Computational Game Theory

Lecture 3

P2/2023

György Dán

Division of Network and Systems Engineering

Computational Game Theory – P2/2023

Topics for today

- IEASDA
- Computing NE
 - Zero-sum games
 - Two player games
- Cardinality
 - Quadratic games

Alternative solution concept

- Simple reasoning
 - Player *i* should not choose an action that is strictly worse than some other action
- Solution
 - Iteratively remove the actions that are worse than some other actions

	L	С	R
U	0,2	3,1	2,3
Μ	1,4	2,1	4,1
D	2,1	4,4	3,2

Beliefs

- For a strategic game $\langle N, (A_i), (u_i) \rangle$ the belief μ_i of player *i* is a probability measure on A_{-i}
 - $\mu_i : X_{i \in N \setminus \{i\}} A_i \to \mathcal{R}$
 - Assigns probability to the actions of the other players
 - Does not assume independence
 - Does *not* have to be correct
 - An action a_i of player *i* is a best response to the belief μ_i if

 $u_i(\mu_i, a_i) \ge u_i(\mu_i, a'_i) \quad a'_i \in A_i$

Never best response

- Action of player *i* in a strategic game is a never best response if it is not a best response to any belief of player *i*
 - in pure strategies

	L	Μ	R
Т	(4,12)	(6,4)	(2,5)
С	(8,3)	(2,6)	(4,5)
В	(6,5)	(5,9)	(3,8)

•
$$\delta_{M} \rightarrow T$$
, $\delta_{L} \rightarrow C$, $0.3\delta_{L} + 0.6\delta_{M} + 0.1\delta_{R} \rightarrow B$

•
$$\delta_T \rightarrow L$$
, $\delta_B \rightarrow M$

• R is a never best response

Strictly dominated action

- In a strategic game <N, (A_i), (u_i)> the action a_i∈A_i of player *i* is strictly dominated if there is a mixed strategy α_i such that U_i(a_{-i}, α_i)> U_i(a_{-i}, a_i) for all a_{-i}∈A_{-i}
 - Mixed strategy α_i is better for any pure belief of player *i*
- An action of a player in a 2 person finite strategic game is a never best response ⇔ it is strictly dominated
 - Note the difference in the definitions!

Iterated elimination of strictly dominated actions

- The set $X \subseteq A$ of outcomes of a finite strategic game $\langle N, (A_i), (u_i) \rangle$ survives iterated elimination of strictly dominated actions if $X = x_{j \in N} X_j$ and there is a collection $((X_j^t)_{j \in N})_{t=0}^T$ of sets that satisfies the following conditions for each $j \in N$
 - $X_j^0 = A_j$ and $X_j^T = X_j$
 - $X_{i}^{t+1} \subseteq X_{i}^{t}$ for each t=0,...T-1
 - for each t=0,...,T-1 every action $a_j \in X_j^t \setminus X_j^{t+1}$ is strictly dominated in the game $\langle N, (X_i^t), (u_i^t) \rangle$, where u_i^t for each $i \in N$ is the function u_i restricted to $\times_{j \in N} X_j^t$
 - no $a_j \in X_j^T$ is strictly dominated in the game $\langle N, (X_i^T), (u_i^T) \rangle$

Example

Example – Cont'd

		L		С	
Μ		1,4		2,1	
D		2,1		4,4	
			Į		
		L		С	
D		2,1		4,4	
			Į		
			С		
	D		4,4		

Computational Game Theory – P2/2023

Remarks

- Strategic game is solvable by IESDA if only one outcome survives (|X|=1)
 - Order of elimination does not matter

Example

• Consider the following strategic game

G ⁰	C ₁	C ₂	с ₃	C ₄	
r ₁	(2,3)	(2,4)	(2,3)	(4,2)	
r ₂	(4,2)	(3,3)	(0,2)	(2,1)	
r ₃	(1,4)	(1,2)	(0,0)	(3,1)	
r ₄	(1,0)	(2,1)	(5,5)	(3,2)	

• Apply iterated elimination of strictly dominated actions

Example – step 1

• r₃ is strictly dominated by r₁

G^1	C ₁	C ₂	C ₃	C ₄
r ₁	(2,3)	(2,4)	(2,3)	(4,2)
r ₂	(4,2)	(3,3)	(0,2)	(2,1)
r ₄	(1,0)	(2,1)	(5,5)	(3,2)
	~			

Computational Game Theory – P2/2023

Example – step 2

- c₁ is strictly dominated by c₂
 - c_4 is strictly dominated by c_3

G ²	C ₂	С ₃	
r ₁	(2,4)	(2,3)	
r ₂	(3,3)	(0,2)	
r ₄	(2,1)	(5,5)	

Example – step 3

α₁=(0,1/2,1/2) dominates r₁

G ³	C ₂	С ₃
r ₂	(3,3)	(0,2)
r ₄	(2,1)	(5,5)

- Can we eliminate more actions?
 - Rational player will only choose among actions in G³
- Can we tell the NE of G³?
 - what about the NE of the original game G⁰?

Remarks

• Let α^* be a mixed strategy NE of the game $G = \langle N, (A_i), (u_i) \rangle$ then

 $\alpha^*_i(a_i) = 0$ for all $a_i \in A_i \setminus X_i$ and α^* is a mixed strategy NE of G^T

Alternative solution concepts

- Rationalizability
- Iterated elimination of weakly dominated actions

Minimax in mixed strategies

- Consider
 - payoff matrix A=[a_{ij}]_{mxn}
 - mixed strategy profiles α_1 and α_2
- Player 1 aims to maximize its payoff $U_1(\alpha) \le \max_{\alpha_1} \min_{\alpha_2} \alpha_1 A \alpha_2^T$
- Player 2 aims to minimize its loss (the payoff of player 1) $U_1(\alpha) \le \min_{\alpha_2} \max_{\alpha_1} \alpha_1 A \alpha_2^T$

Minimax and LP

- Optimization formulation of the problem
- Player 1's objective

$$\max_{\alpha_1} \min_{\alpha_2} \alpha_1 A \alpha_2^T = \max_{\alpha_1} \min_{\alpha_2} \sum_{j=1}^n \alpha_{2j} \sum_{i=1}^m a_{ij} \alpha_{1i}$$
$$= \max_{\alpha_1} \min_{j=1..n} \left\{ \sum_{i=1}^m a_{ij} \alpha_{1i} \right\}$$

 To maximize the payoff, the minimum (s) should be maximized

$$\sum_{i=1}^{m} a_{ij} \alpha_{1i} \ge s \quad for \ j = 1, \dots, n$$

Minimax and LP

• Primal problem

Dual problem

$$\max \quad s$$

s.t.
$$\sum_{i=1}^{m} \alpha_{1i} A_{ij} \ge s \quad j = 1, ..., n$$
$$\sum_{i=1}^{m} \alpha_{1i} \le 1$$
$$\alpha_{1i} \ge 0 \quad i = 1, ..., m$$

min t

s.t.
$$\sum_{j=1}^{n} \alpha_{2j} A_{ij} \leq t \quad i = 1, ..., m$$
$$\sum_{j=1}^{n} \alpha_{2j} \geq 1$$
$$\alpha_{2j} \geq 0 \quad j = 1, ..., n$$

Computational Game Theory – P2/2023

Minimax theorem

- Strong duality theorem (s bounded and feasible)
 - If the primal problem has an optimal solution α_1^* then the dual also has an optimal solution α_2^* , and s=t.
- Two person zero-sum game solvable in polynomial time
- Minimax theorem (von Neumann, 1928, 1944)
 - For every two-person, zero-sum game with finite strategies there exists an equilibrium strategy α^* and

$$\max_{\alpha_1} \min_{\alpha_2} \alpha_1 A \alpha_2^T = \min_{\alpha_2} \max_{\alpha_1} \alpha_1 A \alpha_2^T$$

- J. von Neumann, "Zur Theorie der Gesellschaftsspiele", Mathematische Annalen, 100, pp. 295–300, 1928
- J. von Neumann, O. Morgenstern, "Theory of Games and Economic Behavior," Princeton University Press, 1944

Unique pure NE for ZSG

- Consider a ZSG, and let $u_1(a_1,a_2)$ strictly concave in a_1 and strictly convex in a_2 . Then there exists a unique SP in pure strategies.
 - Follows from Rosen's theorem with L=u₁

Computing Nash equilibria

Computational Game Theory – P2/2023

Quadratic Game

$$u_i(a_i, a_{-i}) = \frac{1}{2} \sum_{j=1}^N \sum_{k=1}^N a_j R_{j,k}^{(i)} a_k + \sum_{j=1}^N r_j^{(i)} a_j + c_i$$

- If $R_{ii}^{(i)}$ negative definite
- *U_i* concave in *a_i*
- NE is in pure strategies

If R is invertible

• Unique pure NE: $a^* = -R^{-1}r$