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Topics for today

• IEASDA
• Computing NE

• Zero-sum games
• Two player games

• Cardinality
• Quadratic games
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Alternative solution concept

• Simple reasoning
• Player i should not choose an action that is strictly worse 

than some other action

• Solution
• Iteratively remove the actions that are worse than some 

other actions
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Beliefs

• For a strategic game <N,(Ai),(ui)> the belief i of
player i is a probability measure on A-i

• i:xjN\{i}Aj  

• Assigns probability to the actions of the other players
• Does not assume independence
• Does not have to be correct

• An action ai of player i is a best response to the belief i if
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Never best response

• Action of player i in a strategic game is a never best 
response if it is not a best response to any belief of player i
• in pure strategies
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Strictly dominated action

• In a strategic game <N, (Ai), (ui)> the action aiAi of 
player i is strictly dominated if there is a mixed 
strategy i such that Ui(a-i,i)> Ui(a-i,ai) for all a-iA-i

• Mixed strategy i is better for any pure belief of player i

• An action of a player in a 2 person finite strategic game 
is a never best response  it is strictly dominated
• Note the difference in the definitions!
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Iterated elimination of strictly dominated actions

• The set XA of outcomes of a finite strategic game 
<N,(Ai),(ui)> survives iterated elimination of strictly 
dominated actions if X=xjNXj and there is a collection

of sets that satisfies the following 
conditions for each jN
• and
• for each t=0,..T-1
• for each t=0,…,T-1 every action                    is strictly 

dominated in the game                         , where      for 
each iN is the function ui restricted to

• no is strictly dominated in the game
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Example 
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Example – Cont’d 

CL

2,11,4M

4,42,1D

CL

4,42,1D

C

4,4D



Computational Game Theory – P2/2023 György Dán, https://people.kth.se/~gyuri

Remarks

• Strategic game is solvable by IESDA if only one outcome 
survives (|X|=1)
• Order of elimination does not matter
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Example

• Consider the following strategic game

c4c3c2c1G0

(4,2)(2,3)(2,4)(2,3)r1

(2,1)(0,2)(3,3)(4,2)r2

(3,1)(0,0)(1,2)(1,4)r3

(3,2)(5,5)(2,1)(1,0)r4

• Apply iterated elimination of strictly dominated actions
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Example – step 1

• r3 is strictly dominated by r1

c4c3c2c1G1

(4,2)(2,3)(2,4)(2,3)r1

(2,1)(0,2)(3,3)(4,2)r2

(3,2)(5,5)(2,1)(1,0)r4
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Example – step 2

• c1 is strictly dominated by c2

• c4 is strictly dominated by c3

c3c2G2

(2,3)(2,4)r1

(0,2)(3,3)r2

(5,5)(2,1)r4
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Example – step 3

• 1=(0,1/2,1/2) dominates r1

c3c2G3

(0,2)(3,3)r2

(5,5)(2,1)r4

• Can we eliminate more actions?
• Rational player will only choose among actions in G3

• Can we tell the NE of G3?
• what about the NE of the original game G0?
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Remarks

• Let * be a mixed strategy NE of the game G=<N,(Ai),(ui)> 
then 

*
i(ai)=0 for all aiAi\Xi and * is a mixed strategy NE of GT
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Alternative solution concepts

• Rationalizability
• Iterated elimination of weakly dominated actions
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Minimax in mixed strategies

• Consider 
• payoff matrix A=[aij]mxn

• mixed strategy profiles 1 and 2

• Player 1 aims to maximize its payoff

• Player 2 aims to minimize its loss (the payoff of player 1)

TAU 211
21

minmax)( 




TAU 211
12

maxmin)( 






Computational Game Theory – P2/2023 György Dán, https://people.kth.se/~gyuri

Minimax and LP

• Optimization formulation of the problem
• Player 1’s objective

• To maximize the payoff, the minimum (s) should be 
maximized
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Minimax and LP

• Primal problem
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Minimax theorem

• Strong duality theorem (s bounded and feasible)
• If the primal problem has an optimal solution *

1 then 
the dual also has an optimal solution *

2, and s=t.

• Two person zero-sum game solvable in polynomial time

• Minimax theorem (von Neumann, 1928, 1944)
• For every two-person, zero-sum game with finite strategies 

there exists an equilibrium strategy * and 
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J. von Neumann, "Zur Theorie der Gesellschaftsspiele", 
Mathematische Annalen, 100, pp. 295–300, 1928

J. von Neumann, O. Morgenstern, ”Theory of Games and 
Economic Behavior,” Princeton University Press, 1944
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Unique pure NE for ZSG

• Consider a ZSG, and let u1(a1,a2) strictly concave in a1
and strictly convex in a2. Then there exists a unique SP 
in pure strategies.
• Follows from Rosen’s theorem with L=u1
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Computing Nash equilibria
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Quadratic Game
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If      negative definite 
• Ui concave in ai
• NE is in pure strategies
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If R is invertible
• Unique pure NE: a*= -R-1r


