Computational Game Theory

Lecture 5

P2/2023

György Dán

Division of Network and Systems Engineering

Computational Game Theory - P2/2023

Today's topics

- Efficiency of equilibria
- Potential games
- Super/submodular games

Nash equilibrium vs. Social optimum

Strategic game $G = \langle N, (A_i), (u_i) \rangle$

Social optimum – best possible outcome

$$U = \max_{a} SWF(u_1(a), u_2(a), \dots, u_{|N|}(a))$$

- Social welfare function SWF can be
 - Utilitarian $SWF = \Sigma$ (no fairness)
 - Bernoulli-Nash SWF=II (proportional fairness)
 - Rawls SWF=min •

- (max-min fairness)

Inefficiency of equilibria

• Nash equilibria *a*^{*} are in general not social optimum

Price of Anarchy (pure)

$$PoA = \frac{\max_{a \in A} SWF(u_1(a), ..., u_{|N|}(a))}{\min_{a^*} SWF(u_1(a^*), ..., u_{|N|}(a^*))}$$

- Price of Stability (pure) $PoS = \frac{\max_{a \in A} SWF(u_1(a), \dots, u_{|N|}(a))}{\max_{a^*} SWF(u_1(a^*), \dots, u_{|N|}(a^*))}$
- Mixed and Bayes-Nash PoA and PoS exist
- Extension to adversarial setting Price of Malice

Steiner problem in networks

- Digraph (V,E) • Edge costs $c_e \ge 0 \forall e \in E$
- VETENSKAP OCH KONST
- Set of pairs of vertices $N = (s_i, t_i)_{i=1..n}$
 - For all (s_i, t_i) t_i is reachable from s_i
 - Set of paths from s_i to t_i is A_i
 - All possible combinations of paths $A = x_{i=1..n}A_i$
- Construct minimum weight subgraph

$$\min_{a \in A} \sum_{e \in a} c_e$$

- Applications
 - Routing in networks
 - VLSI design
- NP-hard in general

Shapley network design game

- Digraph (V,E)
 - Edge costs $c_e \ge 0 \forall e \in E$
- Set of players N
 - Player *i* ∈ N wants to build a network such that *t_i* is reachable from *s_i*
- Sets of actions A_i
 - $a_i \in A_i$ is a path (s_i, t_i) in (V, E)
- Constructed network is $\cup_{i \in N} a_i$
- Cost function of player *i* in the constructed network

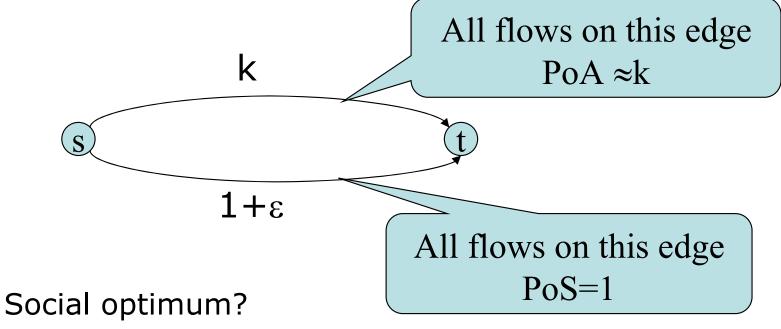
$$\operatorname{cost}_i(a) = \sum_{e \in a_i} c_e / k_e$$

- $k_e = # of players for which e \in a_i$
- Shapley cost sharing mechanism (fair)

First example

• |N| = k

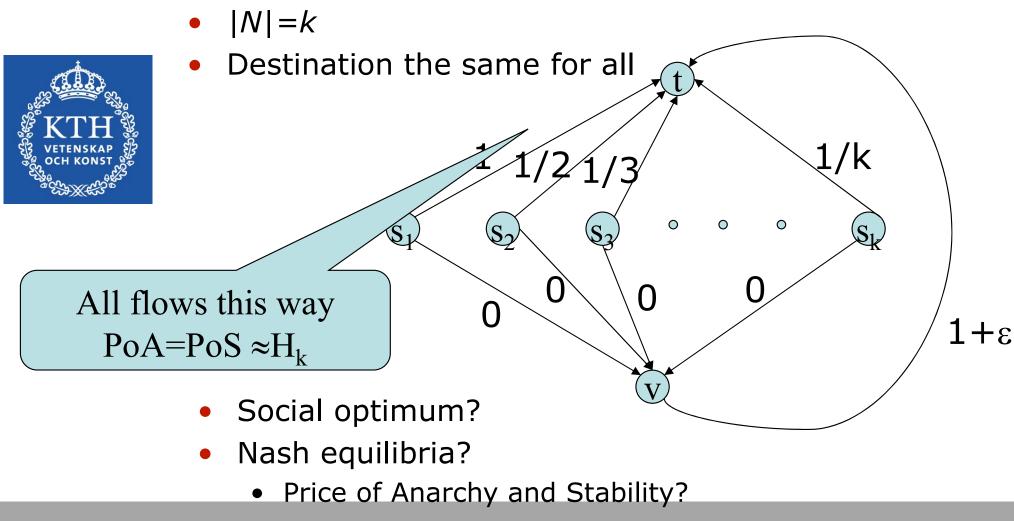
Source and destination the same for all



- Nash equilibria?
 - Price of Anarchy vs. Stability?

Computational Game Theory – P2/2023

Second example



Computational Game Theory – P2/2023

Claim

 Pure strategy equilibria always exist in the Shapley network design game

Exact potential games

- Let $G = \langle N, (A_i), (u_i) \rangle$ be a finite strategic game and $A = x_{i \in N} A_i$.
 - A function $\Psi: A \rightarrow R$ is an exact potential for G if

$$\psi(a_{-i}, b_i) - \psi(a_{-i}, a_i) = u_i(a_{-i}, b_i) - u_i(a_{-i}, a_i)$$

$$\forall a \in A, \forall a_i, b_i \in A_i$$

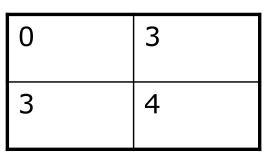
 A game G=<N,(A_i),(u_i)> is called an exact potential game if it admits an exact potential.

An example

Prisoner's dilemma

	Do not confess	Confess
Do not confess	6,6	0,9
Confess	9,0	1,1

• And its exact potential



Weighted potential games

- Let $G = \langle N, (A_i), (u_i) \rangle$ be a finite strategic game and $A = x_{i \in N} A_i$.
- A function $\Psi: A \rightarrow R$ is a weighted potential for G if

$$\psi(a_{-i}, b_i) - \psi(a_{-i}, a_i) = w_i(u_i(a_{-i}, b_i) - u_i(a_{-i}, a_i)) \\ \forall a \in A, \forall a_i, b_i \in A_i, w_i > 0$$

- A game $G = \langle N, (A_i), (u_i) \rangle$ is called a weighted potential game if it admits a weighted potential.
- Inclusion
 - Every exact potential game is a weighted potential game.

Ordinal potential games

- Let $G = \langle N_i(A_i), (u_i) \rangle$ be a finite strategic game and $A = x_{i \in N} A_i$.
- A function $\Psi: A \rightarrow R$ is an ordinal potential for G if

$$\psi(a_{-i}, b_i) - \psi(a_{-i}, a_i) > 0 \Leftrightarrow u_i(a_{-i}, b_i) - u_i(a_{-i}, a_i) > 0$$

$$\forall a \in A, \forall a_i, b_i \in A_i$$

- A game $G = \langle N, (A_i), (u_i) \rangle$ is called an ordinal potential game if it admits an ordinal potential.
- Inclusion
 - Every weighted potential game is an ordinal potential game.

Another example

• Battle of the Sexes

	Theatre	Sports
Sports	3,2	0,0
Theatre	0,0	2,3

• And its ordinal potential

2	0
0	2

Existence of equilibria

Let Ψ be an ordinal potential for $G = \langle N, (A_i), (u_i) \rangle$. The equilibrium set of G coincides with that of $\langle N, (A_i), (\Psi) \rangle$. That is,

 $a \in A$ is a NE of $G \Leftrightarrow \Psi(a_{i}, a_{i}) \geq \Psi(a_{i}, a_{i}')$ for $a_{i}' \in A_{i}$

- If Ψ admits a maximum value in A, then G possesses a pure strategy Nash equilibrium.
- Proof

$$\psi(a_{-i}, b_i) - \psi(a_{-i}, a_i) > 0 \Leftrightarrow u_i(a_{-i}, b_i) - u_i(a_{-i}, a_i) > 0$$

$$\forall a \in A, \forall a_i, b_i \in A_i$$

Consider $a \in A$ for which $\Psi(a)$ is maximal. For any $a' = (a_{-i}, a_i')$ we have $\Psi(a_{-i}, a_i) \ge \Psi(a_{-i}, a_i')$ and hence $u_i(a_{-i}, a_i) \ge u_i(a_{-i}, a_i')$

- Consequence:
 - Every finite ordinal potential game possesses a pure-strategy Nash equilibrium

Example continued: SND game

- Consider the SND game $\langle N, (A_i), (u_i) \rangle$
- Define for each $e \in E$

$$\Psi_e(a) = c_e H_{k_e}$$

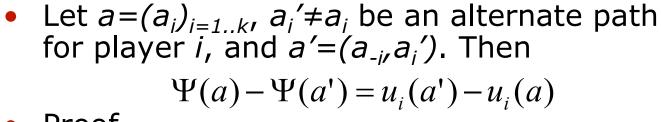
 $k_e = \#$ of players for which $e \in a_i$ $H_k = \sum_{j=1}^k \frac{1}{j}$

Define the function

$$\Psi(a) = \sum_{e} \Psi_{e}(a)$$

• $\Psi(a)$ is an exact potential for the SND game

Example continued: SND game II



• Proof

$$e \in a_i, e \in a_i' \text{ or } e \notin a_i, e \notin a_i' \rightarrow \begin{cases} \psi_e(a) = \psi_e(a') \\ c_e / k_e \mid_{a_i} = c_e / k_e \mid_{a_i'} \end{cases}$$

$$e \in a_{i}, e \notin a_{i}' \rightarrow \begin{cases} \psi_{e}(a') = \psi_{e}(a) - c_{e} / k_{e} \\ u_{i}(a') = u_{i}(a) + c_{e} / k_{e} \end{cases}$$
$$e \notin a_{i}, e \in a_{i}' \rightarrow \begin{cases} \psi_{e}(a') = \psi_{e}(a) + c_{e} / (k_{e} + 1) \\ u_{i}(a') = u_{i}(a) - c_{e} / (k_{e} + 1) \end{cases}$$

Furthermore

 $\cot(a) \le \Psi(a) \le H_k \cot(a)$

Computational Game Theory – P2/2023

Price of stability

• Let $G = \langle N, (A_i), (u_i) \rangle$ be a finite strategic game with exact potential Ψ such that

 $\frac{\cot(a)}{C} \le \Psi(a) \le D \cot(a)$

for some constants C, D > 0. Then $PoS \le C \times D$.

- Proof
 - Let $a^* \in A$ be a local maximizer of $\Psi \Rightarrow a^*$ is NE
 - Let \hat{a} be a global maximizer of Ψ

$$\begin{array}{c} D \operatorname{cost}(\hat{a}) \geq \Psi(\hat{a}) \\ \Psi(\hat{a}) \geq \Psi(a^{*}) \\ \Psi(a^{*}) \geq \frac{\operatorname{cost}(a^{*})}{C} \end{array} \end{array} \xrightarrow{D \operatorname{cost}(\hat{a}) \geq \Psi(\hat{a}) \geq \Psi(a^{*}) \geq \frac{\operatorname{cost}(a^{*})}{C} \\ C \times D \operatorname{cost}(\hat{a}) \geq \operatorname{cost}(a^{*}) \\ C \times D \geq \frac{\operatorname{cost}(a^{*})}{\operatorname{cost}(\hat{a})} \end{array}$$

György Dán, https://people.kth.se/~gyuri

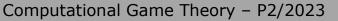
Computational Game Theory - P2/2023

Improvement path

- A path in A is a sequence $\gamma = (a^0, a^1, ...)$ such that for every $k \ge 1$ there is a **unique** player *i* such that $a^k = (a_{-i}^{k-1}, a_i)$ for some $a_i \ne a_i^{k-1}$
- Initial point of γ is a^0
- For finite γ last element called terminal point
- A path $\gamma = (a^0, a^1, ...)$ is an improvement path w.r.t. game $G = \langle N, (A_i), (u_i) \rangle$ if for all $k \ge 1$ $u_i(a^k) > u_i(a^{k-1})$, where player *i* is the unique deviator at step *k*.
 - path generated by *myopic* players
 - "Nash" or "asynchronous better reply" dynamics

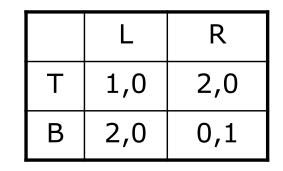
Finite improvement property

- The strategic game G=<N,(A_i),(u_i)> has the finite improvement property (FIP) if every improvement path γ=(a⁰,a¹,...) is finite.
- Every finite ordinal potential game has the FIP.
- Proof
 - By definition $\psi(a^0) < \psi(a^1) < ...$
 - Since *A* is finite, the improvement path must be finite
- In any finite ordinal potential game the asynchronous better reply dynamic always converges to a Nash equilibrium



Generalized Ordinal Potential

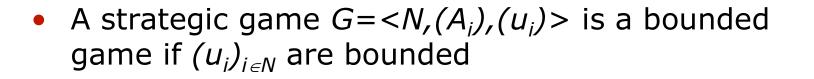
Let $G = \langle N, (A_i), (u_i) \rangle$ be a finite strategic game, and $A = x_{i \in N} A_i$. A function $\Psi: A \to R$ is a generalized ordinal potential for G if $u_i(a_{-i}, b_i) - u_i(a_{-i}, a_i) > 0 \Rightarrow \psi(a_{-i}, b_i) - \psi(a_{-i}, a_i) > 0$ $\forall a \in A, \forall a_i, b_i \in A_i$



0	3
1	2

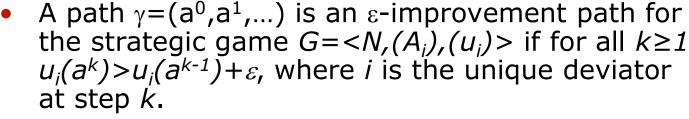
Let G = <N, (A_i), (u_i)> be a finite strategic game.
 G has the FIP property iff G has a generalized ordinal potential.

Infinite potential games



- Every bounded infinite weighted potential game possesses an ε-equilibrium point for every ε>0
- Proof:
 - Ψ is bounded because u_i is bounded, hence $\exists a' \in A \ s.t. \Psi(a') > \sup_{a \in A} \Psi(a) - \varepsilon$

Approximate finite improvement



- ε-Nash dynamics
- The strategic game G=<N,(A_i), (u_i)> has the approximate FIP property if for ∀ε>0 every ε-improvement path is finite.
- Every bounded infinite potential game has the approximate FIP property.

Continuous potential games

- A strategic game G=<N, (A_i), (u_i)> is continuous if A_i are topological spaces, and u_i are continuous w.r.t A=x_{i∈N}A_i.
- Let G=<N,(A_i),(u_i)> be a continuous exact potential game with compact action sets.
 G possesses a pure strategy Nash-equilibrium.

Construction of the potential

• Let $G = \langle N, (A_i), (u_i) \rangle$, $A_i \subset R$ compact, u_i continuously differentiable and $\Psi: A \rightarrow R$.

Then Ψ is a potential for G iff Ψ is continuously differentiable and

$$\frac{\partial u_i}{\partial a_i} = \frac{\partial \Psi}{\partial a_i} \quad \forall i \in N$$

Congestion games

- Set of players N={1,...,n}
- Primary factors $T = \{1, ..., t\}$
- Action set $A_i = \{1, \dots, a_{iJ}\} \subseteq 2^T$
 - Action $a_i \subseteq T$

Same for all players!

Cost of action
$$a_i$$

$$\operatorname{cost}_{i}(a_{-i},a_{i}) = \sum_{\tau \in a_{i}} c_{\tau}^{\not c}(k_{\tau}),$$

where k_{τ} = # of players using factor τ in *a*

Congestion games

 Every congestion game is an exact potential game with potential

$$\Psi(a) = \sum_{\tau \in T} \sum_{y=1}^{k_{\tau}} c(y)$$

 Every finite potential game is isomorphic to a congestion game.

> R.W. Rosenthal, "A Class of Games Possessing Pure-Strategy Nash Equilibria," vol. 2, Int. J. Game Theory, pp. 65–67, 1973 D. Monderer, L.S. Shapley, "Potential Games", Games and Economic Behavior vol. 14., pp. 124-143, 1996

Examples of congestion games

- Selfish routing games
 - Non-atomic
 - Multipath allowed
 - Atomic non-weighted
 - Single path only
 - Same amount of traffic for all players
- Market sharing games
- Load balancing games

Minimum cut problem

- Network of nodes $V \cup \{s\} \cup \{t\}, |V| = m$
- Capacity *c*(*w*,*z*)≥0 for every pair of nodes

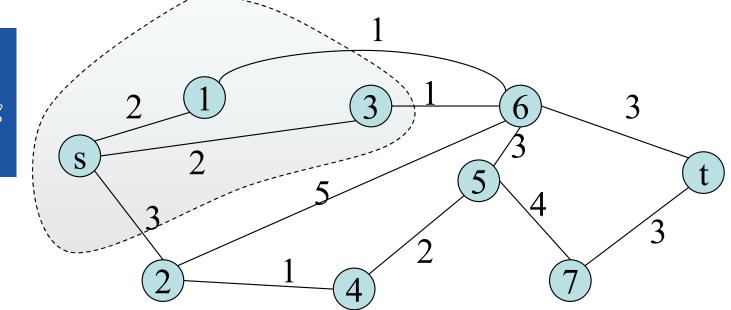
 $(w, z) \in V \cup \{s\} \cup \{t\} \times V \cup \{s\} \cup \{t\}$

- *X* <u></u>*⊂V* then *X ∪*{*s*} is a *cut*
- Cut capacity

$$f(X) = \sum_{w \in X \cup s} \sum_{z \notin X \cup s} c(w, z)$$

• $X^* \cup \{s\}$ is minimum cut if $X^* \subseteq V$ and $f(X^*) \le f(X) \quad \forall X \subseteq V$

Minimum cut problem



• Min-cut: {1,3,s}

Computational Game Theory - P2/2023

Minimum cut game

- Set of players *N*, |*N*|=*n*
 - $V = \bigcup_{i=1..n} V_i, V_i \cap V_j = \emptyset$ for $\forall i \neq j, |V_i| = m_i$
- Action set $A_i = \{X_i : X_i \subseteq V_i\}$
- Capacity function c_i(w,z) (player specific)
- Objective of player *i*

$$\min_{a_i} f_i(X) = f_i(X_i \cup (\bigcup_{i \neq j} X_j))$$

• Claim: The minimum cut game has a pure strategy Nash equilibrium.

Minimum cut game

• $N = \{1,2\}, V_1 = \{1,5,7\}, V_2 = \{2,3,4,6\}$ 2 1 3 1 6 3 s 2 5 5 4 3 t 2 1 4 7

- Min-cut: {1,3,s}
- NE: X₁={1}, X₂={3}

Computational Game Theory – P2/2023

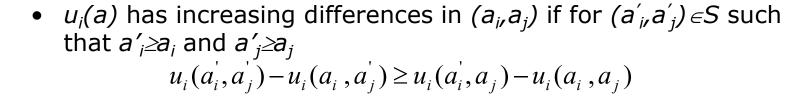
Lattices and Sublattices

- A partially ordered set (A, \geq) is a lattice if
 - for $a, b \in A \exists c \in A \text{ s.t. } a \lor b = c (c \ge a, c \ge b, join)$
 - for $a, b \in A \exists c \in A \text{ s.t. } a \land b = c (a \ge c, b \ge c, meet)$
- A sublattice of a lattice L is a subset of L and itself a lattice with respect to the same and v operators.
- If A is a nonempty compact sublattice of R^m , it has a greatest and a least element.
 - the sublattice A is bounded
 - componentwise partial ordering

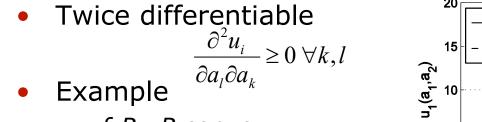
G. Birkhoff, "Lattice theory", American Mathematical Society, 1967

Increasing Differences

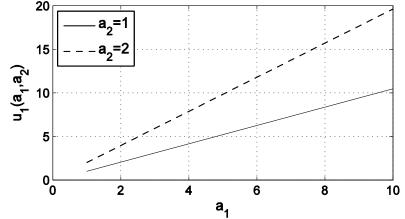
• Let X, T be posets, $S \subseteq X \times T$, $S_t = \{x | (x, t) \in S\}$

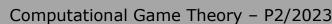


- Let A_i be poset, $A \subseteq \times A_i$
 - *u_i(a)* has increasing differences on *A* if it has increasing differences in all (*a_i*, *a_j*) for *i*≠*j* and fixed *a_{-i,j}*



- $f:R \rightarrow R \text{ convex}$ $u_i(a) = f(\prod_{i=1}^{|N|} a_i)$
 - *Strictly* increasing





Supermodular Functions

- $u_i(a_{-i}, a_i)$ is supermodular on A_i (lattice) if for $a_i, a^*_i \in A_i$ and $\forall a_{-i} \in A_{-i}$ $u_i(a_{-i}, a_i) + u_i(a_{-i}, a^*_i) \le u_i(a_{-i}, a_i \land a^*_i) + u_i(a_{-i}, a_i \lor a^*_i)$
- $u_i(a_{-i}, a_i)$ is strictly supermodular on A_i if for $a_i, a^*_i \in A_i$ and $\forall a_{-i} \in A_{-i}$ $u_i(a_{-i}, a_i) + u_i(a_{-i}, a^*_i) < u_i(a_{-i}, a_i \wedge a^*_i) + u_i(a_{-i}, a_i \vee a^*_i)$ whenever a_i and a^*_i are not comparable w.r.t \geq
- $u_i(a)$ is supermodular on A (lattice) if for $a_i a^* \in A$

$$u_i(a) + u_i(a^*) \le u_i(a \land a^*) + u_i(a \lor a^*)$$

Substitute:

Submodular Functions

- $u_i(a_{-i}, a_i)$ is submodular on A_i (lattice) if for $a_i, a^*_i \in A_i$ and $\forall a_{-i} \in A_{-i}$ $u_i(a_{-i}, a_i) + u_i(a_{-i}, a_i^*) \ge u_i(a_{-i}, a_i \land a_i^*) + u_i(a_{-i}, a_i \lor a_i^*)$
- Alternative definition
 - Let f bet set function defined on S, and X \subseteq Y \subseteq S. Then f is submodular if $\forall x \in$ S\Y $f(X \cup \{x\}) - f(X) \ge f(Y \cup \{x\}) - f(Y)$
- Example
 - Let Q matrix with column set B. For X⊆B let r(X) be the rank of matrix formed by X. r(x) is submodular.

Supermodularity ⇒ Increasing differences

- Let A_i lattice, A sublattice of $\times A_i$
- If u_i(a) is supermodular on A then it has increasing differences on A

take
$$a'_{i} \ge a_{i}$$
 and $a'_{-i} \ge a_{-i}$ and $x = (a_{-i}, a'_{i}), y = (a'_{-i}, a_{i})$
 $u_{i}(x) + u_{i}(y) \le u_{i}(x \land y) + u_{i}(x \lor y)$
 $x \lor y = (a'_{-i}, a'_{i})$
 $x \land y = (a_{-i}, a_{i})$
 $u_{i}(a'_{-i}, a'_{i}) - u_{i}(a'_{-i}, a_{i}) \ge u_{i}(a_{-i}, a'_{i}) - u_{i}(a_{-i}, a_{i})$

Partial Ordering of Sublattices

- Let *X*, *Y* be nonempty sublattices of *E*^{*n*}
 - Partial ordering *⊴*

 $X \leq^{p} Y$ if $x \land y \in X$ and $x \lor y \in Y$ $\forall x \in X, y \in Y$

Y

Let X_y be collection of nonempty sublattices of E^n for $y \in Y \subseteq E^m$

• X_{y} is ascending on Y if $X_{y} \leq X_{w}$ for $y \leq w$

Χ

- Let X_{y} be lower/upper contour set on sublattice of E^{n}
 - X_y is ascending in y

D.M. Topkis, "Equilibrium points in nonzero-sum nperson submodular games", SIAM J. Control and Optimization 17(6), pp.773-787, 1979.
György Dán, https://people.kth.se/~gyuri

Computational Game Theory – P2/2023

Topkis's Theorem

- ASCE diffe KTH VETENSKAP OCH KONST
- Let D be a lattice (independent of θ, or ascending in θ). If f has increasing differences in (x, θ) and is supermodular in x then

 $x^* = \underset{x \in D}{\arg\max} f(x, \theta)$

is increasing in the strong set order.

D.M. Topkis, "Equilibrium points in nonzero-sum nperson submodular games", SIAM J. Control and Optimization 17(6), pp.773-787, 1979.
György Dán, https://people.kth.se/~gyuri

Computational Game Theory – P2/2023

Supermodular games

- Strategic game $G = \langle N, (A_i), (u_i) \rangle$ is (strictly) supermodular if
 - *A_i* is a non-empty sublattice of a Euclidean space
 - u_i has (strictly) increasing differences in (a_{-i}, a_i)
 - *u_i* is (strictly) supermodular on *A_i*

Existence of equilibria

- Let $G = \langle N_i(A_i), (u_i) \rangle$ be a supermodular game,
 - A_i compact, and
 - *u_i* upper-semicontinuous in *a_i* for each *a_{-i}*,

then the set of pure strategy NE is nonempty and possesses greatest and least elements.

$$\limsup_{x \to x_0} f(x) \le f(x_0)$$

D.M. Topkis, "Equilibrium points in nonzero-sum nperson submodular games", SIAM J. Control and Optimization 17(6), pp.773-787, 1979. György Dán, https://people.kth.se/~gyuri

Computational Game Theory – P2/2023

Example – Min-cut game rev.

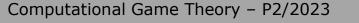
• Set of actions $A_i = 2^{V_i}$ (power set of V_i)

- Lattice with respect to inclusion, union, intersection
- f(X) is submodular on A $f(S) + f(T) \ge f(S \cap T) + f(S \cup T)$ $f(S) + f(T) f(S \cap T) f(S \cup T) =$ $= c(A(S:T)) + c(A(T:S)) \ge 0$

where $A(X : Y) = \{(i, j) \in E : i \in X, j \in Y\}$

• $f_i(X)$ is submodular on X_i

D.M. Topkis, "Ordered optimal solutions", PhD thesis, U. of Stanford, 1968



Convergence to Equilibria

- Let G be a supermodular game and let
 - A_i compact,
 - u_i upper-semicontinuous on $A_i(a_{-i}) \forall a_{-i} \in A_i$
 - (the best response correspondences B_i(a_{-i}) have the ascending property)

then the best response dynamic converges to a pure Nash equilibrium (starting from least element)

 Similar result holds for submodular games (descending property)
 D.M. Topkis, "Equilibrium point

D.M. Topkis, "Equilibrium points in nonzero-sum nperson submodular games", SIAM J. Control and Optimization 17(6), pp.773-787, 1979.

Computational Game Theory – P2/2023

Super- and submodular games



- Strategic complements
- Minimum cut game (e.g., choosing activities)
- Facility location problem
- Steiner tree in a graph (minimum spanning tree)
- Submodular games
 - Strategic substitutes
- Mixture of submodular and supermodular
 - S-modular

Literature

- D. Fudenberg, J. Tirole, "Game Theory", MIT press, 1991
- N. Nisan, T. Roughgarden, É. Tardos, V.V. Vazirani, "Algorithmic Game Theory", Cambridge University Press, 2007
- D. Monderer, L.S. Shapley, "Potential Games", Games and Economic Behavior vol 14., pp. 124-143, 1996
- R.W. Rosenthal, "A Class of Games Possessing Pure-Strategy Nash Equilibria," vol. 2, Int. J. Game Theory, pp. 65–67, 1973
- C. Daskalakis, P.W. Goldberg, C.H. Papadimitriou, "The complexity of computing a Nash equilibrium", in Proc. of ACM STOC, pp. 71-78, 2006
- D.M. Topkis, "Equilibrium points in nonzero-sum n-person submodular games", SIAM J. Control and Optimization 17(6), pp.773-787, 1979.
- D.M. Topkis, "Supermodularity and complementarity", Princeton Univ. Press., 1998

