

Computational Game Theory

Lecture 4

P2/2023

György Dán

Division of Network and Systems Engineering

Today's Topics

- Approximate equilibria
- Refinements of the Nash Equilibrium
- Correlated equilibrium
- Games with incomplete information (Bayesian)

Equilibria cont'd

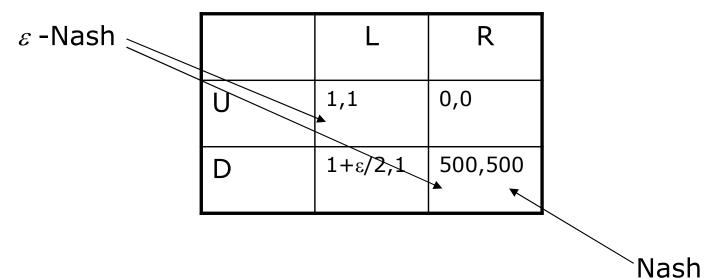
Find the pure NE of the game.

	L	R
Т	-ε/2, ε/2	0,0
В	0,0	-1,1

- In a strategic game $G = \langle N, (A_i), (u_i) \rangle$ a mixed strategy α is an ε -Nash equilibrium ($\varepsilon > 0$) if
 - $u_i(\alpha_{-i}, \alpha_i) \ge u_i(\alpha_{-i}, \alpha_i') \varepsilon$ for $i \in \mathbb{N}$, $\alpha_i' \in \Delta(A_i)$
- Every finite strategic game has an ε-Nash equilibrium
 - Every NE is surrounded by ε -Nash equilibria for ε >0
 - The contrary is not true!
- Convenient from a computational point of view
 - Floating point precision limits numerical accuracy

Example

• Find the Nash equilibria and the arepsilon-Nash equilibria



- Payoff can be far from the NE payoff
- Can be unlikely to arise in play

Wilson's theorem

- Let G be a regular and quasi-strong finite strategic game. Then the number of its equilibria is finite and odd.
 - Based on the topology of the solution graph for the logarithmic game
- Almost all finite games are quasi-strong.
 - The set of extra-weak games is a set of measure zero in the set of strategic games of a particular size.
 - within the set of games that have at least one NE with the same support
- Almost all finite games are regular.
- Theorem: In "almost all" finite strategic games, the number of equilibrium points is *finite* and *odd*.
 - R. Wilson, "Computing Equilibria in N-person Games," SIAM Journal of Applied Mathematics, 21(1), pp. 80-87, 1971
 - J.C. Harsányi," Oddness of the number of equilibrium points: A new proof", International Journal of Game Theory, 2(1), pp. 235-250, 1973

Slightly modified example

Consider the following games

	L	R
Т	1,1	0,0
В	0,0	0,0

	L	R
Т	1,1	0,0
В	0,0	-η,-η

What happens with the NE?

Robustness

- Consider a game $G = \langle N, (A_i), (u_i) \rangle$
 - Assume that it has some NE
- What if u_i is inaccurate?
 - Inaccurate modeling assumption
 - The payoffs are not common knowledge
- How and when does inaccuracy influence the equilibria?

Proximity of Games

• Distance between payoff vectors (u_i) and (\widetilde{u}_i)

$$D(u,\widetilde{u}) = \max_{i \in N, a \in A} |u_i(a) - \widetilde{u}_i(a)|$$

Distance between mixed strategy profiles (α_i) and $(\widetilde{\alpha}_i)$

$$d(\alpha, \widetilde{\alpha}) = \max_{i \in N, a \in A} |\alpha_i(a_i) - \widetilde{\alpha}_i(a_i)|$$

Essential (Robust) Games

• Let G be strategic game $\langle N, (A_i), (u_i) \rangle$. A Nash equilibrium (α_i) of G is **essential** (or robust) if

$$\forall \varepsilon > 0 \ \exists \eta > 0 \ \text{s.t. if} \ D(u, \widetilde{u}) < \eta \rightarrow d(\alpha, \widetilde{\alpha}) < \varepsilon$$

where $(\widetilde{\alpha}_i)$ is a NE of the strategic game $\widetilde{G} = \langle N, (A_i), (\widetilde{u}_i) \rangle$

Intuition
 There is a nearby Nash equilibrium for nearby games

Example revisited

• Is this game essential?

	L	R
Т	1,1	0,0
В	0,0	0,0

	L	R
Т	1,1	0,0
В	0,0	-η,-η

NE=(T,L), (R,B)

Are all games essential?

Essential Games

- Almost all finite strategic games are essential
- Proof
 - Essential fixed point theorem (Fort)
 - Compact metric space Σ with distance d
 - Continuous mapping $f: \Sigma \rightarrow \Sigma$
 - σ^* essential fixed point of f if $\forall \varepsilon > 0 \ \exists \eta > 0 \ \text{s.t.}$ $d(f, \widetilde{f}) = \max_{\sigma \in \Sigma} d(f(\sigma), \widetilde{f}(\sigma)) < \eta \to \exists \widetilde{\sigma}^* \ \text{s.t.} \ d(\sigma^*, \widetilde{\sigma}^*) < \varepsilon$
 - Essential mapping: all fixed points essential
 - Set of essential mappings is dense on the set of continuous mappings
 - Identify every game with a corresponding mapping
 - Nash mapping
 - Apply Fort's theorem

W.T. Wu and J.H. Jiang, "Essential equilibrium points of n-person non-cooperative games", Scientia Sinica vol. 11, pp. 1307–1322, 1962

M. K. Fort, "Essential and non essential fixed points", Amer. J. Math. vol. 72, pp. 315-322, 1950

(Trembling hand) Perfect equilibrium

Find the Nash equilibria

	L	С	R	
Т	0,0	0,0	0,0	
М	0,0	1,1	2,0	
		*		
В	0,0	0,2	2,2	
				Nash eq.

Some NE are "illogical"

R. Selten, "Reexamination of the Perfectness Concept for Equilibrium Points in Extensive Games", International Journal of Game Theory, 4(1), pp. 25-55, 1975

Perfect equilibrium

- A totally mixed strategy in a strategic game $\langle N, (A_i), (u_i) \rangle$ is a mixed strategy α such that $\alpha_i(a_i) > 0$ for $a_i \in A_i$
- ϵ -perfect equilibrium of a strategic game $< N_i(A_i), (u_i) > is$ a totally mixed strategy α such that
 - if $U_i(\alpha_{-i}, e(a'_i)) < U_i(\alpha_{-i}, e(a_i))$ then $\alpha_i(a'_i) < \varepsilon$ for all $a_i \in A_i, a'_i \in A_i$
- A perfect equilibrium of a strategic game $\langle N, (A_i), (u_i) \rangle$ is a mixed strategy α iff there exist sequences $(\mathcal{E}_k)_{k=1}^{\infty}$ and $(\alpha^k)_{k=1}^{\infty}$ s.t.

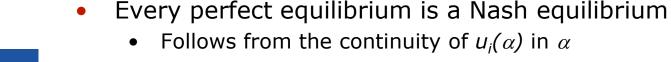
$$\varepsilon_{k} > 0$$
 and $\lim_{k \to \infty} \varepsilon_{k} = 0$
 α^{k} are ε – perfect equilibria
$$\lim_{k \to \infty} \alpha_{i}^{k}(a_{i}) = \alpha_{i}(a_{i}) \quad \forall i, \forall a_{i} \in A_{i}$$
 α_{i} is a best response to α_{-i}^{k}

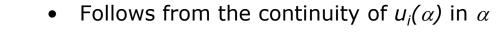
Example

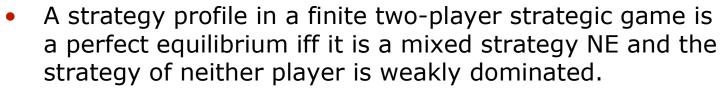
Find the Nash equilibria and the perfect equilibria

	L	С	R	
Т	0,0	0,0	0,0	
М	0,0	1,1	2,0	
В	0,0	0,2	2,2	Perfect NE

Properties of perfect equilibria



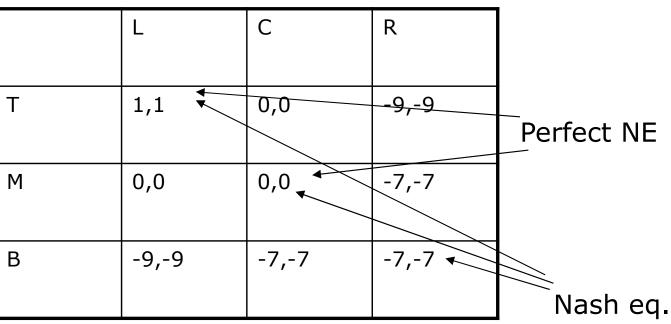




- Every finite strategic game has a perfect equilibrium
 - Every game has an ε -perfect equilibrium
 - The NE are in a compact subset of a Euclidean space
 - Sequence of NE has convergent subsequence
 - Bolzano-Weierstrass theorem
 - Limit of suitable subsequence is a perfect equilibrium

Perfect equilibrium example

Find the Nash equilibria and the perfect equilibria



$$\alpha_1^{\varepsilon}(T) = \varepsilon, \alpha_1^{\varepsilon}(M) = 1 - 2\varepsilon, \alpha_1^{\varepsilon}(B) = \varepsilon$$

$$\alpha_2^{\varepsilon}(L) = \varepsilon, \alpha_2^{\varepsilon}(C) = 1 - 2\varepsilon, \alpha_2^{\varepsilon}(R) = \varepsilon$$

R. B. Myerson, "Refinements of the Nash equilibrium concept," International Journal of Game Theory, 7(2) pp. 133-154, 1978.

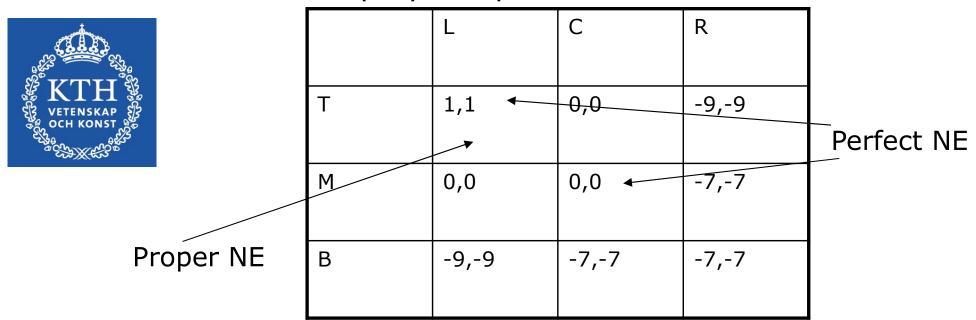
 $U_{1}(\alpha_{2}^{\varepsilon},T) = -8\varepsilon, U_{1}(\alpha_{2}^{\varepsilon},M) = -7\varepsilon, U_{1}(\alpha_{2}^{\varepsilon},B) = -7-2\varepsilon$

- ϵ -proper equilibrium of a strategic game $< N, (A_i), (u_i) > is$ a totally mixed strategy α such that
 - if $u_i(\alpha_{-i}, e(a_i')) < u_i(\alpha_{-i}, e(a_i))$ then $\alpha_i(a_i') < \varepsilon \alpha_i(a_i)$ for all $a_i \in A_i, a_i' \in A_i$
- A proper equilibrium of a strategic game $< N, (A_i), (u_i) >$ is a mixed strategy α iff there exist sequences $(\varepsilon_k)_{k=1}^{\infty}$ and $(\alpha^k)_{k=1}^{\infty}$ such that

$$\varepsilon_{k} > 0$$
 and $\lim_{k \to \infty} \varepsilon_{k} = 0$
 α^{k} are ε_{k} – proper equilibria
$$\lim_{k \to \infty} \alpha_{i}^{k}(a_{i}) = \alpha_{i}(a_{i}) \quad \forall i, \forall a_{i} \in A_{i}$$
 $\Longrightarrow \alpha_{i}$ is a best response to α_{-i}^{k}

Example revisited

Find the proper equilibria



Properties of proper equilibria

- Every proper equilibrium is a perfect equilibrium
 - ε -proper equilibrium is ε -perfect
 - Follows from the continuity of $u_i(\alpha)$ in α
- Every finite strategic game has a proper equilibrium
 - There is always a mixed strategy NE that is a proper equilibrium
 - Proof by Kakutani's theorem
 - Same convergence argument as for perfect equilibrium
- Proper equilibria ⊆ Perfect equilibria ⊆ Nash equilibria
 - the inclusion can be strict

R. B. Myerson, "Refinements of the Nash equilibrium concept," International Journal of Game Theory, 7(2) pp. 133-154, 1978.

Correlated equilibria

	Sports	Theatre
Sports	3,2	0,0
Theatre	0,0	2,3

- Payoff profiles are: (3,2),(2,3),(1.2,1.2)
- Assume that there is additional information available
 - r.v. $\Omega \in \{0,1\}, \pi(0) = \pi(1) = 1/2$
 - Players 1 and 2 observe ω
 - choose action depending on the realization of the r.v.
 - Payoff profile (2.5,2.5) is possible

- Consider a finite strategic game $<\{1,2\},(\{a_1,b_1\},\{a_2,b_2\}),(u_i)>$
 - r.v. $\Omega \in \{0,1,2\}$, $\pi(0) = 1 \zeta \eta$, $\pi(1) = \eta$, $\pi(2) = \zeta$
 - Player 1 observes whether $\omega = 0$, or $\omega \in \{1,2\}$
 - Player 2 observes whether $\omega \in \{0,1\}$ or $\omega = 2$
- Assume player 2's strategy is
 - a_2 if $\omega \in \{0,1\}$
 - b_2 if $\omega = 2$
- What is player 1's optimal strategy?
 - If $\omega = 0$
 - chose action optimal for a₂
 - If *ω*∈{1,2}
 - chose action optimal for a_2 with probability $\eta/(\eta+\zeta)$
 - chose action optimal for b_2 with probability $\zeta/(\eta+\zeta)$

- Correlated equilibrium of a strategic game <N,(A_i),(u_i)>
 consists of
 - a finite probability space (Ω, π)
 - for each player $i \in \mathbb{N}$ a partition P_i of Ω (information partition)
 - for each player $i \in N$ a function $\sigma_i : \Omega \to A_i$ for which $\sigma_i(\omega) = \sigma_i(\omega')$ whenever $\omega \in P_i$ and $\omega' \in P_i$ for some $P_i \in P_i$ (strategy)

such that

• for every $i \in N$ and every function $\tau_i : \Omega \to A_i$ for which $\tau_i(\omega) = \tau_i(\omega')$ whenever $\omega \in P_i$ and $\omega' \in P_i$ for some $P_i \in P_i$ we have

$$\sum_{\omega \in \Omega} \pi(\omega) u_i(\sigma_{-i}(\omega), \sigma_i(\omega)) \ge \sum_{\omega \in \Omega} \pi(\omega) u_i(\sigma_{-i}(\omega), \tau_i(\omega))$$

- Player i's strategy is optimal given the other players' strategies and player i's knowledge about ω
- Can be extended to asymmetric beliefs (π_i)

R.J. Aumann, "Subjectivity and Correlation in Randomized Strategies", in Journal of Math. Econ, vol 1.pp.67-96, 1974

- Correlated equilibrium for BoS
 - Set of states

• r.v.
$$\Omega \in \{0,1\}$$
, $\pi(0) = \pi(1) = 1/2$

Information partitions

·
$$P_1 = P_2 = \{\{0\}, \{1\}\}$$

- Strategies
 - $\sigma_i(0)$ ='Theatre'
 - $\sigma_i(1)$ ='Sports'
- Payoff profile (2.5,2.5) is possible
- Needs some interpretation
 - Tossing coins?

	Sports	Theatre
Sports	3,2	0,0
Theatre	0,0	2,3

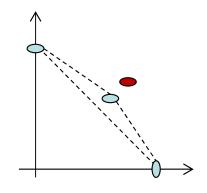
- For every mixed strategy NE of a finite strategic game $\langle N, (A_i), (u_i) \rangle$ there is a correlated equilibrium $\langle (\Omega, \pi), (P_i), (\sigma_i) \rangle$ in which for each player $i \in N$ the distribution on A_i induced by σ_i is α_i .
 - take $\Omega = A$, $\pi(a) = \alpha(a)$, $P_i(b_i) = \{a \in A | a_i = b_i\}$
 - $\sigma_i(a)=a_i$
- Let $G = \langle N, (A_i), (u_i) \rangle$ be a strategic game. Any convex combination of correlated equilibrium payoff profiles of G is a correlated equilibrium payoff profile of G.
 - $\Omega = U_k \Omega^k$, $P_i = U_k P_i^k$
 - for $\omega \in \Omega^k$ let $\pi(\omega) = \lambda_k \pi^k(\omega)$ and $\sigma_i(\omega) = \sigma_i^k(\omega)$
 - then

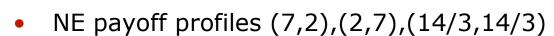
$$\mathbf{u}_i = \sum_{k=1}^K \lambda^k u_i^k$$

• Play the k^{th} correlated equilibrium with probability λ^k

Example

	L	R
Т	6,6	2,7
В	7,2	0,0





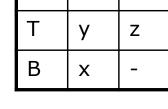
- Payoff outside of the convex hull of these payoffs
 - Set of states

• r.v.
$$\Omega \in \{x,y,z\}, \ \pi(x) = \pi(y) = \pi(z) = 1/3$$

Information partitions

$$P_1 = \{\{x\}, \{y,z\}\}, P_2 = \{\{x,y\}, \{z\}\}\}$$

- Strategies
 - $\sigma_1(x)=B$, $\sigma_1(y)=\sigma_1(z)=T$
 - $\sigma_2(x) = \sigma_2(y) = L$, $\sigma_2(z) = R$



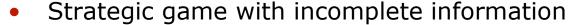
- The strategies are optimal with respect to each other
 - payoff profile (5,5)

Construction of correlated equilibria

- Let G=<N,(A_i),(u_i)> be a finite strategic game. Every probability distribution over outcomes that can be obtained in a correlated equilibrium of G can be obtained in a correlated equilibrium in which
 - the set of states is A and
 - for each $i \in N$ player i's information partition $P_i(b_i)$ consists of all sets of the form $\{a \in A | a_i = b_i\}$ for some action $b_i \in A_i$.
- It is enough to consider correlated equilibria in which $\Omega = A$.



- Players know each others' preferences
- Players know what the others know
 - Rationalizability



- Players are not certain of the properties of other players
- Players do not have to know what the others know
- Uncertainty modeled by the "state of nature"
 - Prior belief of each player
 - Each player observes a signal
 - Determines the type of the player
 - Posterior belief of each player about the state of nature
 - Calculated using Bayes' theorem

- A Bayesian game consists of
 - a finite set N of players
 - a finite set Ω of states and for each player i
 - a set A_i of actions
 - a finite set T_i and a function $\tau_i: \Omega \rightarrow T_i$ (set of signals and signal function)
 - a probability measure p_i on Ω such that $p_i(\tau^1(t_i))>0$ for all $t_i \in T_i$ (prior belief)
 - a preference relation \geq_i on the set of probability measures over $Ax\Omega$, where $A=x_{i\in\mathbb{N}}A_i$ (preference relation)
- The preference relation is taken over lotteries

John C. Harsányi "Games with incomplete information played by Bayesian players," Management Science, vol. 14, pp. 159-182, pp. 320-334, pp. 486-502, 1967-1968

- Example 1
 - Let Ω be the set of states of nature
 - $\tau_i(\omega) = \omega$
 - Perfect information
- Example 2
 - Let $\Omega = x_{i \in N} T_i$ be the set of states of nature
 - $\tau_i(\omega) = \omega_i$
 - No information about other players

Another example

- Consider a Bayesian game
 - $N=\{1,2\}$
 - $\Omega = \{\omega_1, \omega_2, \omega_3\}, p_i(\omega_i) = 1/3$
 - Signal functions
 - $\tau_1(\omega_1) = \tau_1(\omega_2) = t_1', \ \tau_1(\omega_3) = t_1''$
 - $\tau_2(\omega_1) = t'_2, \ \tau_2(\omega_2) = \tau_2(\omega_3) = t''_2$
 - Preference relations
 - $(b, \omega_j) \succ_1 (c, \omega_j)$ for j = 1, 2; $(c, \omega_3) \succ_1 (b, \omega_3)$ for some b, c
 - Player 2 indifferent for all (a,ω)
- Knowledge about each other depends on the state
 - In state ω₁
 - Player 2 knows that Player 1 prefers b to c
 - Player 1 does not know
 - if player 2 knows that she prefers b to c
 - if player 2 believes that she prefers c to b
 - In state ω₂
 - Player 2 does not know if player 1 prefers b to c or c to b

BoS with uncertainty

	Sports	Theatre
Sports	2,1	0,0
Theatre	0,0	1,2

	Sports	Theatre
Sports	2,0	0,2
Theatre	0,1	1,0

- $\Omega = \{\omega_{a}, \omega_{b}\}, \tau_{2}(\omega) = \omega, \tau_{1}(\omega) = \Omega$
- $p_1(\omega) = 0.5$

- A Nash equilibrium of a Bayesian game $\langle N, \Omega, (A_i), (T_i), (\tau_i), (p_i), (\geqslant_i) \rangle$ is a Nash equilibrium of the strategic game defined as
 - The set of players is (i,t_i) for all $i \in \mathbb{N}$, $t_i \in T_i$
 - The set of actions of each player (i,t_i) is A_i
 - The preference relation \geq_{i,t_i} of player (i,t_i) is defined as

$$a^* \geqslant_{i,t_i} b^* \Leftrightarrow L_i(a^*,t_i) \geqslant_i L_i(b^*,t_i),$$

where $L_i(a^*,t_i)$ is the lottery over $Ax\Omega$ that assigns the posterior probability given t_i to every $((a^*(j,\tau_i(\omega)))_{i\in\mathbb{N}},\omega)$

The posterior probability is

$$p_{i}(\omega)/p_{i}(\tau^{-1}(t_{i})) \quad if \ \omega \in \tau^{-1}(t_{i})$$

$$0 \quad otherwise$$

- A simplified way of thinking of this
 - Expected utility of strategy in Bayesian game

$$E[u_i(s_i \mid s_{-i}, t_i)] = \sum_{t_{-i} \in T_{-i}} u_i(s_i, s_{-i}(t_{-i}), t_i, t_{-i}) p(t_{-i} \mid t_i)$$

BNE is NE of the Bayesian game

$$E[u_i(s_i | s_{-i}, t_i)] \ge E[u_i(s_i' | s_{-i}, t_i)] \qquad \forall s_i(t_i), \forall t_i$$

Bayesian BoS Continued

- Equivalent formulation (expected payoffs)
- Strategies of Player 2
 - (S,S), (S,T), (T,S), (T,T)

	SS	ST	TS	Π
Sports	2,0.5	1,1.5	1,0	0,1
Theatre	0,0.5	0.5,0	0.5,1.5	1,1

	Sports	Theatre
Sports	2,1	0,0
Theatre	0,0	1,2

	Sports	Theatre
Sports	2,0	0,2
Theatre	0,1	1,0

Literature

- M.Osborne, A Rubinstein, "A course in game theory", MIT press, 1994
- D. Fudenberg, J. Tirole, "Game Theory", MIT press, 1991
- M. K. Fort, "Essential and non essential fixed points", Amer. J. Math. vol. 72, pp. 315-322, 1950
- W.T. Wu and J.H. Jiang, "Essential equilibrium points of n-person non-cooperative games", Scientia Sinica vol. 11, pp. 1307–1322, 1962
- R. Wilson, "Computing Equilibria in N-person Games," SIAM Journal of Applied Mathematics, 21(1), pp. 80-87, 1971
- J.C. Harsányi, "Oddness of the number of equilibrium points: A new proof", International Journal of Game Theory, 2(1), pp. 235-250, 1973
- R. Selten, "Reexamination of the Perfectness Concept for Equilibrium Points in Extensive Games", International Journal of Game Theory, 4(1), pp. 25-55, 1975
- R. B. Myerson, "Refinements of the Nash equilibrium concept," International Journal of Game Theory, 7(2) pp. 133-154, 1978.

Lecture plan

- ε-equilibrium
- Computing ε-equilibrium (03-computing Section 3)