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Abstract

The average loss probability is not sufficient to determine the effects of loss on
the perceived quality for multimedia traffic. Nor is it sufficient for studying
the possible ways of improving it, for example by forward error correction
(FEC) and error concealment. However it is difficult to model the queuing
behavior analytically for such traffic. It has been shown that for real-time
communications, when buffers are small for delay reasons, short range de-
pendence dominates the loss process and so the Markov-modulated Poisson
process (MMPP) might be a reasonable source model. In this paper we present
mathematical models for the loss process of the MMPP+M/D/1/K and the
MMPP+M/M/1/K queues; we validate the models via simulations and use
them to evaluate the effects of the packet size distribution on the packet loss
process and the related FEC performance. We conclude that the packet size
distribution affects the packet loss process and thus the efficiency of forward
error correction. This conclusion is mainly valid in access networks where a
single multimedia stream might affect the multiplexing behavior.

1 Introduction

For stream-type multimedia communications, as opposed to elastic traffic, the
average packet loss is not the only measure of interest. The number of losses
in a block of packets has a great impact both on the user-perceived visual
quality and on the possible ways of improving it, for example by forward
error correction and error concealment.

Forward error correction (FEC) has been proposed to recover from infor-
mation losses in real-time applications, where the latency introduced by re-
transmission schemes is not acceptable [4, 9]. FEC increases the redundancy
of the transmitted stream and recovers losses based on the redundant infor-
mation. There are two main directions of FEC design to recover from packet
losses. One solution, proposed by the IETF and implemented in Internet audio
tools is to add a redundant copy of the original packet to one of the subsequent
packets [10]. The other set of solutions, considered in this paper, use block
coding schemes based on algebraic coding, e.g. Reed-Solomon coding [16].
The error correcting capability of RS codes with k data packets and c redun-
dant packets is c if data is lost. The performance of an FEC scheme is largely
affected by the characteristics of the loss process, e.g. the probability of loos-
ing more than c packets in a block of k + c packets.

In this paper we present two models to analyze the packet loss process of a
bursty source, for example VBR video, multiplexed with background traffic in
a single multiplexer with a finite queue. We consider exponential distributed
and constant packet sizes. We model the bursty source by an L-state Markov-
modulated Poisson process (MMPP) while the background traffic is modeled
by a Poisson process. We validate the models via simulations and compare
the packet loss process and the related FEC performance in case of the two
packet size distributions.

With regard to the queueing performance, the exponential packet size dis-
tribution (PSD) is considered to be a worst case, while the deterministic PSD
is the best case. The packet loss process has been investigated before in the
case of exponential PSD [7], but other PSDs have not been considered. Thus
it is not clear how the PSD affects the loss process in a multiplexer and hence
the related FEC performance.

It is well known that compressed media, primarily VBR video, exhibits a
self-similar nature [3]. Yoshihara et al. use the superposition of 2-state IPPs
to model self-similar traffic in [20] and compare the loss probability of the
resulting MMPP/D/1/K queue with simulations. They found that the approx-
imation works well under heavy load conditions and it gives an upper bound
on the packet loss probabilities. Ryu and Elwalid [18] showed that short term
correlations have dominant influence on the network performance under re-
alistic scenarios of buffer sizes for real-time traffic. Thus the MMPP may
be a practical model to derive approximate results for the queueing behavior
of LRD traffic such as real-time VBR video, especially in the case of small
buffer sizes. Furthermore it is a popular source model for packetized voice



[14], and hence the results shown in this paper can be applied to voice over IP
performance evaluation as well. Recently Cao et al. [6] showed that the traffic
generated by a large number of sources tends to Poisson as the load increases
due to statistical multiplexing and hence justifies the Poisson model for the
background traffic.

The paper is organized as follows. Section 2 gives an overview of the pre-
vious work on the modeling of the loss process of a single server queue. In
Section 3 we describe our models to calculate the loss probability in a block
of packets. In Section 4 we validate our models by simulations and compare
the results obtained with the two PSDs. In Section 5 we conclude our work.

2 Related Work

In [7], Cidon et al. present an exact analysis of the packet loss process in
an M/M/1/K queue, that is the probability of losing j packets in a block of n
packets, and show that the distribution of losses may be bursty compared to
the assumption of independence. They also consider a discrete time system
fed with a Bernoulli arrival process describing the behavior of an ATM mul-
tiplexer. In [13], Gurewitz et al. present explicit expressions for the above
quantities of interest for the M/M/1/K queue. In [2] the multidimensional
generating function of the probability of j losses in a block of n packets is ob-
tained and an easy-to-calculate asymptotic result is given under the condition
that n≤ K + j +1.

The above models consider exponentially distributed service times. Mod-
els with general and deterministic service times have been proposed for cal-
culating various measures of queueing performance. In [1], Ait-Hellal et al.
present an asymptotic result for a system where the service times and the in-
terarrival times are stationary ergodic, in particular they show that if the block
lengths k and redundancy j is large enough, then the frame loss probabili-
ties can be made arbitrarily small. The conditional loss probability (CLP)
is derived for the N*IPP/D/1/K queue in [19] and it is shown that the CLP
can be orders of magnitude higher than the loss probability. Kawahara et al.
consider a discrete time system fed with an interrupted Bernoulli process and
bursty background traffic modeled by a Markov modulated Bernoulli process
in [16]. They use the model to investigate the effects of the burstiness of the
tagged source and the buffer size on the effectiveness of FEC in ATM net-
works.

In [14] the performance of the MMPP/G/1/K queue was evaluated con-
sidering the superposition of multimedia and data traffic at a single server
queue, and the corresponding delay distribution was given. The waiting time
and queue length distribution of the N/G/1/K queue (N stands for the Neuts
process) was derived in [5] including the MMPP/G/1/K queue as a special
case. Even though the waiting time and queue length distribution of the
MMPP/G/1/K queue has been derived, a more thorough analysis of the packet
loss process has not yet been done.

3 Model Description

We consider a single multiplexer fed by two sources, a Markov-modulated
Poisson process (MMPP) and a Poisson process, representing the tagged
source and the background traffic respectively. We assume that the sources
feeding the system are independent. The MMPP is described by the in-
finitesimal generator Q with elements ri j and the arrival rate matrix Λ =
diag{λ1, . . . ,λL}, where λi is the average arrival rate while the underlying
Markov chain is in state i. The Poisson process modeling the background
traffic has average arrival rate λ. The superposition of the two sources can be
described by a single MMPP with arrival rate matrix Λ̂ = Λ⊕λ = Λ + λI =
diag{λ̂1, . . . , λ̂L}, and infinitesimal generator Q̂ = Q, where ⊕ is the Kro-
necker sum.

Packets arriving from both sources have the same size distribution. The
packets are stored in a buffer that can host up to K packets, and are served
according to a FIFO policy.

Every n consecutive packets from the tagged source form a block, and we
are interested in the probability distribution of the number of lost packets in
a block arriving from the MMPP in the steady state of the system. Thus our
purpose is to calculate the probability P( j,n),n ≥ 1,0 ≤ j ≤ n of j losses in
a block of n packets. Throughout the calculations we use notations similar to
those in [7].

3.1 Exponential Packet Size Distribution

First we consider a system with exponential service time distribution and aver-
age service time 1/µ. We define the probability Pa

i,l( j,n), 0≤ i≤K, l = 1 . . .L,
n ≥ 1, 0 ≤ j ≤ n as the probability of j losses in a block of n packets, given



that the number of packets in the system is i just before the arrival epoch of
the first packet in the block and the first packet of the block is generated in
state l of the MMPP. As the first packet in the block is arbitrary,

P( j,n) =
L

∑
l=1

K

∑
i=0

Π(i, l)Pa
i,l( j,n) (1)

Π(i, l), the steady state distribution of number of packets in the queue as seen
by an arriving packet can be derived from the steady state distribution of the
MMPP/M/1/K queue as

Π(i, l) =
π(i, l)λl

∑L
l=1 λl ∑K

i=0 π(i, l)
, (2)

where π(i, l), 0 ≤ i ≤ K, l = 1 . . .L denotes the probability that there are i
packets in the queue and the MMPP is in state l in the steady state of the
MMPP/M/1/K queue [12].

The probabilities Pa
i,l( j,n) can be derived according to the following recur-

sion. The recursion is initiated for n = 1 with the following relations

Pa
i,l( j,1) =

{

1 j = 0
0 j ≥ 1

i≤ K−1

Pa
i,l( j,1) =

{

0 j = 0, j ≥ 2
1 j = 1

K−1 < i. (3)

Using the notation pm = λm
λm+λ and pm = λ

λm+λ , for n≥ 2 the following equa-
tions hold

Pa
i,l( j,n) =

L

∑
m=1

i+1

∑
k=0

Ql,m
i+1(k){pmPa

i+1−k,m( j,n−1)+ pmPs
i+1−k,m( j,n−1)}

(4)
for 0≤ i≤ K−1 and

Pa
i,l( j,n) =

L

∑
m=1

K

∑
k=0

Ql,m
K (k){pmPa

K−k,m( j−1,n−1)+ pmPs
K−k,m( j−1,n−1)}

(5)
for i = K. Ps

i,l( j,n) is given by

Ps
i,l( j,n) =

L

∑
m=1

i+1

∑
k=0

Ql,m
i+1(k){pmPa

i+1−k,m( j,n)+ pmPs
i+1−k,m( j,n)} (6)

for 0≤ i≤ K−1 and

Ps
i,l( j,n) =

L

∑
m=1

K

∑
k=0

Ql,m
K (k){pmPa

K−k,m( j,n)+ pmPs
M−k,m( j,n)} (7)

for i = K. The probability Ps
i,l( j,n),0 ≤ i ≤ K, l = 1 . . .L,0 ≤ j ≤ n is the

probability of j losses in a block of n packets, given that the number of packets
in the system is i just before the arrival of a packet from the background
traffic and the MMPP is in state l. In equations (4) to (7) Ql,m

i (k) denotes the
joint conditional probability of the events that out of i packets k leave during
an interarrival time and the next arrival occurs in state m of the underlying
Markov chain, given that the last arrival occurred in state l. A way to calculate
Ql,m

i (k) is given in Appendix B.
The procedure of computing Pa

i,l( j,n) is as follows. First we calculate
Pa

i,l( j,1), i = 0 . . .K from the initial conditions (3). Then in iteration k we first
calculate Ps

i,l( j,k),k = 1 . . .n− 1 using equations (6) and (7) and the proba-
bilities Pa

i,l( j,k), which have been calculated during iteration k− 1. Then we
calculate Pa

i,l( j,k +1) using equations (4) and (5).

3.2 Deterministic Packet Size Distribution

Next, we consider a system with constant packet sizes of transmission time D.
We define the probability Pa

x,l( j,n),0 ≤ x ≤ KD, l = 1 . . .L,n ≥ 1,0 ≤ j ≤ n
as the probability of j losses in a block of n packets, given that the remaining
workload in the system is x just before the arrival of the first packet in the
block and the first packet of the block is generated in state l of the MMPP. As
the first packet in the block is arbitrary,

P( j,n) =
L

∑
l=1

Z KD

x=0
V (x, l)Pa

x,l( j,n)dx. (8)

An approximation for V (x, l), the workload distribution of the steady state
queue as seen by an arriving packet, can be given based on the steady state
distribution of the MMPP/Er/1/K queue as outlined in Appendix A.

The probabilities Pa
x,l( j,n) can be derived according to the following recur-

sion. The recursion is initiated for n = 1 with the following relations

Pa
x,l( j,1) =

{

1 j = 0
0 j ≥ 1

x≤ (K−1)D,



Pa
x,l( j,1) =

{

0 j = 0, j ≥ 2
1 j = 1

(K−1)D < x. (9)

Using the notation pm = λm
λm+λ and pm = λ

λm+λ , for n≥ 2 the following equa-
tions hold.

Pa
x,l( j,n) =

L

∑
m=1

Z x+D

0
fl,m(t){pmPa

x+D−t,m( j,n−1) (10)

+pmPs
x+D−t,m( j,n−1)}dt

+
Z ∞

x+D
fl,m(t){pmPa

0,m( j,n−1)+ pmPs
0,m( j,n−1)}dt

for 0≤ x≤ (K−1)D and for (K−1)D < x

Pa
x,l( j,n) =

L

∑
m=1

Z x

0
fl,m(t){pmPa

x−t,m( j−1,n−1) (11)

+pmPs
x−t,m( j−1,n−1)}dt

+
Z ∞

x
fl,m(t){pmPa

0,m( j−1,n−1)+ pmPs
0,m( j−1,n−1)}dt.

Ps
x,l( j,n) is given by

Ps
x,l( j,n) =

L

∑
m=1

Z x+D

0
fl,m(t){pmPa

x+D−t,m( j,n) (12)

+pmPs
x+D−t,m( j,n)}dt

+
Z ∞

x+D
fl,m(t){pmPa

0,m( j,n)+ pmPs
0,m( j,n)}dt

for 0≤ x≤ (K−1)D and for (K−1)D < x

Ps
x,l( j,n) =

L

∑
m=1

Z x

0
fl,m(t){pmPa

x−t,m( j,n) (13)

+pmPs
x−t,m( j,n)}dt

+

Z ∞

x
fl,m(t){pmPa

0,m( j,n)+ pmPs
0,m( j,n)}dt.

The probability Ps
x,l( j,n),0≤ x≤KD, l = 1 . . .L,n≥ 1,0≤ j≤ n is the proba-

bility of j losses in a block of n packets, given that the remaining workload in

the system is x just before the arrival of a packet from the background traffic
and the MMPP is in state l. In (10) to (13) fl,m(t) denotes the interarrival-time
distribution of the joint arrival process and is given in Appendix B.

3.3 Numerical Evaluation

The above set of integral equations can be solved using numerical integra-
tion. The finite integrals in equations (10) to (13) are calculated numerically
while the infinite integrals - as the integrand only depends on t in fl,m(t) - can
be evaluated analytically as shown in Appendix B (27). We introduce ∆ the
step size for the numerical integration such that D = N∆, and so instead of
equations (9-13) we can write

Pa
i,l( j,1) =

{

1 j = 0
0 j ≥ 1

i≤ (K−1)N,

Pa
i,l( j,1) =

{

0 j = 0, j ≥ 2
1 j = 1

(K−1)N < i. (14)

For n≥ 2 the following recursive equations hold.

Pa
i,l( j,n) =

L

∑
m=1

i+N

∑
τ=0

fl,m(τ∆)ci+N
τ {pmPa

i+N−τ,m( j,n−1) (15)

+pmPs
i+N−τ,m( j,n−1)}

+
Z ∞

i∆+D
fl,m(t){pmPa

0,m( j,n−1)+ pmPs
0,m( j,n−1)}dt

for 0≤ i≤ (K−1)N and for (K−1)N < i

Pa
i,l( j,n) =

L

∑
m=1

i

∑
τ=0

fl,m(τ∆)ci
τ{pmPa

i−τ,m( j−1,n−1) (16)

+pmPs
i−τ,m( j−1,n−1)}

+
Z ∞

i∆
fl,m(t){pmPa

0,m( j−1,n−1)+ pmPs
0,m( j−1,n−1)}dt.

Ps
i,l( j,n) is given by

Ps
i,l( j,n) =

L

∑
m=1

i+N

∑
τ=0

fl,m(τ∆)ci+N
τ {pmPa

i+N−τ,m( j,n) (17)



+pmPs
i+N−τ,m( j,n)}

+
Z ∞

i∆+D
fl,m(t){pmPa

0,m( j,n)+ pmPs
0,m( j,n)}dt

for 0≤ i≤ (K−1)N and for (K−1)N < i

Ps
i,l( j,n) =

L

∑
m=1

i

∑
τ=0

fl,m(τ∆)ci
τ{pmPa

i−τ,m( j,n) (18)

+pmPs
i−τ,m( j,n)}

+
Z ∞

i∆
fl,m(t){pmPa

0,m( j,n)+ pmPs
0,m( j,n)}dt,

where the coefficient ci
τ is the τth weighting coefficient in the i degree nu-

merical integration. Through carefully choosing the numerical method by
increasing N, the error induced by the numerical integration decreases at least

proportional to ( 1
N )

5
.

The procedure of computing Pa
i,l( j,n) is as follows. First we calculate

Pa
i,l( j,1), i = 0 . . .KN from the initial conditions (14). Then in iteration k

we first calculate Ps
i,l( j,k),k = 1 . . .n− 1 using equations (17) and (18) and

the probabilities Pa
i,l( j,k), which have been calculated during iteration k− 1.

Then we calculate Pa
i,l( j,k +1) using equations (15) and (16).

4 Performance Analysis

In this section we validate the two models described in Section 3 via sim-
ulations and use them to evaluate the effects of the PSD on the packet loss
process. The average packet length of both the tagged and the background
traffic is set to 188 bytes, as given for the transport stream in the MPEG-2
standard [15]. Note that increasing the average packet length is equivalent to
decreasing the link speed, and thus the particular fixed value of the average
packet length does not limit the generality of the results presented here. The
considered link speeds are 10 Mbps, 22.5 Mbps and 45 Mbps. The queue-
ing delay is set to around 0.5 ms in all cases, resulting in queue lengths from
5 to 20 packets depending on the link speed. Both in the analytical models
and in the simulations we consider a 3 state MMPP, with an average bitrate of
540 kbps, arrival intensities λ1 = 116/s,λ2 = 274/s,λ3 = 931/s and transition
rates r12 = 0.12594,r21 = 0.25,r23 = 1.97,r32 = 2. These values were derived

from an MPEG-4 encoded video trace. The simulations were performed in ns-
2, the simulation time was between 20 thousand and 120 thousand seconds.

We use three measures to compare the packet loss process. The first one
is a commonly used measure of closeness, the Kullback-Leibler distance [17]
defined for two distributions as

d(p1, p2) =
n

∑
j=0

P1( j,n)log2
P1( j,n)

P2( j,n)
, (19)

The Kullback-Leibler distance is the same as the relative entropy of p1 with
respect to p2. It is not a true metric, as it is not symmetric and does not satisfy
the triangle inequality, but it is always non-negative and equals zero only if
p1 = p2.

The second measure is based on the gain that can be achieved by using
FEC. Given the probabilities P( j,n) the uncorrected loss probability for an
RS(k,c+k) scheme can be calculated as

Pk,c+k
loss =

1
c+ k

c+k

∑
j=c+1

jP( j,c+ k). (20)

Based on the uncorrected packet loss probability we define the FEC gain as
the ratio of the average loss probability without the use of FEC and the uncor-
rected loss probability when using FEC: f (k,c+ k) = Ploss/Pk,c+k

loss .
The third measure is the average loss run length. Given the probabilities

P( j,n) the average loss run length can be calculated as

E[B] =
∞

∑
n=1

P(B≥ n) =
∞

∑
n=1

P(n,n). (21)

A higher value of the average loss run length results in fewer loss bursts given
a particular average loss probability. Though the independence of the loss
process is favorable for applications that employ some form of FEC, other
applications not using FEC might prefer losses to occur in bursts, for example
those that use reversible variable length coding to localize error propagation.

4.1 Constant average load

In this section we consider the case when the average load in the network is
constant and compare the packet loss process, the efficiency of FEC and the



average loss run length for the two PSDs. Figures 1-3 show the uncorrected
loss probability without using FEC (FEC(1,1)) and using two different FEC
schemes for the three considered link speeds as a function of the average load.
Figures 4-6 show the average loss run length for the three considered link
speeds as a function of the average load. Comparing the results given by the
analytical models and the simulations shows that the models presented give
accurate results. Figures 7 and 8 show the probability of loosing j packets
in a block of 11 and 22 packets respectively at an average load of ρ = 0.8.
Figures 9 and 10 show the Kullback-Leibler distance of P( j,11) and P( j,22)
respectively. Comparing the figures we conclude that results obtained for the
different link speeds show the same properties and thus where possible we
will only show results for the 10 Mbps link. Figures 11 and 12 show the
FEC gain for FEC(10,11) and FEC(20,22) on a 10 Mbps link. Comparing the
figures we conclude that FEC(10,11) and FEC(20,22) behave similarly, and
thus in the following we will only show figures for FEC(20,22) for brevity.

The figures show that there is a significant difference between the results
with the two packet size distributions: the uncorrected loss probability and
the average burst size are lower while the gain achievable by using FEC is
higher in the case of the deterministic PSD. The difference however is partly
due to the different average loss probabilities. We eliminate the effects of the
average loss probability in the following subsection.

4.2 Constant average packet loss

In this section we consider the case when the average loss probability in the
network is constant despite of the different PSDs. In order to compare the
packet loss process at a certain average loss probability, we take the results
from simulations with the deterministic PSD and decrease the background
traffic of the mathematical model with exponential PSD to match the average
packet loss probability. Figure 13 shows the probability of loosing j packets
in a block of 22 packets. The average load of the scenarios with deterministic
PSD is ρ = 0.8, while the average load of the scenarios with exponential PSD
is set to match the average loss probability of the corresponding scenarios
with deterministic PSD and the same link speed by changing the background
traffic intensity. Figure 14 shows the Kullback-Leibler distance between the
results obtained with the two distributions as a function of the average loss
probability. The distance between the results with the two PSDs decreased
significantly (three orders of magnitude) compared to Figure 10. Figure 15

shows the average loss run length on a 10 Mbps link. Figure 16 shows the
FEC gain on a 10 Mbps link. Comparing these figures to Figures 4 and 12
respectively also shows that the difference between the results obtained with
the different distributions is lower at a particular average loss probability than
at a particular average load level. Thus the observed difference in Subsection
4.1 was partly due to the different average loss probabilities at a particular
average load level.

The remaining difference between the packet loss processes and the related
FEC performance (a factor of three in the considered scenario) can be due
to the difference in the level of statistical multiplexing (the background traf-
fic intensity was decreased and as a result the packet loss process became
less independent) and to the difference between the packet size distributions.
Figures 17 and 18 show the FEC gain on a 22.5 Mbps and a 45 Mbps link
respectively. Comparing the figures we can see that the difference between
results with the two PSDs in terms of FEC gain decreases as the link speed
increases (from 10 Mbps to 45 Mbps). The reason for this is that the higher
the link speed the less the background traffic has to be changed to keep the
average loss probability constant, and thus the change in the level of statistical
multiplexing decreases.

4.3 Isolating the effects of the packet size distribution

In the following subsection we separate the effects of the level of statistical
multiplexing and the PSD. We do it by changing the arrival intensity of both
the background traffic and the tagged stream in the mathematical model with
exponential PSD in order to match the average loss probability given by the
simulations with deterministic PSD. Thus we keep both the average loss prob-
ability and the level of statistical multiplexing constant (doing so is equivalent
to matching the average loss probability through decreasing the link speed).
Figure 19 shows the probability of loosing j packets in a block of 22 packets.
The average load of the scenarios with deterministic PSD is ρ = 0.8, while
the average load of the scenarios with exponential PSD is set to match the av-
erage loss probability of the corresponding scenarios with deterministic PSD
and the same link speed by changing the intensity of both the tagged and the
background traffic. Figure 20 shows the Kullback-Leibler distance as a func-
tion of the average loss probability on a 10 Mbps link for P( j,22). Comparing
this to Figure 14 we can see a further significant decrease in the distance of
the distributions. Figure 21 shows the average loss run length as a function



of the average loss probability. Comparing this to Figure 15 shows a decrease
between the results with the two distributions. The same effect can be seen
comparing Figure 22 to Figure 16, which shows the FEC gain on a 10 Mbps
link as a function of the average loss probability for FEC(20,22). Thus the
difference in the FEC gain considering a particular average loss probability
is mainly due to the different levels of statistical multiplexing and in a lower
extent to the different PSDs.

5 Conclusion

In this paper we presented analytical models to evaluate the loss process of a
single multiplexer fed by a bursty source and Poisson background traffic for
two different packet size distributions and used extensive simulations to val-
idate them. We used the models to compare the packet loss process and the
related FEC performance in the case of exponential and deterministic packet
size distributions. Based on the results we conclude that the deterministic
packet size distribution not only yields a lower average loss probability com-
pared to the exponential packet size distribution but also a more independent
packet loss process (lower average loss run length and more efficient FEC).
We showed that the difference between the results at a particular average load
level is mainly due to the different average loss probabilities while at a par-
ticular average loss probability it is mainly due to the different levels of sta-
tistical multiplexing. We showed that considering a particular average loss
probability the difference between results obtained with the two distributions
decreases as the link speed increases. Thus the packet size distribution has
a bigger influence on the packet loss process in access networks. In those
networks even single multimedia streams can have a significant impact on the
characteristics of the aggregate traffic and thus improve the multiplexing per-
formance by minimizing the variance of their packet size distribution. Fur-
thermore, we conclude that applications experiencing a certain average loss
probability in the network can have rough estimates on the performance of
FEC independent of the packet size distribution in the network. The results
presented here help to dissolve the mistrust in the reliability of the potential
of FEC to improve the transmission quality of individual streams. Better un-
derstanding of the potential of FEC can promote its widespread use in the
future.
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Figure 1: Uncorrected loss probability
vs average load on a 10 Mbps link using
various FEC schemes.
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Figure 2: Uncorrected loss probability
vs average load on a 22.5 Mbps link us-
ing various FEC schemes.
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Figure 3: Uncorrected loss probability
vs average load on a 45 Mbps link using
various FEC schemes.
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Figure 4: Average loss run length vs
average load on a 10 Mbps link.
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Figure 5: Average loss run length vs
average load on a 22.5 Mbps link.
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Figure 6: Average loss run length vs
average load on a 45 Mbps link.
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Figure 7: Probability of loosing j
packets in a block of 11 packets at av-
erage load level ρ = 0.8.
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Figure 8: Probability of loosing j
packets in a block of 22 packets at av-
erage load level ρ = 0.8.
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Figure 9: Kullback-Leibler distance vs
average load for P(j,11).
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Figure 10: Kullback-Leibler distance
vs average load for P(j,22).
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Figure 11: FEC gain vs average load
for FEC(10,11) on a 10 Mbps link.
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Figure 12: FEC gain vs average load
for FEC(20,22) on a 10 Mbps link.
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Figure 13: Probability of loosing j
packets in a block of 22 packets. The
average loss probability of the scenarios
with the same link speed is equal.
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Figure 14: Kullback-Leibler distance
vs average loss probability for P(j,22).
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Figure 15: Average loss run length vs
average loss probability on a 10 Mbps
link.
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Figure 16: FEC gain vs average
loss probability on a 10 Mbps link for
FEC(20,22).
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Figure 17: FEC gain vs average loss
probability on a 22.5 Mbps link for
FEC(20,22).
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Figure 18: FEC gain vs average
loss probability on a 45 Mbps link for
FEC(20,22).
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Figure 19: Probability of loosing j
packets in a block of 22 packets. The
average loss probability of the scenarios
with the same link speed is equal. (same
level of statistical multiplexing).
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Figure 20: Kullback-Leibler distance
vs average loss probability for P(j,22)
(same level of statistical multiplexing).
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Figure 21: Average loss run length vs
average loss probability on a 10 Mbps
link (same level of statistical multiplex-
ing).
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Figure 22: FEC gain vs average
loss probability on a 10 Mbps link for
FEC(20,22) (same level of statistical
multiplexing).

6 Appendices

A Workload distribution

The Laplace transform of the virtual waiting time distribution for the
MMPP/G/1/K queue is given in [5]. Following the arguments presented there
one can derive the Laplace transform of the workload distribution

V (s) =
1

[µ−π0(Q̂− Λ̂)−1e]
{π0[−s(sI− Λ̂+ Q̂)−1(Q̂− Λ̂)−1

+
N−1

∑
k=1

T [Λ̂S]k−1(sI + Q̂)S[G∗(s)]k− [G∗(s)]N−1
N−1

∑
k=0

πkT [Λ̂S]N−k−1]]

+[G∗(s)]N−1
N−1

∑
k=1

πk

∞

∑
j=N−k

[

j

∑
k=0

AkT [Λ̂S]n−k−G∗(s)T [Λ̂S]n

]

},

where S = (Λ̂−sI−Q̂)−1, T = (sI−Λ̂+Q̂)−1, G∗(s) is the Laplace transform
of the service time distribution. Ak is an L×L matrix whose (l,m)th element
denotes the conditional probability of the MMPP reaching phase m and having
k arrivals during a service time, starting from phase l. Instead of calculating

the inverse Laplace transform of the above expression we use an approxima-
tion based on the steady state distribution of the remaining exponential stages
in an MMPP/Er/1/K queue, where Er denotes an r stage Erlang distribution.
r is chosen to be cN, where c ≥ 1 is an arbitrary whole number and N is de-
fined in Section 3.3. Given π(k, l), 0 ≤ k ≤ cNK, 1 ≤ l ≤ L, the steady state
distribution of the remaining exponential stages in the MMPP/Er/1/K queue
we calculate the queue length distribution as seen by an arriving packet as

Π(k, l) =
π(k, l)λl

∑L
l=1 λl ∑cNK

i=0 π(i, l)
. (22)

Given the queue length distribution as seen by an arriving packet, Π(k, l), 0≤
k ≤ cNK, 1 ≤ l ≤ L, the workload distribution V (i, l), 0 ≤ i ≤ NK,1 ≤ l ≤ L
is approximated by

V (i, l) =

{

Π(0, l) i = 0
∑ic

k=(i−1)c+1 Π(k, l) 0 < i <= NK.
(23)

B Interarrival-time distribution

The probability Ql,m
i (k) denotes the joint conditional probability that between

two arrivals from the joint arrival stream there are k exponential service com-
pletions out of i and the state of the MMPP at the moment of the arrival is m
given that at the time of the last arrival the MMPP was in state l. Ql,m

i (k) can
be expressed as

Ql,m
i (k) = Pl,m(k) i f k < i

Ql,m
i (k) = ∑∞

j=i Pl,m( j) i f k = i,
(24)

where Pl,m(k) denotes the joint probability of having k service completions
with exponentially distributed service times between two arrivals and the next
arrival coming in state m of the MMPP given that the last arrival came in state
l.

The z-transform Pl,m(z) of Pl,m(k) is given by

Pl,m(z) =
∞

∑
k=0

(

Z ∞

0

(µt)k

k!
e−µt f l,m(t)dt

)

zk = f l,m∗(µ−µz), (25)



where f l,m(t) is the joint distribution of the interarrival-time and the probabil-
ity that the next arrival is in state m given that the last arrival was generated in
state l of the MMPP. The Laplace transform of f l,m(t) is denoted with f l,m∗(s)
and is given by [11]

f l,m∗(s) = L
{

e(Q̂−Λ̂)xΛ̂
}

= (sI− Q̂+ Λ̂)−1Λ̂. (26)

The inverse Laplace-transform of (26) can be expressed analytically by partial
fraction decomposition as long as L≤ 4.

f l,m(t) =
L

∑
j=1

Bl,m
j eβ jt , (27)

where β j are the roots of t(s) = det[sI− Q̂ + Λ̂]. Based on (27) the infinite
integrals in equations (15),(16), (17) and (18) can be calculated as

Z ∞

x
fl,m(t)dt =−

L

∑
j=1

Bl,m
j

β j
eβ jx. (28)

Using the substitution α j = 1+β j/µ and Al,m
j = Bl,m

j /(µα j) one can calcu-

late Pl,m(k) based on (25)

Pl,m(k) =
L

∑
j=1

Al,m
j

1

αk
j

. (29)

Given the probability Pl,m(k) one can express Qi(k) as

Ql,m
i (k) =











∑L
j=1 Al,m

j

(

1
α j

)k
0≤ k < i

∑L
j=1

Al,m
j

1−1/α j

(

1
α j

)i
k = i.

(30)

A detailed description of the calculation of Ql,m
i (k) can be found in [8].
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