
Scheduling Parallel Migration of Virtualized
Services under Time Constraints in Mobile Edge

Clouds
Peiyue Zhao and György Dán

School of Electrical Engineering and Computer Science
KTH Royal Institute of Technology

Stockholm, Sweden. E-mail: {peiyue|gyuri}@kth.se

Abstract—Migrating virtualized services (VSs) in mobile edge
clouds is essential for maintaining service quality under mobility,
for optimizing resource utilization, and for responding to inci-
dents. We consider migrating VSs with heterogeneous resource
requirements from a source placement to a target placement
under a time constraint, while maintaining service continuity as
much as possible. We formulate the VS migration problem as an
integer programming problem, and propose an efficient algorithm
to compute sequences of migration actions. The algorithm is
based on a graphical representation of the VS dependencies,
and constructs a collection of acyclic directed hypergraphs with
bounded length. We evaluate our algorithm in realistic scenarios
and compare it to the optimal solution and to a baseline algo-
rithm. Extensive simulations show that our algorithm achieves
near-optimal performance, and is computationally efficient and
scalable.

I. INTRODUCTION

Service virtualization benefits end users by reducing capital
costs and by enabling flexible resource scaling, with perfor-
mance isolation, high reliability and security. Examples of
Virtualized Services (VSs) can be network functions, content
caches, primitives of computational offloading for Internet of
Things (IoT) devices and for in-network data analytics [1]–[4].

A promising architecture for hosting VSs for latency critical
and high bandwidth applications is Mobile Edge Computing
(MEC). As a key enabler for 5G, MEC provides distributed
computation and storage resources in the proximity of end
users, with high performance and low latency. A fundamental
primitive for resource management when hosting VSs in MEC
is scheduling VS migration. VS migration is necessary for
MEC node maintenance, and it also facilitates load balancing
and performance optimization under shifting workloads caused
by user mobility. Representative emerging use cases are the
control and monitoring of unmanned aerial vehicles (UAVs)
and self-driving cars. VS migration also enhances resilience,
for example, in case of cyber attacks or device failures a VS
can be migrated to a MEC node that operates normally to
recover service availability.

A critical requirement for scheduling VS migration within
MEC is to make fast reaction to workload shifts and incidents.
Existing works on migration scheduling mainly consider data
center clouds, which serve large areas with slowly shifting

This work was partly funded by the MSB CERCES project.

workloads, and thus they mostly focus on maintaining service
availability, without considering the migration time constraints.
Compared to data centers, MEC nodes serve relatively small
areas and thus the workloads may shift fast, which requires
fast VS migration so as to accommodate user mobility and to
satisfy QoE requirements.

Fast VS migration within MEC is constrained by the require-
ment of maintaining service continuity during migration and by
the available computing resources. This is because migrating
VSs while maintaining the service continuity requires extra
computing resources, and thus some of the VSs may need to
be turned off to make resources available for fast migration.
Additionally, during migration a VS transits through multiple
phases, in each of which a VS has different resource require-
ments and service availability. Therefore computing an optimal
solution requires joint consideration of the available resources,
the load of the system, the phases of migration, and the
availability requirements of VSs. These factors together make
VS migration under time constraints extremely challenging.

In this paper we address the problem of scheduling the
migration of VSs under time constraint, with the objective of
maximizing the service continuity during VS migration. We
consider a set of MEC nodes with computational capacity for
hosting a set of VSs. Each VS requires some computational
resources for providing a service, and is associated with a
value according to the service it provides. The VSs are initially
placed according to a source placement, and they need to
be migrated to a target placement within a time constraint.
We formulate the VS migration scheduling (VMS) problem
as an integer programming (IP) problem, and propose an
efficient heuristic for solving the VMS problem. We prove
that the heuristic terminates in a finite number of iterations. By
simulations we benchmark our algorithm against the optimal
solution and against a baseline algorithm. Numerical results
show that our algorithm achieves near-optimal performance,
and is efficient and scalable.

The rest of the paper is organized as follows. Section II
reviews the related work and Section III introduces the system
model and problem formulation. Section IV presents our
solution to the VMS problem and Section V presents the
numerical results. Finally, Section VI concludes the paper.

II. RELATED WORK

Closely related to our work is the area of Virtual Machine
(VM) migration. VM migration is recognized as a key enabler
for improving performance optimization and energy efficiency
for various cloud architectures. [5] considers VM migration for
server consolidation in data centers, and proposes a framework
to compute a VM placement and to schedule VM migration
subject to server capacity. The solution relies on solving con-
straint programming problems by an optimization solver, and
does not consider the complexity. Authors in [6] consider the
problem of scheduling VM migration to satisfy the requirement
of the VMs in terms of resources, security, and communication,
but the migration time minimization is not considered.

Related to our work are recent works on VM migration
scheduling for migration time and downtime minimization [7]–
[11]. Due to the complexity of modeling VM migration, those
works propose solutions based on heuristics or approximations.
Authors in [7] address the problem of minimizing the total
migration time of VMs while considering energy consumption.
The problem is solved by using an optimization solver with
the assistance of a proposed heuristic. [8] proposes a heuristic
for minimizing VM migration time and downtime in data
centers. The proposed heuristic limits parallel VM migration
to VMs that utilize different network links and different
hosting servers, even if there are sufficient servers and network
resources. [12] considers maximizing the transmission rate
for VM migration in a Software Defined Network (SDN),
and thus indirectly minimizes the total migration time. The
paper formulates a mixed integer linear programming (MILP)
problem, and reduces it to a maximum multicommodity flow
problem by ignoring the bandwidth constraints, for which an
approximation algorithm is proposed.

An important issue in VM migration is to handle migration
deadlocks, which is explicitly considered in [9], [10]. Authors
in [9] propose a heuristic for scheduling VM migration so
as to minimize the migration time and downtime, under the
constraints of network topology and bandwidth capacity. The
proposed solution resolves a migration deadlock by migrating
the VM with the minimal migration cost to a temporary
location. [10] formulates the VM migration problem as an
Integer Linear Problem (ILP), and provides a heuristic that
migrates VMs in descending order of their weight, based on the
dependencies among the VMs. In case of a migration deadlock,
the algorithm interrupts the VM with the lowest weight.

For considering the impact of VM migration on the service
availability of VMs, cost minimization based VM migration
can be adopted. Authors in [11] compute the VM migration
cost based on the memory consumption of a VM and they
formulate a constraint satisfaction programming problem to
minimize the overall VM migration cost. However, the impor-
tance of different VMs or migration time constraints are not
considered.

Closest to our work is [13], which considers scheduling the
migration of VSs with homogeneous resource requirements,
and proposes a solution based on a top-down approach, which
decomposes the migration dependency graph. Our work goes

Table I: Decision variables and the states of VSs

xm,k,i em,k,i State
1 0 Starting
1 1 Running
0 0 Powered off

beyond [13] substantially by considering VSs with heteroge-
neous resource requirements. Due to this heterogeneity, the
dependencies between VSs form a hypergraph, which requires
a completely different solution approach. In this paper, we
propose a bottom-up approach that constructs a hypergraph
from an empty graph, opposite to the top-down approach. Nu-
merical results show that for migrating VSs with heterogeneous
resource requirements, our bottom-up approach outperforms
the top-down approach based solution significantly, while the
top-down approach provides lower execution time when the
number of VSs is low.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a set F = {f1, f2, . . . , f|F|} of VSs, each of
which provides some service. The VSs are placed on a set M
of MEC nodes. We consider that a VS instance on a MEC
node can be in one of three states.
• Powered off is the state when a VS instance is turned off,

and hence it cannot provide service.
• Running is the state when a VS instance is providing

service. A VS outage occurs when there is no instance
of a VS in running state. A VS instance in the running
state can be turned off immediately, in which case it enters
the powered off state.

• Starting is the state when a VS instance is turned on and is
performing a set of operations to get ready for the running
state, for example, loading the VS image from storage,
configuring runtime environment, and setting up network
connections. We denote by ts the time that a VS spends in
the starting state, and consider that a VS instance cannot
provide service in the starting state.

Since a VS instance can enter the powered off state immedi-
ately, while it takes a VS instance ts time to enter the running
state, we divide time into slots of length ts to facilitate the
scheduling. A VS can be turned on or off at the beginning of
each slot. We will refer to these time slots as migration rounds,
and we denote by T the target number of migration rounds, i.e.
the total time available for migration. Furthermore, we denote
by vk the value of the service provided by VS fk ∈ F per
migration round in the running state.

We use two binary variables to jointly indicate the state
of a VS instance. In migration round i the binary variable
xm,k,i indicates whether an instance of fk is placed on MEC
node m ∈M, and the binary variable em,k,i further indicates
whether an instance of VS fk is in the running state on MEC
node m. There is a unique mapping between the value of
the decision variables and the states of the VSs, as shown in
Table I. To make sure that a VS makes valid transitions among

different states, a set of constraints has to be satisfied. First,
if VS fk is in the running state on MEC node m in time slot
i, it should be placed on MEC node m during the same time
slot,

xm,k,i − em,k,i ≥ 0, ∀m, k, i. (1)

Moreover, a VS instance has to be placed on a MEC node m
for one time slot to enter the running state, hence

xm,k,i−1 ≥ em,k,i, ∀m, k, i. (2)

Also, if VS fk is placed on MEC node m in the time slot i−1,
it can be either in the running state or in the powered off state
on m in time slot i,

xm,k,i−1 + xm,k,i − em,k,i ≤ 1, ∀m, k, i. (3)

We denote by xi = (x1,1,i, . . . , x|M|,|F|,i) the placement
of the VSs in migration round i. We denote by xs and xt

the source placement and the target placement of the VSs,
respectively; thus we have

x0 = xs, and xT = xt, (4)

which ensure the VSs to be in the running state after migration.
We also consider that VS migration is constrained by

computational resources. We denote by ωm the amount of
computational resources on MEC node m for hosting VSs,
and we consider that VS fk requires rk ∈ Z≥0 computational
resources in the starting or in the running state. A VS instance
in the powered off state does not require any computational
resources, thus

|F|∑
k=1

xm,k,irk ≤ ωm, ∀m, i. (5)

For the sake of simplicity, we assume that both rk and ωk

are integers. This assumption is reasonable considering that the
number of virtual CPUs (e.g., cores) is an integer, and bare
metal partitioning hypervisors, such as Jailhouse [14] allocate
an integer number of virtual CPUs to each process to ensure
isolation.

B. Problem Formulation

We are now ready to formulate the VMS problem. The VMS
problem is to compute a migration schedule for migrating
VSs from a source placement xs to a target placement xt

within T migration rounds, with the objective of maximizing
the total value of the VS instances in the running state during
the migration.

maximize
xm,k,i,em,k,i

T∑
i=1

|F|∑
k=1

∑
m∈M

vkem,k,i

subject to (1)− (5)∑
m

(xm,k,i − em,k,i) ≤ 1, ∀k, i∑
m

em,k,i ≤ 1, ∀k, i

xm,k,i, em,k,i ∈ {0, 1}, ∀m, k, i
T ∈ N

(P1)

The additional constraints in (P1) enforce that each VS can
have at most one instance in the running state and at most one
instance in the starting state in each migration round. These
two constraints ensure that the potential interruption of a VS
is not compensated by running multiple instances of a VS in
another migration round.

If the constraint matrix of problem (P1) is totally uni-
modular, the linear relaxation of (P1) has optimal solutions
correspond to integral optimal solutions of (P1). However, as
the variables in (5) have coefficients rk ∈ Z≥0, the constraint
matrix of (P1) is not totally unimodular in general. Due to
the complexity of (P1), it is infeasible to solve even moderate
sized instances of the VMS problem by optimization solvers.
Therefore we propose an efficient heuristic to solve the VMS
problem.

IV. THE MIGRATION DEPENDENCE HYPERGRAPH
CONSTRUCTION ALGORITHM

In this section we propose an efficient heuristic to solve
the VMS problem. First, we analyze the source and the target
placement of the VSs to create a dependency hypergraph G,
which consists of cyclic and acyclic paths. We then observe
that a migration schedule can be built based on acyclic paths,
which motivates us to construct a hypergraph that consists
of acyclic paths only and we use it to generate a migration
schedule that satisfies the migration time constraint. In what
follows we describe each step in detail.

A. Creating and Assigning MEC Slots

To begin with, for each MEC node m we create a set Sm of
MEC slots that correspond to the resources on MEC node m
with |Sm|= ωm. We denote by smn ∈ Sm the nth MEC slot of
MEC node m. We then assign each VS fk to a set of rs MEC
slots on its source MEC node Ms

k and to a set of rs MEC slots
on its target MEC node M t

k, referred to as the set of source
slots σs

k and the set of target slots σt
k, respectively. When

assigning source and target slots for VSs, a straightforward
way could be to assign MEC slots arbitrarily. However, as
we will show later, the MEC slot assignment affects the total
value of VSs in the migration schedule, and thus we propose
to assign MEC slots as follows.

For each MEC node m, we consider two algorithms for
assigning MEC slots Sm as source slots. The first algorithm
orders the VSs on MEC node m in ascending order of their
resource requirement rk, and assigns to each VS the available
MEC slots with the lowest indices. We refer to this as the
Smallest First (SF) algorithm. The second algorithm orders the
VSs on MEC node m in descending order of their resource
requirement rk, and assigns to each VS the available MEC
slots with the lowest indices. We refer to this as the Largest
First (LF) algorithm. Figure 1 (a) illustrates the source slot
assignment for 3 VSs, with r1 = 1, r2 = 2, r3 = 3, and
Ms

1 = Ms
2 = Ms

3 = m. Since f1 has the lowest resource
requirement, f1 is assigned to σm

1 by the SF algorithm. On
the contrary, MEC slots {σm

1 , σ
m
2 , σ

m
3 }, which have the lowest

indices, are assigned to VS f3 by the LF algorithm, as f3
has the highest resource requirement. Similarly, we consider

(a) Source Assignment (b) Target Assignment

Figure 1: The MEC slot assignment for 3 VSs with r1 = 1,
r2 = 2, and r3 = 3.

Algorithm 1: Building the Dependency Hypergraph
Input : F

1 Create a hypergraph G = (F , E , (qe)e∈E), where E = ∅.
2 for ∀fk ∈ F do
3 if D(fk) 6= ∅ then
4 e = (fk, D(fk))
5 E = E ∪ {e} and qe = 0

Output : G

the SF and the LF algorithms for the target slot assignment,
but for the target slot assignment we assign to each VS the
available MEC slots with the highest indices. An example of
the target slot assignment is shown in Figure 1 (b), for the
same set of VSs as in Figure 1 (a) and assuming that the VSs
use m as their target MEC node. Observe that the algorithm
for the source and the target slot assignment can be chosen
independently, but as we will show later, source assignment
with the SF algorithm minimizes the number of hyperedges in
the dependency hypergraph.

B. Building the Dependency Hypergraph

In general if the target MEC slots σt
k of VS fk are not

assigned to any VS in xs then fk can be migrated immediately.
Otherwise, fk has to wait for the VSs on σt

k to be migrated, or
for them to be interrupted. To create a dependency hypergraph,
we start with defining the dependency relation between two
VSs as follows.

Definition 1. For any two VSs fk and fj , we say that fk
depends on fj if at least one of the target slots of fk is a
source slot of fj , that is, σt

k ∩ σs
j 6= ∅, and we denote the

dependence of fk on fj by fk → fj .

We define D(fk) = {fj : fk → fj ,∀fj ∈ F} and
D−1(fk) = {fj : fj → fk,∀fj ∈ F} as the set of VSs that fk
depends on and the set of VSs that depends on fk, respectively.
To describe the dependency relations among the VSs, we
create the weighted directed hypergraph G = (F , E , (qe)e∈E),
which we call the dependency hypergraph. Each vertex in G
corresponds to a VS, and each hyperedge e ∈ E is an ordered
pair of two disjoint sets of VSs,

e = (F t
e,Fh

e), (6)

Figure 2: The dependency hypergraph of a sample system with
3 MEC nodes and 7 VSs.

where F t
e is the tail of e and Fh

e is the head of e. The edges are
built based on the dependency relations among the VSs: we
form a hyperedge e = (fk, D(fk)) if D(fk) 6= ∅. Therefore
each hyperedge in G has only one tail but can have multiple
heads. For a hyperedge e, we denote by qe its weight, which
is initially set to 0; we will show how to update qe later.
Algorithm 1 summarizes the steps of building the dependency
hypergraph. In the dependency hypergraph G, we define paths
as follows.

Definition 2. In the dependency hypergraph
G = (F , E , (qe)e∈E), a path P ∈ G is a weakly connected
subgraph with P = (Fp, Ep). We say that P is cyclic, if
there exists a set of VSs {f1, . . . , fN} ∈ FP such that
fk → fk+1 ∀k < N , and fN → f1. Otherwise, P is acyclic
and we define the length of P as the number of the constituent
VSs of the longest simple path on P , denoted by L(P).

For convenience, we denote by P (fk) the path that fk is
on. Among the two types of paths, we are interested in acyclic
paths, as we will show in the next subsection that an acyclic
path can be used for scheduling the migration of its constituent
VSs.

C. Building Migration Schedules from Acyclic Paths

In an acyclic path the VSs are related to each other
according to their locations. We define the set F (fk)s =
{fj : fk ∈ F t

e, fj ∈ Fh
e , e ∈ Ep} of VSs that have an incoming

edge from fk as the successors of fk. Similarly, the set
F (fk)

p = {fj : fj ∈ F t
e, fk ∈ Fh

e , e ∈ Ep} of VSs
that have outgoing edges to fk are the predecessors of fk.
Moreover, we define fk as the tail of a path if F (fk)p = ∅,
and define fk with F (fk)s = ∅ as the head of a path. Figure 2
shows a sample dependency hypergraph of a system with
|M|= 3, ωm = 4 ∀m ∈M, and |F|= 7. The path induced
by {f1, f2, f3, f4} is acyclic with F (f2)

s = {f3, f4} and
F (f2)

p = {f1}, and the path induced by {f5, f6, f7} is cyclic.
Consider now an acyclic path P . To avoid VS interruption,

VSs on P shall be migrated according to a topological order
such that fk will not be migrated until VSs in F (fk)

s are
migrated. Since P is acyclic, a topological order of P exists
and can be computed by Algorithm 7.2 in [15] with complexity
O(|EP |+|FP |). Let us define tmk to be the time slot when fk
is migrated from its source slots to its target slots. As we next
show, tmk can be computed easily.

Algorithm 2: Compute Migration Schedule
Input : A path P = (FP , EP)

1 Sort FP according to its topological order
2 for fk ∈ FP do
3 if F (fk)s = ∅ then
4 Set tmk = 1
5 else
6 Set tmk = max({tmj : fj ∈ F (fk)s}) + 1

Output : tmk

Lemma 1. tmk can be calculated as

tmk =

{
1, if F (fk)s = ∅
max({tmj : fj ∈ F (fk)s}) + 1 if F (fk)s 6= ∅

(7)

Proof. Let us consider a VS fk that is to be migrated. If fk
has no successor then fk can be migrated immediately without
waiting and therefore tmk = 1. Otherwise, fk waits for all of
its successors to be migrated. Upon migration, an instance of
fj ∈ F(fk)s enters the starting state at time slot tmj on MEC
slots σt

j and then it enters the running state at time slot tmj +1.
The instance of fj running on source slots σs

j can be turned off
at time slot tmj +1 to make resource available for the migration
of fk, thus (7) holds.

The steps to schedule the migration of VSs on path P are
summarized in Algorithm 2. In Algorithm 2, VS fk ∈ P cannot
be interrupted by its predecessors on path P , but fk still can
be interrupted if VSs D−1(fk) are located on different paths.
As an example, consider that fj ∈ D−1(fk), and fk and fj
are on different paths. fk will be interrupted if the migration
of fj is executed before the migration of fk is finished, which
is tmj − tmk < 1. Let us denote by tik the number of time slots
that fk is interrupted, we can then write

tik = max({tmj − tmk + 1|fj ∈ D−1(fk)} ∪ {0}). (8)

We can use tik to calculate the sum interruption cost of the
VSs on path P as

C(P) =
∑

fk∈FP

tikck, (9)

and we refer to C(P) as the cost of path P . Moreover, we can
also use tmk to calculate the length of an acyclic path P by the
following result.

Lemma 2. The length of path P equals to the number of time
slots to migrate the constituent VSs of P .

Proof. First, we prove by contradiction that tmk is the number
of VSs on the longest simple path that starts with fk. Let us
consider a VS f1 with tm1 = u. Since f1 is migrated at time
slot tm1 and the migration of each VS takes one time slot, there
exits a simple path P1 consists of VSs FP1

= {f1, f2, . . . , fu},
with fj ∈ F (fj−1)s,∀j = 2, . . . , u. Clearly, the length of P1

is tm1 .
Let us assume that the longest simple path that starts with

f1 is P2, and FP2
= {f ′1, f ′2, . . . , f ′v}, with f ′1 = f1 and

f ′j ∈ F (f ′j−1)s,∀j = 2, . . . , v. If L(P2) > tm1 , it indicates

that f ′2 will be interrupted by f1, which violates the derivation
of tm1 . If L(P2) < tm1 , the assumption that P2 is the longest
simple path that starts with f1 is contradicted. Therefore,
L(P2) = tm1 and then the length of P can be calculated as

L(P) = max({tmk : fk ∈ FP }), (10)

which is also the number of time slots to migrate the con-
stituent VSs of P .

Inspired by the observations above, a hypergraph that con-
sists of a set of disjoint acyclic paths Pac can be used to build
a migration schedule that solves the VMS problem if Pac has
the following properties :

1) Complete :
⋃

P∈Pac
Fp = F .

2) Disjoint : FP ∩ FP ′ = ∅, ∀P, P ′ ∈ Pac.
3) Constrained : L(P) ≤ T, ∀P ∈ Pac.

D. Migration Dependence Hypergraph Construction Algo-
rithm

A natural way to find the set Pac would be to start from
G and remove edges from it iteratively until the remaining
paths are acyclic and satisfy the length requirement. However,
this requires to classify the paths on the hypergraph and to
update their lengths and costs whenever an edge is removed.
The complexity of doing so can increase exponentially as the
number of VSs increases. For example, using the adjacency
matrix of the dependency graph G to identify all the cyclic
paths requires to compute the |F|th power of a |F|×|F|
matrix [16]. Instead, we propose the migration dependency
hypergraph construction (DHC) algorithm, which works as
follows.

Initialization: We initialize the DHC algorithm with the
hypergraph G(0)ac = (F , ∅), i.e., the empty graph. As the
following result shows, the graph G(0)ac is a feasible solution
for the VMS problem, and thus a valid hypergraph to start
from.

Lemma 3. G(0)ac = (F , ∅) is a feasible solution for the VMS
problem.

Proof. Since the set of hyperedges on G(0)ac is empty,
VSs on G(0)ac are disjoint. Then each VS forms a path
P (fk) =

(
FP (fk), EP (fk)

)
with FP (fk) = {fk} and

EP (fk) = ∅. Therefore the initial set of disjoint paths is
P(0)
ac = {P (fk) : fk ∈ F}, and for any two VSs fk, fj ∈ F ,

paths P (fk) and P (fj) are disjoint, which satisfies the dis-
jointness property. Clearly,

⋃
P∈P(0)

ac
Fp =

⋃
fk∈F FP (fk) =

F , and thus the completeness property is satisfied. Finally,
note that L(P) = |EP |= 1 ∀P ∈ P(0)

ac , and thus G(0)ac is con-
strained.

Finding feasible edges: Let us denote by G(n)ac = (F , E(n)ac)

the hypergraph constructed after n iterations, and by P(n)
ac the

set of disjoint paths on graph G(n)ac . P (n)
fk

indicates the path that
fk belongs to in graph G(n)ac . In iteration n > 0, we add an
edge e ∈ E \E(n−1)ac to E(n−1)ac , and thus E(n)ac = E(n−1)ac ∪{e}.

Nevertheless, we have to ensure that E(n)ac is a feasible
solution, which we do by restricting the selection to feasible
edges, defined as follows.

Definition 3. Let edge e ∈ E \ E(n−1)ac . We say that e is a
feasible edge for E(n−1) if G(n)

ac = (F , E(n−1)ac ∪ {e}) is a
feasible solution to the VMS problem.

To derive the conditions for e to be a feasible edge for
E(n−1)ac , let us denote by P(n−1,t)

e = {P (n−1)
fk

: fk ∈ F t
e} and

P(n−1,h)
e = {P (n−1)

fk
: fk ∈ Fh

e } the set of paths that contains
the tail and heads of e on graph G(n−1)ac . Adding an edge
e to E(n−1)ac connects its tail and heads, and merges paths
P(n−1,t)
e and P(n−1,h)

e to a new path P (n)
e = (F

P
(n)
e
, E

P
(n)
e

),

with F
P

(n)
e

= {FP : P ∈ P(n−1,t)
e ∪ P(n−1,h)

e } and

E
P

(n)
e

= e ∪ {EP : P ∈ P(n−1,t)
e ∪ P(n−1,h)

e }. Consequently,

P(n)
ac =

(
P(n−1)
ac \

(
P(n−1,t)
e ∪ P(n−1,h)

e

))
∪ P (n)

e . (11)

Now we are ready to prove the conditions for an edge e to be
feasible for E(n−1)ac .

Lemma 4. An edge e ∈ E \ E(n−1)ac is feasible for E(n−1)ac if
and only if P (n)

e is acyclic and L(P (n)
e) ≤ T .

Proof. First, we prove the sufficiency of the conditions. Since
F

P
(n)
e

= {FP : P ∈ P(n−1,t)
e ∪P(n−1,h)

e }, adding e to E(n−1)ac

does not change the constituent VSs of the paths in P(n)
ac

and thus completeness is satisfied. Since paths P(n−1,t)
e and

P(n−1,h)
e are disjoint with P(n−1)

ac \ (P(n−1,t)
e ∪ P(n−1,h)

e),
and edge e is only incident to paths P(n−1,t)

e and P(n−1,h)
e ,

P
(n)
e is disjoint with paths P(n−1)

ac \ (P(n−1,t)
e ∪ P(n−1,h)

e).
Thus by (11) adding e to E(n−1)ac ensures disjointness. There-
fore, for e to be feasible for E(n−1)ac it is sufficient that P (n)

e

is acyclic and L(P (n)
e) ≤ T .

To show necessity, observe that if adding e to E(n−1)ac is
feasible, all the paths in P(n)

ac are acyclic and satisfy the
constrained condition. Since P (n)

e ∈ P(n)
ac , P (n)

e is acyclic and
L(P

(n)
e) ≤ T .

Algorithm 3 uses the conditions in Lemma 4 to verify
whether an edge e is feasible for E(n−1)ac . The algorithm
assumes that e is feasible for E(n−1)ac until it finds that e fails
the conditions in Lemma 4. Lines 2-8 check if P (n)

e is cyclic.
For edge e, if the tail VS F t

e and a head VS fj ∈ Fh
e are

not on the same path of G(n−1)ac , the algorithm can instantly
confirm that P (n)

e is not a cyclic path that contains F t
e and fj ,

since P(n−1,t)
e and P (n−1)

fj
are disjoint (Lines 3-4). However,

if F t
e and fj are already on the same path at iteration n − 1,

the algorithm needs to go through Lines 5-8. Since edge e
forms a path from F t

e to fj , if there exists a path from
fj to F t

e, P (n)
e would be cyclic according to Definition 2.

This check can be performed by making use of the function
A(fk) =

(⋃
fj∈F (fk)p

A(fj)
)
∪ F (fk)p, which returns the set

of VSs that can reach VS fk before e is connected. If P (n)
e

Algorithm 3: Feasibility Check
Input : An edge e

1 Result=True
2 for fj ∈ Fh

e do
3 if P(n−1,t)

e 6= P
(n−1)
fj

then
4 Continue
5 else
6 if fj ∈ A(F t

e) then
7 Result=False
8 Terminate

9 if L(P (n)
e) > L then

10 Result=False
Output : Result

is cyclic, e is not feasible and then the algorithm terminates.
Otherwise, the algorithm checks if the length of P (n)

e is larger
than T by (10) (Lines 9-10). Note that (10) requires the
migration time of the constituent VSs of P (n)

e . Observe that the
successors of VSs in Fh

e remain the same when e is connected,
and the migration times of those VSs also remain the same.
Therefore, we only need to update the migration times of the
constituent VSs of F t

e by (7).
Recomputing edge weights: Finally, if edge e is feasible

for E(n−1)ac , we can update the weight of e as the reduction of
interruption cost when adding e to E(n−1)ac ,

qe =
∑

P∈(P(n−1,t)
e ∪P(n−1,h)

e)

C(P)− C(P (n)
e). (12)

At iteration n among the feasible edges of E(n−1)ac we choose
to add the edge e with the highest positive weight to E(n−1)ac .
Let us consider now what happens after this. Since E(n)ac affects
the structure of G(n)ac , the feasibility and the weight of edges in
E \ E(n)ac need to be updated. The following results show that
we only need to update the feasibility and weight for a small
subset of E \ E(n)ac .

Lemma 5. Let e, e′ ∈ E \ E(n−1)ac . If e′ and P (n)
e are disjoint,

then the feasibility and weight of e and e′ are independent.

Proof. First, we prove by contradiction that paths P (n)
e′ and

P
(n)
e are disjoint. Since e, e′∈ E \ E(n−1)ac , the paths P(n−1,t)

e ,
P(n−1,h)
e , P(n−1,t)

e′ and P(n−1,h)
e′ are in the set P(n−1)

ac and
thus are disjoint. If P (n)

e′ is incident to P (n)
e , then there exists

a path P ∈ P(n−1,t)
e ∪ P(n−1,h)

e and there exists a path P ′ ∈
P(n−1,t)
e′ ∪P(n−1,h)

e′ such that FP ∩FP ′ 6= ∅, which contradicts
the disjoint condition.

Therefore, P (n)
e′ and P (n)

e are disjoint, which indicates that
the feasibility and weight of e′ are independent of whether e
will be added to E(n−1)ac . This proves the lemma.

From Lemma 5, the following corollary is immediate.

Corollary 1. Consider that an edge e is added to E(n−1)ac at
iteration n, and let E(n+1)

u = {e′ : (F t
e′ ∪ Fh

e′) ∩ FP
(n)
e
6=

∅,∀e′ ∈ E \ E(n)ac }. Then the set of edges whose feasibility and
weight have to be updated is exactly E(n+1)

u .

Algorithm 4: DHC Algorithm
Input : F , xs, xt

1 Execute the source and target assignment algorithms
2 Build G = (F , E , (qe)e∈E) by Algorithm 1
3 Initialize G(0)ac = (F , E(0)ac) with E(0)ac = ∅ , and P(0)

ac

4 n=0
5 Set E(1)u = E and tmk = 1 ∀fk
6 while (E \ E(n)ac) 6= ∅ do
7 n=n+1
8 for e ∈ E(n)u do
9 if e is feasible by Algorithm 3 then

10 Update qe by (12)
11 else
12 E = E \ e

13 Let e ∈ argmax{qe′ |e′ ∈ E \ E(n−1)ac }
14 if qe > 0 then
15 E(n)ac = E(n−1)ac ∪ {e}
16 Update P (n)

ac by (11)
17 Update tmk ∀ fk ∈ Pt

e by Algorithm 2
18 Update A(fk) ∀ fk ∈ P(n−1,h)

e

19 Update E(n+1)
ac by Corollary 1

20 else
21 Break

Output : P(n)
ac and tkm

We are now ready to summarize the steps of the DHC
algorithm, shown in Algorithm 4. Line 1 assigns the MEC slots
according to the source and target assignment algorithms, and
line 2 builds the dependency hypergraph G by Algorithm 1.
Then line 3 initializes the solution G(0)ac and initializes the set
of acyclic paths P(0)

ac accordingly. The set E(1)u is initialized
as E on line 5. Line 9 updates the feasibility of e ∈ E(n)u

for E(n−1)ac . If e is infeasible, it will be removed from E ,
otherwise, line 10 updates its weight qe. After the weight of
the edges in Eu are updated, line 13 finds the edge e with the
highest weight. If qe is positive, the algorithm adds e to E(n−1)ac

and then updates P(n)
ac , tmk , A(fk) and E(n+1)

u accordingly
(Lines 15-19). The algorithm terminates when E \ E(n)ac = ∅
or max(qe) ≤ 0 ∀e ∈ E \ E(n−1)ac . The algorithm results in a
hypergraph G(n)ac that consists of a set of disjoint acyclic paths
P(n)
ac with length bounded by T , and tmk indicates when VS

fk should be migrated.
The following result shows that the DHC algorithm termi-

nates in a finite number of iterations.

Lemma 6. The DHC algorithm terminates in at most |F|
iterations.

Proof. Observe that in each iteration n the DHC algorithm
adds one edge into E(n−1)ac until termination. Since there is
at most one hyperedge for each VS, |E|≤ |F|. Therefore the
DHC algorithm terminates in at most |F| iterations.

In the DHC algorithm the set of edges E determines the
set of edges that the solution E(n)ac can contain, and it depends

on the MEC slot assignment. In the following we show that
our proposed MEC slot assignment can help to improve the
performance of the DHC algorithm.

Proposition 1. The source slot assignment with the SF al-
gorithm when using the DHC algorithm induces the minimal
number of edges in E .

Proof. Let us consider a MEC node m that is the source node
of a set Fs of VSs, and is the target node of a set Ft of VSs.
We need to assign ωs =

∑
fk∈Fs

rk and ωt =
∑

fk∈Ft
rk

MEC slots as source slots and as target slots, respectively. The
MEC slot assignment in the DHC algorithm assigns the MEC
slots sm1 , s

m
2 , . . . , s

m
ωs

as source slots to VSs, and assigns MEC
slots smωm−ωt+1, . . . , s

m
ωm

as target slots. We refer to a MEC
slot as a shared slot if it is assigned to VSs both as a source
slot and as a target slot. Clearly, a hyperedge is formed for
each VS that uses at least one shared slot as a source slot.

When ωs + ωt ≤ ωm, no shared slot will be induced by
the DHC algorithm and thus no hyperedges. On the con-
trary, when ωs + ωt > ωm, the minimal number of shared
slots is ωs + ωt − ωm, and the shared MEC slots will be
smωm−ωt+1, . . . , s

m
ωs

. Consider now the algorithms for source
slot assignment. Among those, the SF algorithm assigns the
shared slots to the VSs with the highest computational resource
requirements as source slots, and hence occupies the shared
slots with minimal number of VSs. Consequently, the number
of edges in E is minimized.

V. NUMERICAL RESULTS

In the following we use simulations to evaluate the per-
formance of the DHC algorithm in terms of total service
value, efficiency and scalability. We simulated MEC nodes
with ωm = 10 ∀m to host VSs. The computational resource
requirement rk of each VS is between 1 and 3, representing
the resource requirement of small, medium, and large sized
VSs. In the simulations we considered two distributions of
rk to simulate systems with different constituent VSs. The
first distribution is D1 with P (rk = 1) = P (rk = 2) =
P (rk = 3) = 1

3 , and the second distribution is D2 with
P (rk = 1) = P (rk = 3) = 0.25 and P (rk = 2) = 0.5.
The service value vk of VS fk is chosen uniform at random
on [1, 50]. In the simulations we uniformly select the source
node Ms

k and the target node M t
k of VS fk ∈ F for each VS

among the MEC nodes with available resources.
To benchmark the DHC algorithm, we compare its perfor-

mance with the optimal solution and with a baseline algorithm,
referred to as the migration dependency hypergraph decom-
position (DHD) algorithm. The optimal solution is obtained
by using the MILP solver of Matlab. The DHD algorithm is
adopted from a heuristic algorithm for scheduling the migration
of VSs with homogeneous resource requirements in [13]. The
DHD algorithm first creates the dependency hypergraph G and
assigns the MEC slots as in the DHC algorithm. Then the
DHD algorithm breaks each simple cycle in G by removing
the incoming edges of the VS with the lowest service value vk
on each cycle. Finally, by a local search based approach the

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
0

0.05

0.1

0.15

0.2

L
o

ss
 o

f
N

T
S

V
Optimal
DHD
DHC-SFLF
DHC-SFSF
DHC-LFLF
DHC-LFSF

Figure 3: Loss of NTSV vs. load, |M|=80, T=4.

10 20 30 40 50 60 70 80
0

0.01

0.02

0.03

0.04

0.05

 L
o

ss
 o

f
N

T
S

V

Figure 4: Loss of NTSV vs. number of MEC nodes (M)
for D1 and D2.

DHD algorithm cuts each path P with L(P) > L into a set
of paths whose length are bounded by T .

In the simulations, we implemented the DHC algorithm with
all four combinations of the MEC slot assignment algorithms.
We concatenate the abbreviations of the source and the target
slot assignment algorithms to denote different implementa-
tions. For example, we refer as DHC-SFSF to the DHC
algorithm that uses the SF algorithm for both source slot and
target assignment, while we refer as DHC-SFLF to the DHC
algorithm that uses the SF algorithm for source slot assignment
and uses the LF algorithm for target slot assignment. The
results shown are the averages of 100 simulations, and the
confidence intervals are at the 95% confidence level.

A. Service Value Performance

We first evaluate the service value performance of the DHC
algorithm. To compare the service value of different simulation
scenarios on a common scale, we compute the normalized total
service value (NTSV) as follows,

NTSV =

∑T
i=1

∑
fk∈F

∑
m∈M vkem,k,i

T
∑

fk∈F vk
, (13)

and we define 1-NTSV as the loss of NTSV, which measures
the service interruption during VS migration. To measure the
overall computational resource consumption of a system, we
define the average load ρ,

ρ =

∑
fk∈F rk∑
m∈M ωm

. (14)

Figure 3 shows the loss of NTSV of six algorithms as
a function of the load (ρ) , for a system with |M|= 80,
T = 4, and rk ∼ D1. The results show that the optimal
solution can only be computed for very low load values, and
the different variants of the DHC algorithm achieve near-
optimal performance for those problem instances. The results
also show that the DHC algorithm outperforms the DHD
algorithm significantly: the performance gap increases as the
load increases, and when the load is 70% the loss of NTSV for
the DHC-SFSF algorithm is 90% less than that for the DHD
algorithm. This is because the DHC algorithm considers the
global impact of adding each edge to the solution, while DHD

breaks each simple cycle locally and thus loses accuracy and
performance as the load increases.

Figure 3 also shows that among the variants of the DHC
algorithm, the DHC-SFSF algorithm achieves the lowest loss
of NTSV for most of the scenarios, while the DHC-LFSF
algorithm leads to the highest loss of NTSV. This shows the
importance of choosing the right combination of the MEC slot
assignment algorithms. Though Proposition 1 shows that the
SF algorithm for source slot assignment induces the minimal
number of edges in the dependency graph G, the performance
gap between the DHC-SFSF and the DHC-SFLF algorithms
shows that the target slot assignment also has impact on the
performance. As we will show later, evaluating the perfor-
mance of the DHC-SFSF and the DHC-LFSF algorithms for
different scenarios shows interesting observations, and thus we
focus on those two algorithms in the following figures.

In what follows we investigate the impact of the distribution
of rk on the performance of the DHC algorithm. Figure 4
shows the loss of NTSV for the DHC-LFSF and the DHC-
SFSF algorithms as a function of the number of MEC nodes
|M|, for various load values and distributions for rk. The figure
allows us to assess scaling with the number of MEC nodes,
and shows that contrary to intuition, the loss of NTSV shows
an increasing trend with the number of MEC nodes for a given
load. The reason is that for the same load the system with more
MEC nodes generally has more VSs and thus has more cyclic
paths and acyclic paths with length larger than T , for which
the DHC algorithm induces more VS interruptions to compute
a feasible migration schedule. The results also show that the
distribution of rk has limited impact on the DHC-SFSF and
the DHC-LFSF algorithms, and therefore we use D1 in the
rest of the simulations.

To evaluate the impact of the time constraint T , Figure 5
shows the loss of NTSV for the DHC-LFSF and the DHC-
SFSF algorithms as a function of T with rk ∼ D1. The
results show that the loss of NTSV decreases as T increases,
with a decreasing marginal gain. This is because a larger T
allows the DHC algorithm to include more edges on a path to
avoid VS interruptions. It is also interesting to observe that the
performance gap between the DHC-LFSF and the DHC-SFSF
algorithms for ρ = 80% is larger than that for ρ = 60%. This
is because as the load increases there are more VSs that form

4 5 6 7 8 9 10
0

0.01

0.02

0.03

0.04

0.05

 L
o

ss
 o

f
N

T
S

V

Figure 5: Loss of NTSV vs. time constraint (T) for
combinations of |M| and load.

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
10 -1

10 0

10 1

10 2

E

xe
cu

ti
o

n
 T

im
e

[S
ec

o
n

d
s]

Optimal
DHD
DHC-SFLF
DHC-SFSF
DHC-LFLF
DHC-LFSF

Figure 6: Running time vs. load, |M|=80, T=4.

dependency relations, and thus it becomes critical for the DHC
algorithm to start from a good assignment of the MEC slots.

B. Efficiency and Scalability

Figure 6 compares the execution time of the six algorithms
as a function of the load (ρ), for the same scenarios as in
Figure 3. Compared to the optimal solution, the variants of
the DHC algorithm have orders of magnitude lower execution
time. Note that when the load is higher than 13%, the coef-
ficient matrix of the problem instances exceeds the memory
limit of the optimization solver, and thus we are unable to
obtain the optimal solution. It is interesting to see that when
the load is between 20% and 50%, the DHD algorithm has
lower execution time than the DHC algorithm, while the DHD
algorithm has a higher execution time when the load exceeds
50%. This is because when the load is low the dependency
hypergraph G contains few cyclic paths and few paths with
length larger than T , and thus the DHD algorithm can compute
a solution relatively fast. However, as the load increases, it
becomes more time consuming to find all the acyclic paths
and to cut the paths with lengths longer than T . Finally, it
is important to note that for loads beyond 70% the DHD
algorithm is not scalable anymore due to the increased time for
finding all the cyclic paths. Furthermore, Figure 6 shows that
when the load is high the DHC-SFSF algorithm outperforms
the DHC-SFLF algorithm at the cost of a higher execution
time. This observation shows that there is a tradeoff between
the execution time and the service value performance.

Overall, the results above show that the DHC algorithm is
an effective and efficient solution for the VMS problem, and
the DHC algorithm scales well as the size and load of the
system increase.

VI. CONCLUSION

We have proposed an algorithm for solving the problem
of migration scheduling of virtualized services with hetero-
geneous resource requirements for maximizing service avail-
ability under time constraints. The proposed algorithm follows
a bottom-up approach and iteratively constructs a hypergraph
for generating a parallel migration schedule. Extensive simula-
tions show that our proposed algorithm provides near-optimal
performance and significantly outperforms a baseline algorithm

that is based on a top-down approach, with high efficiency and
scalability. An interesting extension of our work is to consider
the problem of migration scheduling of virtualized services
that need multiple types of resources, which would require to
create a dependency graph per resource type and then to jointly
consider those.

REFERENCES

[1] S. Abdelwahab, B. Hamdaoui, M. Guizani, and T. Znati, “Replisom:
Disciplined tiny memory replication for massive IoT devices in LTE
edge cloud,” IEEE IoT Journal, vol. 3, no. 3, pp. 327–338, 2016.

[2] X. Liu, J. Zhang, X. Zhang, and W. Wang, “Mobility-Aware Coded
Probabilistic Caching Scheme for MEC-Enabled Small Cell Networks,”
IEEE Access, vol. 5, pp. 17 824–17 833, 2017.

[3] P. Mach and Z. Becvar, “Mobile edge computing: A survey on architec-
ture and computation offloading,” IEEE Commun. Surveys Tuts, vol. 19,
no. 3, pp. 1628 – 1656, 2017.

[4] P. Zhao and G. Dán, “A Benders Decomposition Approach for Resilient
Placement of Virtual Process Control Functions in Mobile Edge Clouds,”
IEEE Trans. Netw. Service Manag., vol. 15, no. 4, pp. 1460 – 1472, 2018.

[5] F. Hermenier, J. Lawall, and G. Muller, “Btrplace: A flexible consolida-
tion manager for highly available applications,” IEEE Trans. Dependable
Secure Comput., vol. 10, no. 5, pp. 273–286, 2013.

[6] S. Al-Haj and E. Al-Shaer, “A formal approach for virtual machine
migration planning,” in Proc. of IEEE CNSM, 2013, pp. 51–58.

[7] V. Kherbache, E. Madelaine, and F. Hermenier, “Scheduling live mi-
gration of virtual machines,” IEEE Trans. Cloud Comput., 2017, early
access.

[8] M. F. Bari, M. F. Zhani, Q. Zhang, R. Ahmed, and R. Boutaba, “CQNCR:
optimal VM migration planning in cloud data centers,” in Proc. of IFIP
Networking, 2014, pp. 1–9.

[9] T. K. Sarker and M. Tang, “Performance-driven live migration of
multiple virtual machines in datacenters,” in Proc. of IEEE International
Conference on Granular Computing (GrC), 2013, pp. 253–258.

[10] K. Onoue, S. Imai, and N. Matsuoka, “Scheduling of parallel migration
for multiple virtual machines,” in Proc. of IEEE AINA, 2017, pp. 827–
834.

[11] F. Hermenier, X. Lorca, J.-M. Menaud, G. Muller, and J. Lawall,
“Entropy: a consolidation manager for clusters,” in Proc. of International
Conference on Virtual Execution Environments, 2009, pp. 41–50.

[12] H. Wang, Y. Li, Y. Zhang, and D. Jin, “Virtual machine migration
planning in software-defined networks,” IEEE Trans. Cloud Comput.,
2017, early access.

[13] P. Zhao and G. Dán, “Time constrained service-aware migration of
virtualized services for mobile edge computing,” in Proc. of ITC, 2018,
pp. 64–72.

[14] V. Sinitsyn, “Jailhouse,” Linux Journal, no. 252, p. 2, 2015.
[15] H. Bhasin, Algorithms - Design and Analysis. Oxford University Press,

2015.
[16] D. M. Himmelblau, “Decomposition of large scale systems-I.Systems

composed of lumped parameter elements,” Chemical Engineering Sci-
ence, vol. 21, no. 5, pp. 425–438, 1966.

