r

0 � x(k+1)
r

0
,r

)/2||22 in every
region (8r 2 R) and for each of its neighbors (8r0 2 N (r)).

Definition 1. Let the mean squared disagreement (MSD)
between regions r and r0 at iteration k be d(k)

r,r

0 =

||(x(k)

r,r0�x

(k)

r0,r)/2||
2
2

|x(k)

r,r0 |
, where |x(k)

r,r

0 | denotes the number of ele-

ments in vector x(k)
r,r

0 . Observe that by definition d(k)
r,r

0 = d(k)
r

0
,r

.

Figs. 5 and 6 show how the MSD d(k)
r6,r

0 between region r6
and its neighbors r0 2 N (r6) evolves without an attack, and
with an attack in region r2 that does not permit convergence,
respectively. In the case of no attack, the MSD decreases for all
r0 2 N (r6). In the case of an attack, the MSD for all regions is
higher than in the case of no attack, i.e., all regions are affected
by the attack. Moreover, the MSD oscillates for the attacked
region (region r2). Observe that not all MSDs decrease with the
iterations, which is in contradiction with Proposition 1. This
is the phenomenon we use to detect convergence problems as
described in the following.

Proposition 2. Let sup{·} be the supremum of a set. If the
conditions in Proposition 1 are satisfied, but for large k there
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Fig. 7. Evolution of the elements of the stationary
probability vector ⇡

(k) in presence of attacks in
region r

a = r2 with attack size 0.1. ↵ = 0.2.

are some r and r0 2 N (r) such that sup{d(k
0)

r,r

0 : k0 > k} > 0,
||x(k+1)

r

� x(k)
r

||1 > ✏, and 6 9t 2 N so that

sup{d(k
0)

r,r

0 : k0 > k} > sup{d(k
0)

r,r

0 : k0 > k + t} (12)

then there is a convergence problem (an attack).

Proof: The proof follows from Proposition 1, where if the
conditions hold, then ||(x(k)

r,r

0 � x(k)
r

0
,r

)/2||22 ! 0 and d(k)
r,r

0 ! 0

as k ! 1, and, consequently, sup{d(k
0)

r,r

0 : k0 > k} ! 0.

The regions can thus use Proposition 2 to detect an attack.

Localization: We now turn to the problem of localizing the
attacked region. The localization scheme we propose consists
of two steps. First, each region forms its own belief of the
attack location (BAL) as a function of its MSDs. Second,
regions exchange their BALs and use them as an input to a
localization scheme at every region so that the attack can be
correctly located. The way BALs are formed and the localiza-
tion scheme based on the exchanged BALs are explained as
follows.

Step 1: We denote the BAL of region r that its neighbor
r0 2 N (r) is the attacked region at iteration k by B(k)

r,r

0 .
Since MSDs can oscillate and the difference between the MSD
related to the attacked region (d(k)

r,r

a ) and others (d(k)
r,r

0 r0 6= ra)
typically increases with k (Fig. 6), we calculate the BAL B(k)

r,r

0

8r0 2 N (r) as

B(k)
r,r

0 =

˜d(k)
r,r

0

P
8r02N (r)

˜d(k)
r,r

0

=

↵d(k)
r,r

0 + (1� ↵) ˜d(k�1)
r,r

0

P
8r02N (r)

(↵d(k)
r,r

0 + (1� ↵) ˜d(k�1)
r,r

0 )

,

(13)
where ˜d(k)

r,r

0 is the exponentially weighted moving average
(EWMA) of the MSD d(k)

r,r

0 with the degree of weighting
decrease ↵ 2 (0, 1). For 8r0 /2 N (r), B(k)

r,r

0 equals to 0.
Observe that it is possible to have B(k)

r,r

0 6= B(k)
r

0
,r

.

Step 2: Given the BALs of the regions, we want to find the
probability that a particular region is attacked consistent with
all BALs. This can be done by constructing the right stochastic
R ⇥ R matrix B(k). Each row of B(k) corresponds to a r
and contains B(k)

r,r

0 8r0 2 R. This matrix can be constructed
if regions exchange their BAL vectors. The distribution that
is consistent with all BALs is the stationary distribution ⇡(k)

of the Markov chain for which the matrix B(k) is the state
transition matrix, thus ⇡(k)B(k)

= ⇡(k) [19]. The following

proposition establishes the existence and the uniqueness of the
stationary distribution ⇡(k).

Proposition 3. Consider a system with R > 2. If (i) there
exists a 3-clique in the graph G = (R, E) where E =

{e
r,r

0 |r 2 R, r0 2 N (r)}, (ii) for finite k the DSE does not
converge, and (iii) all regions obtain the correct matrix B(k),
then the stationary probability vector ⇡(k) exists, it is unique
and it can be computed in every region.

Proof: Observe that because ↵ < 1, it holds that 8r, r0
s.t. r 2 N (r0), B(k)

r,r

0 > 0 since from (13) it is clear that
B(k)

r,r

0 will always take into account with non-zero weights the
initial disagreements on the shared state variables and the mis-
synchronization to the reference bus. Consequently, the state
transition diagram of the Markov chain described by B(k) is
a symmetric directed graph. Furthermore, it is clear that all
states of such a Markov chain lie in a single communicating
class, and consequently, such a chain is irreducible. Since the
Markov chain is irreducible, it has a stationary distribution [19,
Proposition 1.14] and it is unique [19, Corollary 1.17]. Since
B(k)

r,r

= 0 8r 2 R, R > 2 and (i) ensure that the Markov chain
is aperiodic. Finally, the aperiodicity was a sufficient condition
that the (irreducible) Markov chain converges to its stationary
distribution [19, Theorem 4.9]. Since all regions obtain the
same matrix B(k), and the vector ⇡(k) is unique, all regions
obtain the same vector ⇡(k).

We use the vector ⇡(k) to locate the attacked region, as
described in the following.

Conjecture 4. Let us denote by ⇡(k)
r

the entry of vector ⇡(k)

that corresponds to region r. Let region r⇤(k) = argmax

r

⇡(k)
r

.
Then the attacked region is ra = r⇤(k) for large k, i.e., the
stationary distribution converges.

Observe that the localization is fully distributed: if the
BALs are exchanged between all regions at iteration k, then
each region can locally construct the matrix B

(k), find the
vector ⇡(k) and its maximal component.

Remark: One may argue that the attacker may corrupt the
BALs sent from and to region ra. Recall that d(k)

r,r

0 = d(k)
r

0
,r

, and
consequently ˜d(k)

r,r

0 =

˜d(k)
r

0
,r

. Therefore, the nominator in (13)
can be verified between neighbors. However, the denominator
in (13) is only known to region r. Therefore, in order to prevent
attacks against exchanged BALs, the regions could exchange
˜d(k)
r,r

0 so that every region can compare if ˜d(k)
r,r

0 =
˜d(k)
r

0
,r

holds
for 8r 2 R and r0 2 N (r). If there are multiple inequalities,
then there will be a common region in all those inequalities
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Fig. 8. The localization time (kd) as a function of the degree of weighting
decrease (↵) considering the attacks in every region 8r 2 R individually with
attack size 0.1 (left) and 0.5 (right)

from which the corrupted BALs originate, and that region is
the attack location. If there is one inequality, then the attacked
region is one of the two regions. In that case regions could
construct two matrices B(k) (each considering one side of
the inequality) and if the localization scheme based on B(k)

cannot identify which of the two regions is attacked, then the
mitigation scheme could consider both regions as attacked.
Otherwise, the attack is located.

Once the attack region is localized, the DSE algorithm can
be continued by non-attacked regions by discarding all data
from the attacked region ra.

Numerical results: Fig. 7 shows how the elements of the
stationary probability vector ⇡(k) evolve in the presence of
attacks in region ra = r2 with attack size 0.1. The degree of
weighting decrease (↵) equals to 0.2. The elements of vector
⇡(k) approach stable values as k increases, and the largest
element corresponds to the attacked region ra. We refer to the
minimum iteration number kd such that for all k � kd the
largest element of ⇡(k) does not change, and we call this for
region ra as the localization time. In the case showed in Fig. 7,
the localization time is kd = 82.

Fig. 8 shows how the localization time (kd) changes with
↵ considering the attacks in every region r 2 R individually
with attack size 0.1 (left) and 0.5 (right). The localization time
significantly depends on the region that is attacked as well as
on the attack size: for larger the attack size the localization
is faster, which supports the formulation in (7). For most of
the regions, the optimal ↵ is in the range ↵ 2 (0.2, 0.3). In
some cases for small attack sizes (⇡ 0.1) very high ↵ > 0.7
prevents localization. This implies that one should use a low
weighting factor to ensure successful localization.

V. CONCLUSION

We addressed the detection and localization of false data
injection attacks against distributed state estimation. We con-
sidered an attacker that compromises a single control center,
and tampers with the data that are exchanged between a control
center and its neighbors. We showed that a denial of service
attack can be launched against a state of the art state estimator
this way. We proposed an attack detection scheme based on the
evolution of the exchanged data and based on the convergence
properties of the distributed algorithm. We proposed an attack
localization scheme based on the steady state distribution of a
Markov chain where the states are the control centers and the
transition probabilities are beliefs about the attack location. We

showed the efficiency of the attack detection and localization
schemes via simulations on an IEEE benchmark power system.
Our results show that the attacks are faster localized when most
of the evolution of the exchanged data is considered, rather
than just most recent values. Moreover, our results show that
stronger attacks are faster localized.
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[12] O. Vuković, K. C. Sou, G. Dán, and H. Sandberg, “Network-aware
mitigation of data integrity attacks on power system state estimation,”
IEEE JSAC: Smart Grid Communications Series, vol. 30, no. 6, pp.
176–183, July 2012.

[13] T. T. Kim and H. V. Poor, “Strategic protection against data injection
attacks on power grids,” IEEE Trans. on Smart Grid, vol. 2, pp. 326–
333, Jun. 2011.

[14] A. Giani, E. Bitar, M. Garcia, M. McQueen, P. Khargonekar, and
K. Poolla, “Smart grid data integrity attacks: Characterizations and
countermeasures,” in Proc. of IEEE SmartGridComm, Oct. 2011.

[15] A. Tajer, S. Kar, H. V. Poor, and S. Cui, “Distributed joint cyber
attack detection and state recovery in smart grids,” in Proc. of IEEE
SmartGridComm, October 2011, pp. 202–207.
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