Computational Game Theory

Lecture 2

P2/2023

György Dán

Division of Network and Systems Engineering

Computational Game Theory – P2/2023

Today's Topics

- Pure NE existence proof(s)
- Mixed strategies
 - Actions of equal values
 - Nash's theorem
- Zero-sum games
 - Maxminimization

Existence of Nash equilibria

- The strategic game <N,(A_i),(≥_i)> has a Nash equilibrium if for all i∈N
 - the set A_i of actions of player *i* is a nonempty compact convex subset of a Euclidean space

and the preference relation \geq_i is

- continuous
- convex on A_i .
- Proof
 - based on Kakutani's fixed point theorem

(Debreu '52, Glicksberg '52, Fan '52)

Computational Game Theory – P2/2023

Existence for coupled constraints

• Let Ω be a coupled constraint set, convex, closed, bounded. Let $u_i(a_i, a_{-i})$ be concave in a_i for each a_{-i} and continuous in a. Then there exists a pure NE.

J.B. Rosen, "Existence and uniqueness of equilibrium points for concave N-person games", Econometrica, 33(3), Jul. 1965

Computational Game Theory – P2/2023

More existence results

- The strategic game <N,(A_i),(u_i)> has a Nash equilibrium if for all i∈N
 - the set A_i of actions of player i is a nonempty compact convex subset of a finite dimensional Euclidean space

and every payoff function u_i

- is quasi-concave in a_i.
- is upper semi-continuous in $a \in A$ $\limsup_{n \to \infty} \sum_{i=1}^{N} u_i(a^n) \leq \sum_{i=1}^{N} u_i(a), \quad a^n \to a$
- has a continuous maximum

P. Dasgupta and E. Maskin, "The Existence of Equilibrium in Discontinuous Economic Games, I: Theory," Review of Economic Studies, 53(1), pp. 1-26, 1986

Notes on the existence results

- The equilibrium is not necessarily unique
 - Which equilibrium is an appropriate solution?
- The existence is not guaranteed for finite games!
 - For none of the examples considered so far...
- Best response functions could be used to find equilibria
 - Not very efficient

What if no pure NE?

• Matching pennies

	Head	Tail
Head	1,-1	-1,1
Tail	-1,1	1,-1

Games with mixed strategies

- Pure strategy Nash equilibria do not always exist
 - Certain classes of games (later)
 - special structure
 - specific utility function
- Extension of the model of a game
 - Allow players to randomize between actions
- Von Neumann Morgenstern assumption
 - Utility of a randomized strategy = expected value of the utilities of the action profiles

Axioms of preference

Let $A \subseteq \mathbb{R}^n$, and $\Delta(A)$ the set of probability distributions over A. The binary relation \succ is a VNM *rational* preference relation over $\Delta(A)$

- (i) Complete
 - $\alpha, \beta \in \Delta(A)$ then $\alpha \succ \beta$ or $\beta \succ \alpha$ or $\alpha \sim \beta$
- (ii) Transitive

 $\alpha, \beta, \gamma \in \Delta(A)$ then if $\alpha \succ \beta$ and $\beta \succ \gamma$ then $\alpha \succ \gamma$

- (iii) Continuous $\alpha, \beta, \gamma \in \Delta(A) \, s.t. \, \alpha \succ \beta \succ \gamma$, then $\exists a \in [0,1] \, s.t. \, a\alpha + (1-a)\gamma \sim \beta$
- (iiii) Independent $\alpha, \beta, \gamma \in \Delta(A) \text{ and } a \in (0,1] \text{ then}$ $\alpha \succ \beta \Leftrightarrow a\alpha + (1-a)\gamma \succ a\beta + (1-a)\gamma$

J. von Neumann, O. Morgenstern, "Theory of Games and Economic Behavior," Princeton University Press, 1944

von Neumann-Morgenstern theorem

- Let $\Delta(A)$ be a convex subset of a linear space. Let \succ be a binary relation on $\Delta(A)$. Then \succ satisfies axioms (1),(2),(3),(4) iff. $\exists U: \Delta(A) \rightarrow R$ such that
 - *U* represents > $\alpha, \beta \in \Delta(A) \ U(\alpha) > U(\beta) \Leftrightarrow \alpha \succ \beta$
 - Utility is in expected value (VNM utility)

$$U(\alpha) = \sum_{a \in A} \alpha(a) U(a) \quad \alpha \in \Delta(A)$$

 Moreover, if V: △(A)→R also represents preferences, then ∃b>0, c ∈ R s.t. V = bU + c (U is unique up to a positive linear transformation)

> J. von Neumann, O. Morgenstern, "Theory of Games and Economic Behavior," Princeton University Press, 1944

Randomizing actions

- A_i finite set
- Let $\Delta(A_i)$ be the set of probability distributions over A_i
- Let $\alpha_i \in \Delta(A_i)$,
 - α_i is a mixed strategy
 - Support of $\alpha_i = \{a_i \in A_i : \alpha_i(a_i) > 0\}$
- Evaluation of a profile of mixed strategies
 - $(\alpha_j)_{j \in N}$ profile of mixed strategies
 - Probability of action profile $a = (a_j)_{j \in N}$

 $\Pi_{j\in N}\alpha_j(a_j)$

• Utility of the strategy profile $\alpha = (\alpha_j)_{j \in N}$ for player $i \in N$

$$U_i(\alpha) = \sum_{a \in A} u_i(a) \prod_{j \in N} \alpha_j(a_j)$$

- Looks trivial but is not necessarily reasonable
 - e.g., risk aversion

Mixed extension of a strategic game

- Mixed extension of a strategic game <N,(A_i),(u_i)> is the strategic game <N,(∆(A_i)),(U_i)>
 - $\Delta(A_i)$ set of probability distributions over A_i
 - $U_i: \times_{j \in N} \Delta(A_j) \rightarrow R$ expected value under u_i of the lottery over A induced by $\alpha \in \times_{j \in N} \Delta(A_j)$

$$U_i(\alpha) = \sum_{a \in A} u_i(a) \prod_{j \in N} \alpha_j(a_j)$$

• Alternative using degenerate distribution α_i ($e(a_i)$)

$$U_i(\alpha) = \sum_{a_i \in A_i} \alpha_i(a_i) U_i(\alpha_{-i}, e(a_i))$$

- Utility is multilinear
 - for mixed strategies β_i and γ_i

$$U_i(\alpha_{-i},\lambda\beta_i+(1-\lambda)\gamma_i)=\lambda U_i(\alpha_{-i},\beta_i)+(1-\lambda)U_i(\alpha_{-i},\gamma_i)$$

Mixed strategy Nash equilibrium

- Mixed strategy Nash equilibrium of a strategic game is the Nash equilibrium of its mixed extension
- Nash equilibria of a strategic game is subset of the Nash equilibria of its mixed extension
 - degenerate α_i (e(a_i))

Example

• Matching pennies

	Head	Tail
Head	1,-1	-1,1
Tail	-1,1	1,-1

- No pure strategy equilibria
- Are there mixed strategy equilibria?

Existence of equilibria

Every finite strategic game has a mixed strategy Nash equilibrium.

Proof. The mixed extension of the strategic game has a pure strategy Nash equilibrium.

Nash (1950,1951)

- The result applies if A_i <a>CRⁿ compact non-empty and the payoff functions are continuous.
 - Applies for coupled action sets as well

Glicksberg (1952) Owen (1974)

More existence results

- Let A_i be a closed interval of R. Suppose that
 - u_i is continuous except on a subset $A^{**}(i)$ of $A^*(i)$, where $A^*(i)$ is defined as

 $A^{**}(i) \subseteq A^{*}(i) = \{a \in A \mid \exists j \neq i, \exists d \text{ such that } a_{i} = f_{ij}^{d}(a_{i})\}$ ($f_{ij}^{d}: A_{i} \to A_{j}$ are one-to-one, continuous functions) • $\sum_{i=1}^{N} u_{i}(a)$ is upper semi-continuous

$$\limsup_{n\to\infty}\sum_{i=1}^N u_i(a^n) \leq \sum_{i=1}^N u_i(a)$$

• $u_i(a_{-i},a_i)$ is bounded and weakly lower semicontinous in a_i for all $a_{-i} \in A^{**}_{-i}(a)$ $\lambda \liminf_{a' \downarrow a_i} u_i(a_{-i}, a'_i) + \lambda \liminf_{a' \downarrow a_i} u_i(a_{-i}, a'_i) \ge u_i(a_{-i}, a_i) \text{ for some } \lambda \in [0, 1]$ Then the game has a mixed strategy Nash equilibrium

> P. Dasgupta and E. Maskin, "The Existence of Equilibrium in Discontinuous Economic Games, I: Theory," Review of Economic Studies, 53(1), pp. 1-26, 1986

Example

• Matching pennies

	Head	Tail
Head	1,-1	-1,1
Tail	-1,1	1,-1

- No pure strategy equilibria
- Are there mixed strategy equilibria?
- What is the best action in equilibrium?

Mixed strategy of best responses

Let $G = \langle N, (A_i), (u_i) \rangle$ finite strategic game

- $\alpha^* \in X_{j \in N} \Delta(A_i)$ is a mixed strategy equilibrium of G \Leftrightarrow for all $i \in N$ { $a_i \in A_j$: $\alpha_i^*(a_i) > 0$ } are best responses to α^*_{-i}
- The actions used by a player in a mixed strategy are best responses to the equilibrium mixed strategy profile
 - but: not all best responses have to have $\alpha_i^*(a_i) > 0$

Actions of equal values

• Let $G = \langle N, (A_i), (u_i) \rangle$ finite strategic game

- $\alpha^* \in X_{j \in N} \Delta(A_i)$ is a mixed strategy equilibrium of $G \rightarrow \alpha_i^*(a_i) > 0 \Rightarrow U_i(\alpha^*_{-i}, a_i) = U_i(\alpha^*)$
- If for an α^{*} ∈ Δ(A) and for every player *i* there is a constant c_i such that we have

$$\begin{cases} \alpha_i^*(a_i) > 0 \Longrightarrow U_i(\alpha_{-i}^*, a_i) = c_i \\ \alpha_i^*(a_i) = 0 \Longrightarrow U_i(\alpha_{-i}^*, a_i) \le c_i \end{cases}$$

then α^* is a mixed strategy equilibrium

Example

• Battle of the Sexes

	Sports	Theatre
Sports	3,2	0,0
Theatre	0,0	2,3

- How many NE are there?
 - Pure NE
 - Mixed NE

Example continued

- Mixed strategy NE
 - (0.6,0.4) (0.4,0.6)
- Best response functions of players 1 and 2

Why mixed strategies?

- Drawn from a large population
 - Individuals meet at random
 - Pick actions according to a distribution
- Harsányi's model of a disturbed game
 - small perturbation in players' payoffs u_i
 - uncertainty or ignorance
 - perturbation is a r.v. $\varepsilon_i \in [-\varepsilon, \varepsilon]$
 - ε_i known to player *i* only
 - pure NE of the disturbed game converge to mixed NE of the ordinary game as $\epsilon \rightarrow 0$

J. C. Harsányi, "Games with Randomly Disturbed Payoffs: A New Rationale for Mixed Strategy Equilibrium Points," International Journal of Game Theory, vol. 2, pp.1–23, 1973

Strictly competitive games

- Equivalent definitions
 - Zero-sum game
 - *u*₁(*a*)=-*u*₂(*b*)
 - Constant-sum game
 - $u_1(a) + u_2(b) = c$

An example

	L	M	R
Т	7,-7	-3,3	-5,5
М	2,-2	-1,1	4,-4
В	-5,5	-2,2	9,-9

- The paranoid's approach
 - Take the highest payoff that you can guarantee

Maxminimization

- Let <{1,2},(A_i),(u_i)> be a strictly competitive strategic game
 - The action $x^* \in A_1$ is called a maxminimizer for player 1 if $\min_{y \in A_2} u_1(x^*, y) \ge \min_{y \in A_2} u_1(x, y)$ for all $x \in A_1$
 - The action $y^* \in A_2$ is called a maxminimizer for player 2 if

 $\min_{x \in A_1} u_2(x, y^*) \ge \min_{x \in A_1} u_2(x, y) \quad \text{for all } y \in A_2$

		-	
	L	М	R
Т	7,-7	-3,3	-5,5
М	2,-2	-1,1	4,-4
В	-5,5	-2,2	9,-9

NE and Maxminimization

- Let $G = \langle \{1,2\}, (A_i), (u_i) \rangle$ be a strictly competitive strategic game
 - If (x*,y*) is a NE of G then x* is a maxminimizer for player 1 and y* for player 2
 - If (x^*, y^*) is a NE of *G* then $\max_{x \in A_1} \min_{y \in A_2} u_1(x, y) = \min_{y \in A_2} \max_{x \in A_1} u_1(x, y) = u_1(x^*, y^*)$ and thus all NE of *G* yield the same payoff
 - If $\max_{x \in A_1} \min_{y \in A_2} u_1(x, y) = \min_{y \in A_2} \max_{x \in A_1} u_1(x, y)$ and x* is a maxminimizer for player 1 and y* is a maxminimizer for player 2, then (x^*, y^*) is a Nash equilibrium of G

J. von Neumann, "Zur Theorie der Gesellschaftsspiele", Mathematische Annalen, 100, pp. 295–300, 1928

Consequences

- In strictly competitive games
 - Can use maxminimization to find Nash equilibria (pure or mixed)
 - Nash equilibria are interchangable

if (x,y) and (x',y') are NE then so are (x,y') and (x',y)

• If $\max_{x \in A_1} \min_{y \in A_2} u_1(x, y) = \min_{y \in A_2} \max_{x \in A_1} u_1(x, y)$

then this is the value v^* of the game

- v^* is the minimum payoff of player 1
- $-v^*$ is the minimum payoff of player 2

The example again

	L	Μ	R
Т	7,-7	-3,3	-5,5
Μ	2,-2	-1,1	4,-4
В	-5,5	-2,2	9,-9

- Find the Nash equilibrium using maxminimization
- What is the value of the game?

Computational Game Theory – P2/2023

Literature

- M.Osborne, A Rubinstein, "A course in game theory", MIT press, 1994
- D. Fudenberg, J. Tirole, "Game Theory", MIT press, 1991
 - L-Å. Lindahl, "Spelteori", Uppsala Universitet, 2007
- J. von Neumann, "Zur Theorie der Gesellschaftsspiele", Mathematische Annalen, 100, pp. 295–300, 1928
- J. von Neumann, O. Morgenstern, "Theory of Games and Economic Behavior," Princeton University Press, 1944
- J. C. Harsányi, "Games with Randomly Disturbed Payoffs: A New Rationale for Mixed Strategy Equilibrium Points," International Journal of Game Theory, vol. 2, pp.1–23, 1973

٠