
Time Constrained Service-aware Migration of
Virtualized Services for Mobile Edge Computing

Peiyue Zhao and György Dán
School of Electrical Engineering and Computer Science

KTH Royal Institute of Technology
Stockholm, Sweden. E-mail: {peiyue|gyuri}@kth.se

Abstract—We consider the migration of virtualized services
(VSs) in Mobile Edge Computing (MEC), so as to facilitate server
maintenance, load balancing under mobility, improved energy
efficiency and resource utilization, and incident response. We
consider a set of VSs that has to be migrated from a source place-
ment to a target placement, while maintaining service continuity
as much as possible. We formulate the VS migration problem
as an integer programming problem, and analyze its complexity.
We propose an efficient iterative algorithm for computing when
and in what order the VSs shall be migrated among the MEC
nodes. We evaluate the proposed solution in terms of total service
value, efficiency, and scalability. Extensive simulations show that
our algorithm is computationally effective, and performs close to
optimal.

I. INTRODUCTION

Mobile Edge Computing (MEC) is an emerging technology
that provides distributed computing and storage resources
at the edge of cellular networks. Due to the proximity of
computing resources to the end-users, MEC is a promising
technology to cope with increasing bandwidth demands, and
to satisfy the stringent delay and availability requirements
of emerging real-time applications [1]. Notable examples of
such applications are computational offloading for capacity-
constrained Internet of Things (IoT) devices for smart city
and smart home applications, mobile big data analytics, and
augmented reality [2]–[6].

In these applications, virtualized MEC computing and stor-
age resources are used for executing Virtualized Services (VSs)
corresponding to end-user applications. VSs provide benefits
to end users and to operators alike. They provide performance
isolation, and enable to adapt the placement of VSs as a
function of wireless bandwidth availability and in response
to device mobility, e.g., in case of unmanned aerial vehicles
(UAVs). At the same time, VSs allow MEC operators to
load balance in response to spatial and temporal changes in
application workloads, due to, e.g., mobility, and can facilitate
improved energy efficiency and resource utilization [6], [7].
They also facilitate incident response and resilience, as upon
an intrusion or a fault event VSs can be migrated to MEC
nodes that are known to operate normally [8].

A fundamental prerequisite for adaptive MEC resource man-
agement is fast VS migration scheduling that avoids service
degradation, and is able to react at the time scale at which

This work was partly funded by the EU H2020 SUCCESS project, grant
agreement No. 700416, and by the MSB CERCES project.

workloads change. Existing works on migration scheduling
were motivated by data center clouds, which serve large
areas and user workloads that tend to change slower due to
statistical multiplexing, and thus their focus has been mostly
on maintaining service availability [9]–[14]. On the contrary,
in the case of MEC, individual nodes will serve relatively small
areas and wireless conditions can change rapidly, it will thus
be essential for migration to be fast.

Maintaining service availability is, unfortunately, contradict-
ing migration under time constraints. On the one hand, if MEC
resources are scarce migration may require certain VSs to be
shut down temporarily to meet the migration time constraints.
On the other hand, even if MEC resources are abundant,
migration may require VSs to be shut down for resolving
deadlocks. The optimal solution depends on the amount of
time available for migration, on MEC resource availability, and
on the service availability requirements of VSs, which makes
scheduling of migration particularly challenging under time
constraints.

In this paper, we address the problem of scheduling VS
migration with the objective of maximizing service availability
subject to a migration time constraint. We consider a system in
which a set of VSs has to be migrated from a source placement
to a target placement, and each VS is associated with a
value according to the importance of the service it provides.
We formulate the time constrained VS migration (TCVM)
problem as an integer programming (IP) problem, and analyze
its complexity. Our problem formulation allows to explore
trade-off between service availability and the time needed for
migration. We analyze the limits of reducing the dimension of
the problem, and we propose an efficient iterative algorithm for
computing a migration schedule. Numerical results show that
the proposed algorithm can achieve near-optimal performance
with low computational complexity, and it can outperform the
state of the art Wedelin heuristic for solving IP problems.

The rest of the paper is structured as follows. We review the
related work in Section II and introduce the system model and
problem formulation in Section III. We analyze the problem
complexity in Section IV. We present our solution to the VS
migration problem in Section V. In Section VI We provide
numerical results, and we conclude the paper in section VII.

II. RELATED WORK

Related to our work is the area of Virtual Machine (VM),
which provides running environment for applications and ser-

vices. The VM migration scheduling problem has attracted sig-
nificant attention lately, for performance and energy efficiency,
and for downtime minimization. Authors in [9] formulate
the VM migration problem to find a migration schedule that
satisfies security, dependency and performance requirements,
but does not consider the minimization of the migration time
and the downtime. [10] proposes a VM consolidation algorithm
that computes the placement of VMs to reduce the number of
running servers, and schedules the migrations to reach the new
placement. The consolidation problem is formulated as a con-
straint programming problem with linear and binary variables,
subject to the resource capacity of the servers. The migration
schedule is then computed using off-the-shelf optimization
solvers, without consideration of the computational complexity.
Different from our work, the problem of migration deadlock
is not considered, and the migration algorithm is targeted for
the purpose of VM consolidation.

Related to our work are recent works on VM migra-
tion scheduling for migration time and downtime minimiza-
tion [11]–[14]. Due to the complexity of the VM migration
problem, the solution approaches in these works are based
on heuristics. [11] addresses the VM migration scheduling
problem for pre-copy based live migrations for multiple VMs,
with consideration of the server capacity and the network band-
width. The paper proposes a heuristic algorithm to minimize
the total migration time and the downtime of the VMs. To
handle the case where there is a migration deadlock, a heuris-
tic deadlock handling algorithm is proposed. [12] considers
maximizing the network bandwidth for VM migration, so as
to minimize the total migration time indirectly. The paper
assumes that a VM can be migrated only if the allocated
bandwidth exceeds a pre-defined threshold, and as such the
indirect approach results in an approximation.

[13] proposes a heuristic VM migration solution to mini-
mize the total migration time and the downtime. The proposed
heuristic limits parallel VM migration to the VMs that do
not share the same network link, even if there are available
resources on the servers, and does not address the problem of
migration deadlock. [14] models the VM migration problem
with an Integer Linear Problem (ILP), and provides a heuristic
based on analyzing the dependencies of the VMs and the
individual migration time. The problem of migration deadlock
is addressed by interrupting the VM with the lowest migration
time, but the migration time constraints are considered.

In order to minimize the interruption of VMs providing
important services, cost minimization based VM migration can
be used. [15] formulates the problem of minimum cost VM
migration as a constraint satisfaction programming problem,
using a cost model based on the size of the memory of
the VMs, and hence it does not consider importance of
different VMs or migration time constraints. To the best of
our knowledge ours is the first work to consider migration
scheduling under migration time constraints, with the objective
of maximizing service availability.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System model

We consider a set F = {f1, f2, . . . , f|F|} of VSs to be
placed on a set M of MEC nodes. Each VS provides some
service, and we denote by vk the value of the service provided
by VS fk ∈ F . The value of a service corresponds to the
importance of the service being provided. We consider that a
VS instance on a MEC node can be in one of three states.

• Powered off is the state when a VS instance is shut down,
and hence it does not provide service.

• Running is the state when a VS is providing service. A
service experiences a service outage if there is no VS
instance of it in the running state. A VS instance in the
running state can be shut down immediately, and then it
enters the powered off state.

• Starting is the state when a VS instance is preparing for
the running state (e.g., loading and booting the VS image,
initializing the VS instance and network connections). A
VS instance can not provide service in the starting state.
We denote by ts the time it takes for a VS instance to enter
the running state, i.e., the time it spends in the starting
state.

Since a VS can be shut down immediately, without loss
of generality we can divide time into slots of length ts, and
consider that a VS instance can enter the starting state or can
be shut down at the beginning of a time slot. We will refer to
these time slots as migration rounds, and we denote by T the
target number of migration rounds, i.e. the total time available
for migration. We use the binary variable xm,k,i to indicate
whether an instance of VS fk is placed on MEC node m ∈M
in migration round i, i.e., it is in the starting state or in the
running state, and we define xi = (x1,1,i, . . . , x|M|,|F|,i). We
refer to xi as the placement in migration round i. We denote by
xs and xt the source placement and the target placement of the
VSs, respectively; thus we have x0 = xs, and xT = xt, which
ensures the VSs to be in the running state after migration. For
convenience, we denote by Ms

k and M t
k the MEC node on

which fk is placed in xs and xt, respectively.
We consider that a VS instance in the starting state or in

the running state requires one unit of computing resource,
and we denote by ωm the number of VS instances that can
be placed on a MEC node m ∈ M. This assumption is
reasonable, for example, if capacity is defined as the number of
VMs or containers (such as Dockers) on a node, as industrial
applications require isolation for performance and security
reasons and have tight delay requirements; hence a single VS
would be allocated per VM or container. A VS instance in
the powered off state does not consume any computational
resources, thus ∑

k

xm,k,i ≤ ωm, ∀m, i. (1)

We use the binary variable em,k,i to indicate whether an
instance of VS fk is in the starting state on MEC node m in
migration round i. The decision variables correspond to the
states of the VSs, as shown in Table I. Clearly, a VS instance

2

Table I
DECISION VARIABLES AND THE STATES OF VSS

xm,k,i em,k,i State
1 1 Starting
1 0 Running
0 0 Powered off

Table II
MIGRATION ACTIONS

xm,k,i−1 xm,k,i Migration action of fk w.r.t. m in round i
0 0 No migration action executed on m.
0 1 fk is being started on m
1 0 fk is shut down on m.
1 1 fk is running on m. No migration action

executed on m.

has to be placed on a MEC node m in order to enter the starting
state, hence

xm,k,i − em,k,i ≥ 0, ∀m, k, i (2)

The migration of VS fk from a MEC node m to a MEC
node m′ involves starting an instance of VS fk on MEC node
m′ at some round i′ and shutting down the instance of VS fk
on MEC node m at some round i. If i > i′ then the instance on
MEC node m′ is in the running state by the time the instance
on MEC node m is shut down, and hence the service of VS
fk is provided continuously. Otherwise, if i ≤ i′ then there is
an interruption in the service provided by VS fk for i′− i+ 1
rounds. Whether or not a VS fk is migrated to or from a MEC
node m in a migration round, the placement variables in two
successive migration rounds i− 1 and i have to satisfy

xm,k,i−1 − xm,k,i + em,k,i ≥ 0, ∀ m, k, i > 0. (3)

As shown in Table II, xm,k,i−1 − xm,k,i < 0 if and only if
fk is being migrated to m in migration round i (and thus
em,k,i = 1).

Moreover, if VS fk is placed on MEC node m in iteration
i− 1, it can only be in the running state or in the powered off
state on m in iteration i,

xm,k,i−1 + em,k,i ≤ 1, ∀ m, k, i > 0. (4)

B. Problem formulation

We are now ready to formulate the time constrained VS
migration (TCVM) problem. For a given source placement xs,
target placement xt, and target number of migration rounds T ,
the TCVM problem is to maximize the total value of the VS
instances in the running state while migrating the VSs,

maximize
xm,k,i,em,k,i

T∑
i=1

|F|∑
k=1

∑
m∈M

vk (xm,k,i − em,k,i)

subject to (1)− (4)∑
m

(xm,k,i − em,k,i) ≤ 1, ∀k, i∑
m

em,k,i ≤ 1, ∀k, i

x0 = xs,xT = xt,
xm,k,i, em,k,i ∈ {0, 1}, ∀m, k, i
T ∈ N

(P1)

The additional constraints in the problem formulation ensure
that in every migration round there is at most one instance of
each VS in the running state, and at most one instance of each
VS in the starting state. These two constraints ensure that the
potential interruption of a VS is not compensated by running
multiple instances of a VS in another migration round.

IV. COMPLEXITY CONSIDERATION

Problem (P1) is an IP problem, and as such is computa-
tionally hard in general. Nonetheless, since (P1) has integer
constraints and a constraint matrix with elements belonging to
{−1, 0, 1}, if the constraint matrix of (P1) is totally unimodu-
lar, the linear relaxation of (P1) has an integral optimal solution
that corresponds to the integer solutions of (P1). Unfortunately,
our next result shows that the constraint matrix of (P1) is not
totally unimodular in general.

Proposition 1. The constraint matrix of the TCVM problem
(P1) is not totally unimodular for T ≥ 3, |F| ≥ 3, |M| ≥ 2,
and ωm ≥ 2 ∀m. Hence, a linear relaxation of (P1) does not
provide an optimal solution to (P1).

Proof. To prove that the constraint matrix of the TCVM
problem is not totally unimodular, it is sufficient to show that
the constraint matrix has a submatrix whose determinant is
neither ±1 nor 0.

To show this, let A be the constraint matrix of a problem
with T = 3, |M| = 2, ω1 = ω2 = 2, and |F| = 3. Let
us now construct submatrix A1 by taking the rows of A that
correspond to constraints

x1,1,1 + x1,2,1 + x1,3,1 ≤ 2, (5)
x2,1,1 + x2,2,1 + x2,3,1 ≤ 2, (6)
− x1,3,1 + x1,3,2 + e1,3,2 ≤ 0, (7)
− x2,1,1 + x2,1,2 − e2,1,2 ≤ 0, (8)
x1,1,2 + x2,1,2 − e1,1,2 − e2,1,2 ≤ 1, (9)
− x2,3,1 + e2,3,1 ≤ 0, (10)
x1,3,1 + e2,3,1 ≤ 0. (11)

By taking the columns 3, 4, 12, 13, 16, 18, and 21 of A1, we
get a 7× 7 square submatrix A2 of A1,

A2 =

1 1 0 0 0 0 0
0 0 1 1 0 0 0
−1 0 0 0 0 0 −1
0 −1 0 0 1 0 0
0 0 −1 0 0 1 0
0 0 0 0 0 1 1

 . (12)

It is easy to verify that the determinant of A2 is −2, and A2 is a
submatrix of A, which proves that A is not totally unimodular
(Theorem 19.3 [16]).

Furthermore, as A is a submatrix of the constraint matrix
for any problem with T ≥ 3, |F| ≥ 3, |M| ≥ 2, and ωm ≥
2 ∀m, the constraint matrix for any problem instance with
T ≥ 3, |F| ≥ 3, |M| ≥ 2 and ωm ≥ 2 ∀m contains A2 as
a submatrix, and hence it is not totally unimodular. Thus, the

3

Figure 1. An optimal migration schedule for a system with 3 VSs. Solid
frame indicates running state, dashed frame starting state.

linear relaxation of (P1) does not provide an optimal solution
to (P1) (Corollary 19.2, [16]).

Motivated by these negative results, it may be tempting to try
to reduce the size of a problem instance by only considering
the set Fm = {fk|Ms

k 6= M t
k,∀fk ∈ F} of the VSs that

need to be migrated, and to ignore the set Fu = {fk|Ms
k =

M t
k,∀fk ∈ F} of the VSs that have the same placement in xs

and xt. Doing so reduces the number of VSs and MEC nodes
to be considered, and may result in a new problem that can
be solved optimally using LP relaxation. Unfortunately, as the
below example shows, this approach may lead to a suboptimal
result, as VSs in Fu may need to be interrupted to obtain an
optimal solution.

Example 1. Consider a system with |F| = 3, Fu = {f1},
v2, v3 � v1, |M| = 3, and ωm = 1 ∀m ∈ M. Let the
migration time constraint to be T = 4. Since the VSs fill
up the capacities of the MEC nodes, at least one of the VSs
has to be interrupted during the migration. Every optimal
migration schedule would interrupt f1 only, as illustrated by
one of the optimal schedules shown in Figure 1. The solid and
the dashed frames indicate being in running and in starting
states, respectively. Since v1 is much lower than v2 and v3,
f1 is turned off in x1 such that MEC node 1 can host f3
temporarily, and f2 and f3 can be migrated to their target
MEC nodes without interruption in x2 and x3, respectively.
Then in x4 VS f1 is started again in MEC node 1.

The following result shows that similar examples can only
be constructed for T ≥ 3.

Proposition 2. For the TCVM problem, an optimal solution
cannot interrupt a VS fj ∈ Fu unless T ≥ 3. Thus, for T <
3 it is sufficient to consider Fm for computing an optimal
solution.

Proof. Consider an optimal solution, in which a VS fj ∈ Fu

is interrupted to host fk ∈ Fm on M t
j temporarily, so as to

avoid interrupting fk. It takes one round to interrupt fj and to
make fk start on M t

j , and then it takes another round to make
one instance of fk start on M t

k, while keeping one instance of
fk running on M t

j . Finally, it takes one more round to make fj
start on M t

j again. Therefore an optimal solution may interrupt
a VS fj ∈ Fu only if T ≥ 3. Consequently, for T < 3 it is
enough to consider Fm for computing an optimal solution.

For T ≥ 3 it is not enough to consider Fm, but as we show
next, it is sufficient to consider at most 2|Fm| VSs, instead of

|F| VSs, to compute an optimal solution.

Proposition 3. For a system with F = Fm ∪ Fu and T ≥ 3,
it is sufficient to consider at most 2|Fm| VSs for computing an
optimal solution.

Proof. It is clear that the proposition holds when |Fu| ≤ |Fm|,
since the maximal number of VSs that can be considered is
|F| = |Fm|+ |Fu| ≤ 2|Fm|.

For |Fu| > |Fm| we analyze the maximal number of VSs
that need to be considered for computing an optimal solution
in two cases.
1) For T = 3, each interrupted VS in Fu can be used for the

migration of one VS in Fm, and thus an optimal solution
interrupts at most |Fm| VSs. Therefore it is sufficient to
consider the |Fm| VSs with the lowest values in Fu, and
the VSs in Fm, that is 2|Fm| VSs in total.

2) For T > 3, each VS in Fu can be interrupted to host at
least one VS in Fm for at least one round temporarily, and
therefore the number of VSs that need to be considered for
computing the optimal solution is at most as much as for
T = 3.

We can thus reduce the number of VSs to be considered for
computing an optimal solution by using Propositions 2 and 3.
However, due to the complexity of the problem, it is infeasible
to solve even moderate sized instances of the TCVM problem.
Therefore in what follows we propose an efficient heuristic to
solve the TCVM problem.

V. THE MIGRATION DEPENDENCE GRAPH DECOMPOSITION
ALGORITHM

In this section we propose an efficient heuristic to solve
the TCVM problem. First, we analyze the source and the
target placement of the VSs to create a dependency graph G.
We then convert G into a graph that only consists of disjoint
linear subgraphs. Finally, we cut the linear subgraphs into short
subgraphs so as to generate a migration schedule that satisfies
the migration time constraint. In what follows we describe each
step in detail.

A. Creating and assigning MEC slots

As a first step, for each MEC node m we create a set Sm

of MEC slots, with |Sm| = ωm. Each MEC slot can host one
VS. We denote by S =

⋃
m∈M Sm the set of all MEC slots.

We then assign each VS fk to one MEC slot on its source
MEC node Ms

k and to one MEC slot on its target MEC node
M t

k, referred to as the source slot σs
k and the target slot σt

k,
respectively. Furthermore, we define the functions F s(s) =
{fk : σs

k = s} and F t(s) = {fk : σt
k = s}. We say that a

MEC slot s ∈ S is available if F s(s) = F t(s) = ∅, and we
denote by S0 the set of available MEC slots.

B. Building the dependency graph

In general if the target slot σt
k of VS fk is not assigned to

any VS in xs then fk can be migrated immediately. Otherwise,
fk has to wait for the VS on σt

k to be migrated, or for it to

4

Algorithm 1: Building The Dependency Graph
Input : F

1 Create a graph G = (F , E), where E = ∅.
2 for ∀fk ∈ F do
3 if F s(σt

k) 6= ∅ then
4 Add edge (fk, F

s(σt
k)) to E

Output : G

Figure 2. The dependency graph of a sample system with 8 VSs.

be interrupted. To create a dependency graph, we start with
defining the dependency relation between two VSs as follows.

Definition 1. For any two VSs fk and fj , we say that fk
depends on fj if the target slot of fk is the source slot of fj ,
that is, σt

k = σs
j , and we denote the dependence of fk on fj

by fk → fj .

To describe the dependency relations among the VSs, we
create the directed graph G = (F , E), which we call the
dependency graph. Each vertex in G corresponds to a VS,
and there is an edge (fk, fj) ∈ E if fk depends on fj .
The dependency graph can be built in polynomial time using
Algorithm 1, which goes through each VS to check if an edge
needs to be added according to the function F s(s).

In the dependency graph G, the VSs can be classified into
four categories according to their location.
• A VS is a head VS if it has one incoming edge but no

outgoing edge.
• A VS is an interior VS if it has one incoming edge and

one outgoing edge.
• A VS is a tail VS if it has one outgoing edge but no

incoming edge.
• A VS is isolated if it is not incident to any edge.
Observe that the dependency graph consists of a set Pa of

disjoint linear subgraphs, and of a set Pc of disjoint circular
subgraphs. We refer to the subgraphs in Pa and Pc as acyclic
and as cyclic paths, respectively. Figure 2 shows a sample
dependency graph of eight VSs. The subgraph induced by
{f1, f2, f3, f4} is an acyclic path, and f1 and f4 are the
head and the tail VSs, respectively. The subgraph induced by
{f5, f6, f7} is a cyclic path. Finally, f8 is isolated.

An acyclic path can be used to generate a migration schedule
that does not interrupt any VS, by migrating the VSs from
their source slots to their target slots starting with the head VS
following the edges in the opposite direction. Nevertheless, a
cyclic path has to be converted into an acyclic path to be able
to generate a migration schedule. We discuss this step in the
following.

Algorithm 2: Breaking Cyclic Paths
Input : Cyclic path Pc = {f1, f2, . . . , f|Pc|}

1 if S0 6= ∅ then
2 for ∀fk ∈ Pc do
3 if ∃s ∈ S0 ∩ Sm where m = M t

k then
4 Set σt

k = s
5 S0 = S0 \ s
6 Break

7 Migrate f1 temporarily to s
8 Migrate f1 to σt

1 after f|Pc| has been migrated
9 S0 = S0 \ s

10 else
11 Let k′ = argmin{vk|fk ∈ Pc}
12 Pac = {fk′+1, fk′+2, . . . , f|Fc|, f1, f2, . . . , fk′}.

Output : Pac

C. Breaking cycles

In what follows we propose an efficient algorithm to convert
cyclic paths to acyclic paths. The pseudo-code of the algorithm
is shown in Algorithm 2. The algorithm considers a cyclic path
Pc = {f1, f2, . . . , f|Pc|} ∈ Pc,

f1 ← f2 ← . . .← f|Pc|, andf|Pc| ← f1. (13)

If there are available MEC slots (S0 6= ∅), the cyclic path Pc

can be converted to an acyclic path without interrupting any
VS in one of two ways. If there exists a slot s ∈ S0 on M t

k for
any VS fk ∈ Pc, the algorithm reassigns s as the target slot
of fk, which converts Pc into an acyclic path Pac. Otherwise,
if there is no available slot s ∈ S0 on any of the target MEC
nodes of the VS fk ∈ Pc, then the algorithm first migrates
VS f1 temporarily to an empty slot s, and then migrates f1
to its target slot σt

1 after f|Pc| has been migrated. This way
the algorithm converts the cyclic path to an acyclic path at the
cost of adding an extra migration round.

Finally, if there is no available MEC slot (S0 = ∅), the
algorithm converts the cyclic path by interrupting the cheapest
VS in Pc for |Pc| rounds, as shown in Lines 11-12. The
following theorem shows that the total value of the VSs
interrupted by Algorithm 2 is minimal.

Theorem 1. For a cyclic path Pc, the sum value of the VSs
interrupted by the solution given by Algorithm 2 is minimal.

Proof. It is clear that when S0 is not empty, the cyclic path Pc

can be converted to an acyclic path without interrupting any
VS, and therefore the sum value of the interrupted VSs is 0,
which is minimal.

Consider now that S0 is empty, and assume that the algo-
rithm converts Pc into a set Pac of acyclic paths. Let us denote
by |Pac| the length of path Pac ∈ Pac, and by vac the value of
the tail VS of Pac. Then the sum value C of the interrupted
VSs in Pac during the migration is C =

∑
Pac∈Pac

|Pac|vac.
Let us denote by v? = min{vk|fk ∈ Pc}. Then for any Pac

we have

5

C =
∑

Pac∈Pac

|Pac|vac

≥
∑

Pac∈Pac

|Pac|v? = v?
∑

Pac∈Pac

|Pac| = v?|Pc| (14)

Therefore when S0 = ∅, the minimal sum value of the
interrupted VSs for converting Pc into Pac is v?|Pc|. When
S0 = ∅ Algorithm 2 interrupts the VS fk′ with vk′ = v? for
|Pc| rounds at the cost of v?|Pc|, which is the minimal sum
value of the interrupted VSs, and Pac = {Pac}.

D. Cutting long acyclic paths

After executing Algorithm 2 for each cyclic path Pc ∈ Pc,
all the paths are acyclic, but the length of some paths may
exceed the migration time constraint T . We refer to such paths
as long paths, and as a next step, we have to cut those into
paths that are at most T long, referred to as short paths.

Let us consider an acyclic long path Pl =
{f1, f2, . . . , f|Pl|},

f1 ← f2 ← . . .← f|Pl|.

Note that since the path is long, we have T < |Pl|. We use
the decision variable yk ∈ {0, 1} to denote whether Pl will be
cut after fk ∈ Pl , and we define y = {y1, y2, . . . , y|Pl|}.

If we cut a long path into short subpaths, the tail VSs
except f|Pl| will have to be interrupted for the duration of the
whole migration period of the subpaths that they belong to. For
example, if we cut Pl after f3 (y3=1), f4 takes the slot of f3
in the first migration round, and f3 is started in the third round
and starts providing service in the fourth round. Therefore f3
is interrupted for three rounds, which is the length of the path.

To compute the duration of the interruption for each VS, we
define the variable yk,j = min{yk, ȳk−1, ȳk−2, . . . , ȳj}, where
k > j, and ȳj is the negation of yj . yk,j = 1 if fk is the tail
VS on a subpath, and fk and fj are on the same subpath. If VS
fk and fj are not on the same subpath, Pl must be cut at least
once between fj and fk, and therefore there exists ȳn = 0
with j ≤ n ≤ k − 1 and yk,j = 0. Since the maximal length
of a path is T , the maximal interruption period of any VS is(∑min{T−1,k−1}

j=1 yk,j + yk

)
rounds. Therefore the interruption

cost for solution y is

C (y) =

F−1∑
k=1

vk

min{T−1,i−1}∑
j=1

yk,j + yk

 . (15)

We can thus formulate the problem of cutting a long path
with the objective of minimizing the interruption cost as the
following IP problem.

minimize
yk,yk,j ,bk,j,r

C (y) (P2)

subject to
T−1∑
a=0

yk+a ≥ 1, ∀k ≤ |Pl| − T (16)

yk,j > yk − bk,j,0, ∀k, j (17)

yk,j > 1− yk − bk,j,r, ∀k, j, j ≤ r < k (18)
j∑

r=0

bk,j,r = j, (19)

yk, yk,j , bk,j,r ∈ {0, 1} ∀k, j, j ≤ r < k. (20)

Constraint (16) enforces that every T + 1 successive VSs
on P must be on at least two different subpaths. Constraints
(17)-(19) are the so called “big M constraints” according to the
definition of yk,j (Section 3.2.4 in [17]), and bk,j,r are slack
variables. Our next result shows that the long path cutting
problem can be solved efficiently when the values of the VSs
are homogeneous.

Theorem 2. Consider an acyclic long path Pl =
{f1, f2, . . . , f|Pl|} and time constraint T < |Pl|. If vk =
v0 ∀fk ∈ Pl then there exist optimal solutions with cost
v0 (|Pl| − T).

Proof. Without loss of generality, we assume that in a feasible
solution of the long path cutting problem Pl has been divided
into a set of subpaths Ps = {P1, P2, . . . , P|Ps|}. Since the VSs
have the same value v0, the total interruption cost C for the
solution is

C =
∑

Pp 6=P|Ps|

v0|Pp| = v0
∑

Pp 6=P|Ps|

|Pp| = v0
(
|Pl| − |P|Ps||

)
.

(21)
Since the maximal length of subpath P|Ps| is T , therefore the

minimal cost C? = v0 (|Pl| − T). Further we can construct
the optimal solution as follows. First we cut Pl after the first
(|Pl| − T) VSs such that the last subpath contains the last T
VSs of Pl. Then we cut the rest of Pl arbitrarily such that the
length of each subpath is at most T .

In what follows we use Theorem 2 for developing a heuristic
for the general case, based on local search. The pseudo-code
of the heuristic is shown in Algorithm 3. The heuristic first
obtains a feasible solution by creating a set Ps of subpaths
of length T starting from the last VS in Pl, and updates y
accordingly. Then the heuristic iteratively goes through each
VS fk to check if the total interruption cost can be reduced
by applying an operation to fk. The set Ok of applicable
operations for fk depends on the location of fk, and is
shown in Table III. If such an operation exists, it applies
the operation, otherwise it keeps the previous solution. The
algorithm terminates when the total interruption cost cannot
be further reduced.

E. Migration dependence graph decomposition algorithm

We are now ready to summarize the migration dependence
graph decomposition (DGD) algorithm. The pseudo-code of
the algorithm is shown in Algorithm 4. First we initialize the
set S of MEC slots, F s(s) and F t(s) (Line 1). We then create
a set Sm of MEC slots for each MEC node m, and append Sm

to S, as shown in Lines 2-4. We assign each VS fk a source
and a target slot and update the functions F s(s) and F t(s)
(Lines 5-8). Next, we build the dependency graph G according
to Algorithm 1 (Line 9), and convert the cyclic subgraphs of G
to acyclic subgraphs using Algorithm 2 (Lines 10-12). Finally,

6

Algorithm 3: Cutting Long Paths
Input : Acyclic long path Pl = {f1, f2, . . . , f|Pl|}

and T
1 Create a set Ps of subpaths of length T starting from the

last VS in Pl, and update y accordingly.
2 Interruption cost C = C(y)
3 while C can be reduced do
4 for ∀fk ∈ Pl do
5 for ∀o ∈ Ok do
6 Apply the operation o and update y
7 C ′ = C(y)
8 if C ′ < C then
9 C = C ′

10 else
11 Discard o and restore y

Output : Ps

Table III
AVAILABLE OPERATIONS FOR VS fk

Head Interior Tail Isolated

Move fk to the previous path ! !

Move fk to the next path ! !

Make fk isolated ! ! !

Cut the path after fk !

Cut the path after fk−1 !

we cut each long path Pl into a set Ps of short paths (Lines
13-15) to replace Pl in Pa. The algorithm results in a set Pa

of acyclic short paths, which can be used to generate a VS
migration schedule within the time constraint T .

The following result shows that the DGD algorithm com-
putes the optimal solution to the TCVM problem under certain
conditions.

Theorem 3. Consider a TCVM problem with |M| = |F|,
ωm = 1 ∀m, and vk = v0 ∀fk. Then the solution given by the
DGD algorithm is optimal.

Proof. We prove the theorem by contradiction. We denote by
xh the solution of the DGD algorithm, and assume that xh is
not optimal. When ωm = 1 ∀m, the assignment σs

k and σt
k are

unique for each VS fk, and therefore the dependency graph G
is unique. The suboptimality of xh thus requires that the result
of at least one of the Algorithms 2 and 3 is not optimal with
respect to its inputs.

Since |M| = |F| and ωm = 1 ∀m, and each MEC slot
must host one VS both in xs and xt, we know that S0 = ∅.
Therefore, Algorithm 2 is optimal with respect to its input,
according to Theorem 1. Furthermore, Theorem 2 shows that
when the values of all VSs are homogeneous, Algorithm 3 is
also optimal with respect to its input. Since both Algorithm 2
and 3 are optimal with respect to their inputs when |M| = |F|,

Algorithm 4: DGD Algorithm

1 S = ∅, F s(s) : S 7→ {∅}, and F t(s) : S 7→ {∅}
2 for ∀ m ∈M do
3 Create a set Sm of MEC slots with |Sm| = ωm

4 S = S ∪ Sm

5 for ∀ fk ∈ F do
6 Assign fk a source slot σs

k and a target slot σt
k

7 Add σs
k 7→ fk to function F s(s)

8 Add σt
k 7→ fk to function F t(s)

9 Build dependency graph G = Pc ∪ Pa by Algorithm 1
10 for ∀ Pc ∈ Pc do
11 Convert Pc into acyclic path Pac by Algorithm 2
12 Pa = (Pa\Pc) ∪ Pac

13 for ∀ long path Pl ∈ Pa do
14 Cut Pl into a set Ps of short paths by Algorithm 3
15 Pa = (Pa\Pl) ∪ Ps

Output : Pa

ωm = 1 ∀m, and the value of all the VSs are homogeneous,
xh must be optimal.

Besides the complete DGD algorithm that is described in
Algorithm 4, it is tempting to consider two variants of it. The
first variant solves (P2) instead of using Algorithm 3 to cut
the long paths, and thus can potentially provide a higher total
service value than the complete DGD algorithm. The other
variant is the DGD algorithm that skips the local search in
Algorithm 3, and has a lower running time than the complete
DGD algorithm. We refer to the former and the latter variant of
the DGD algorithm as DGD-optPB and DGD-noLS algorithm,
respectively. As we next show, the DGD-noLS algorithm is
indeed computationally lightweight.

Theorem 4. The DGD-noLS algorithm has worst case com-
plexity O(|M|+ |F|).

Proof. It is easy to see that Lines 2-4 and Lines 5-8 in
Algorithm 4 have complexity O(|M|) and O(|F |), respec-
tively. Furthermore, the DGD-noLS algorithm calls Algorithm
1, which has complexity O(|F |).

In terms of breaking a cyclic path Pc, the worst case is when
S0 6= ∅ and Lines 2-9 in Algorithm 2 are executed. Since Lines
2-6 has complexity O(|Pc|), and Lines 7-9 has complexity
O(1), the Algorithm 2 has worst case complexity O(|Pc|+1).
When all the paths are cyclic, it takes O(

∑
Pc∈Pc

(|Pc|+ 1) ≤
O(2|F|) = O(|F|) time to break all the cyclic paths.

Finally, the Line 1 of Algorithm 3 is executed for each
long path, and has complexity O(|Pl|) to set y. In the worst
case that all the paths are long, cutting the long paths takes
O(
∑

Pl∈Pc
|Pl|) = O(|F|) time. Therefore the DGD-noLS

algorithm has worst case complexity O(|M|+ |F|).

VI. NUMERICAL RESULTS

In this section we evaluate the performance of the DGD
algorithm in terms of efficiency, scalability, and total service

7

Figure 3. NTSV vs. |F| for a system with |M| =80. Figure 4. NTSV vs. T for a system with |M| = 80 and |F| = 40 for
the DGD algorithm and the Wedelin heuristic.

value. We simulated systems with ωm = 6,∀m and vk is a
uniformly distributed integer variable on [1, 50], representing
the priority of fk according to the importance of its real-
time performance from low to high. For example, services
with vk = 1 could correspond to predictive maintenance
applications for automotive and smart grid applications, while
services with vk = 50 could correspond to real-time state
estimation and UAV control, corresponding to the highest
importance. In each simulation the source node Ms

k and the
target node M t

k of VS fk ∈ F are uniformly selected from
the MEC nodes with free computing resources. The results
shown are the averages of 100 simulations, and the confidence
intervals are at the 95% confidence level.

To benchmark the DGD algorithm, we compare it with
the optimal solution and the Wedelin heuristic. The optimal
solution is obtained by using the MILP solver of the Matlab
Optimization Toolbox, which is based on branch and bound.
The Wedelin heuristic is a general heuristic for IPs in the
following form,

maximize
z

cz

subject to Az = b
(P3)

where z is the vector of binary variables, and A is a matrix
with elements belonging to {0, 1,−1}. The Wedelin heuristic
is based on the Lagrangian relaxation of (P3), and modifies the
coefficients of the objective function iteratively. The Wedelin
heuristic is widely used to solve large scale IPs, for example
the crew scheduling problem in the airline industry [18], [19].

A. Service value performance

We start with evaluating the service value performance of the
DGD algorithm. To compare the service value over different
scenarios on a common scale, we define the normalized total
service value (NTSV) as follows,

NTSV =

∑T
i=1

∑
fk∈F

∑
m∈M vk (xm,k,i − em,k,i)

T
∑

fk∈F vk
. (22)

Figure 3 shows the NTSV of the five algorithms as a function
of the number |F| of VSs, for a system with |M| = 80
and T = 4. The optimal solution, the Wedelin heuristic, and
the DGD-optPB only scale up to |F| = 60, |F| = 120, and
|F| = 300, respectively, limited by their scalability. The figure

shows that the DGD algorithm and the DGD-noLS algorithm
perform close to the optimal solution when |F | ≤ 60. The
performance gap between the DGD algorithm and the Wedelin
heuristic is within three percent until the Wedelin heuristic
is not scalable anymore. Furthermore, the results show that
the DGD algorithm outperforms the DGD-noLS algorithm
by more than ten percent when the number of VSs is high,
and performs close to the DGD-optPB algorithm. This shows
that the local search is an essential component of the DGD
algorithm, and contributes significantly to maintaining a high
NTSV. The results also show that the NTSV of the DGD
algorithm decreases as |F| increases. However, note that as
|F| increases, the optimal NTSV also decreases as a result
of the decreasing free MEC capacity. As an extreme example,
when |F| = 480 it is easy to see that migrating any VS without
any VS interruption is infeasible.

In what follows we compare the performance of the DGD
algorithm and the Wedelin heuristic with respect to T . Figure
4 shows the NTSV of the DGD algorithm and of the Wedelin
heuristic for a system with |M| = 80 and |F| = 40. The
results show that the Wedelin heuristic performs better than the
DGD algorithm when T = 4, which is the same as Figure 3
shows. However, the NTSV of the DGD algorithm increases as
T increases, and the DGD algorithm outperforms the Wedelin
heuristic when T ≥ 6. This is because as the T increases,
there are less VSs to be interrupted to cut long paths into
short paths in the DGD algorithm. However, increasing the T
increases the dimension of the IP of the TCVM problem, and
thus the performance of the Wedelin heuristic degrades.

Figure 5 shows the NTSV of the DGD algorithm for four
combinations of |M| and |F| with respect to T . The results
show that increasing T increases the NTSV of the DGD
algorithm, which is consistent with Figure 4. Comparison of
the dashed curves also shows that for the same |M|, the NTSV
of the DGD algorithm decreases as |F| increases. This is
because increasing |F| leads to a higher chance to get cyclic
paths and long paths, and at the same time the number of
available MEC slots decreases. A similar reasoning explains
the phenomenon that for the same |F| the NTSV is higher
when |M| is larger, as the curves with triangular markers show.
Practically, the trade-offs above allow to tune the migration
performance by configuring the system load (e.g., |F|) and T .

8

Figure 5. NTSV vs. T for combinations of |M| and |F| for the DGD
algorithm.

Figure 6. Running time vs. |F| for a system with |M| = 80.

B. Efficiency and scalability

Figure 6 shows the running time of the four algorithms as a
function of |F|, for the same scenario as in Figure 3. Compared
with the optimal solution and the Wedelin heuristic, the DGD
algorithm and its two variants consume orders of magnitude
lower running time, and scale significantly better. The running
time of the optimal solution increases exponentially as |F |
increases. It is interesting to see that the optimal solution and
the Wedelin heuristic intersect at |F | = 40. This is because
when the dimension of the problem is relatively small, it is
easier for the optimization solver to find the optimal solution,
while the Wedelin heuristic still needs to go through the
constraints and solve the problem iteratively. The scalability
of the Wedelin heuristic is mainly limited by the fact that
it requires the coefficient matrices of the problem instances
to be stored. Furthermore, Figure 6 shows that the superior
performance of the DGD-optPB algorithm comes at the cost
of a significant increase of the running time. This is because the
DGD-optPB algorithm obtains an optimal solution for breaking
a long path by solving an IP. The DGD-noLS algorithm skips
the local search to achieve a lower running time than the
DGD algorithm at the cost of a lower NTSV. This observation
allows to tune the computational complexity and the NTSV
performance by choosing among the DGD algorithm and its
variants.

Overall, the results show that the DGD algorithm is an
effective, efficient, and scalable algorithm for solving the
TCVM problem, and allows to balance between the solution
quality, VS migration time, and the computation complexity
of finding a solution.

VII. CONCLUSION

We have proposed an algorithm for solving the problem of
scheduling virtualized services migration with the objective of
maximizing service availability subject to a target migration
time. The iterative algorithm we proposed builds and decom-
poses a migration dependency graph to generate a migration
schedule. Extensive numerical results show that the proposed
algorithm achieves near-optimal performance with low compu-
tational complexity, and scales significantly better than the state
of the art Wedelin heuristic for solving binary programming
problems. Furthermore, the numerical results show that the
proposed algorithm allows to balance between the solution

quality, migration time, and the computation complexity of
finding a solution.

REFERENCES

[1] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE
Communications Surveys & Tutorials, 2017.

[2] S. Abdelwahab, B. Hamdaoui, M. Guizani, and T. Znati, “Replisom:
Disciplined tiny memory replication for massive IoT devices in LTE
edge cloud,” IEEE IoT Journal, vol. 3, no. 3, pp. 327–338, 2016.

[3] P. Mach and Z. Becvar, “Mobile edge computing: A survey on archi-
tecture and computation offloading,” IEEE Communications Surveys &
Tutorials, 2017.

[4] X. Liu, J. Zhang, X. Zhang, and W. Wang, “Mobility-aware coded
probabilistic caching scheme for mec-enabled small cell networks,” IEEE
Access, vol. 5, pp. 17 824–17 833, 2017.

[5] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE IoT Journal, vol. 3, no. 5, pp. 637–646, 2016.

[6] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Mobile edge com-
puting: A survey,” IEEE IoT Journal, 2017.

[7] Y. Wen, Z. Li, S. Jin, C. Lin, and Z. Liu, “Energy-efficient virtual
resource dynamic integration method in cloud computing,” IEEE Access,
vol. 5, pp. 12 214–12 223, 2017.

[8] P. Zhao and G. Dán, “Resilient placement of virtual process control
functions in mobile edge clouds,” in Proc. of IFIP TC6 Networking,
June, 2017.

[9] S. Al-Haj and E. Al-Shaer, “A formal approach for virtual machine
migration planning,” in Proc. of IEEE CNSM, 2013, pp. 51–58.

[10] F. Hermenier, J. Lawall, and G. Muller, “Btrplace: A flexible consolida-
tion manager for highly available applications,” IEEE Transactions on
dependable and Secure Computing, vol. 10, no. 5, pp. 273–286, 2013.

[11] T. K. Sarker and M. Tang, “Performance-driven live migration of
multiple virtual machines in datacenters,” in Proc. of IEEE International
Conference on Granular Computing (GrC), 2013, pp. 253–258.

[12] X. Yao, H. Wang, C. Gao, F. Zhu, and L. Zhai, “VM migration
planning in software-defined data center networks,” in Proc. of IEEE
HPCC/SmartCity/DSS, 2016, pp. 765–772.

[13] M. F. Bari, M. F. Zhani, Q. Zhang, R. Ahmed, and R. Boutaba, “CQNCR:
optimal VM migration planning in cloud data centers,” in Proc. of IFIP
Networking, 2014, pp. 1–9.

[14] K. Onoue, S. Imai, and N. Matsuoka, “Scheduling of parallel migration
for multiple virtual machines,” in Proc. of IEEE AINA, 2017, pp. 827–
834.

[15] F. Hermenier, X. Lorca, J.-M. Menaud, G. Muller, and J. Lawall,
“Entropy: a consolidation manager for clusters,” in Proc. of ACM
SIGPLAN/SIGOPS international conference on Virtual execution envi-
ronments, 2009, pp. 41–50.

[16] A. Schrijver, Theory of linear and integer programming. John Wiley
& Sons, 1998.

[17] E. K. Burke, G. Kendall et al., Search methodologies. Springer, 2005.
[18] D. Wedelin, “An algorithm for large scale 0–1 integer programming with

application to airline crew scheduling,” Annals of operations research,
vol. 57, no. 1, pp. 283–301, 1995.

[19] ——, “Revisiting the in-the-middle algorithm and heuristic for integer
programming and the max-sum problem,” 2013.

9

