Computational Game Theory

Lecture 7

P2/2023

György Dán

Division of Network and Systems Engineering

Computational Game Theory – P2/2023

Dynamic games

- Players make decisions at different points in time
- Extensive game
 - Players make decisions one by one (approx)
 - Can learn about the environment and others' choices
- Repeated game
 - Players play multiple strategic games
 - Decision is influenced by the history
 - Extension of extensive game
- Other forms of dynamic games
 - Stochastic game
 - Differential game

Extensive game w. perfect inf.

- A set of players *N*
 - A set of actions for each player A
 - A predefined sequence of choosing actions
 - Previous choices are known to all players
- Sequence h of actions called history
 - $(a^k)_{k=1...K} \in Z \subseteq H$ terminal history if
 - *K* is infinite
 - $\neg \exists a^{K+1} s.t. (a^k)_{k=1..K+1} \in H$
- The history is
 - finite if $|H| < \infty$
 - finite horizon if longest *h* ∈*H* is finite

A 2-Player Extensive Game

Computational Game Theory - P2/2023

Extensive game - definition

- An extensive game with perfect information $G = \langle N, H, P, \geq_i \rangle$ consists of
 - A set *N* of players
 - A set *H* of sequences (histories) that satisfies
 - Ø∈**H**
 - if $(a^k)_{k=1...K} \in H$ and $L < K \Rightarrow (a^k)_{k=1...L} \in H$
 - if $(a^k)_{k=1}^{\infty}$ satisfies $(a^k)_{k=1...L} \in H$ for $\forall L > 0 \implies (a^k)_{k=1}^{\infty} \in H$
 - A function $P:H\setminus Z \rightarrow N$ (player function)
 - A preference relation \geq_i on Z for $\forall i \in N$
- Similar to strategic games, \geq_i may be represented by $u_i: Z \rightarrow R$
- Set of actions implicitly defined

 $A(h) = \{a : (h,a) \in H\}$

Example I - Definition

- Set of players N={1,2}
- Player function $P(\emptyset)=1$, P((2:0))=P((1:1))=P((0:2))=2
 - Set of histories $H = \{ \emptyset, (2:0), (1:1), (0:2), ((2:0), y), ((2:0), n), ((1:1), y), ((1:1), n), ((0:2), y), ((0:2), n) \}$

Example I – Definition contd.

Preference relations $((2:0), y) \succ_1 ((1;1), y) \succ_1 ((0:2), y) \sim_1 ((2:0), n) \sim_1 ((1:1), n) \sim_1 ((0:2), n)$ $((0:2), y) \succ_2 ((1:1), y) \succ_2 ((2:0), y) \sim_2 ((2:0), n) \sim_2 ((1:1), n) \sim_2 ((0:2), n)$ (0:2)(2:0)(1:1)y n n 1,1 0,0 0,2 0,0 0,02,0

Strategies

- A strategy of player $i \in N$ in the extensive game with perfect information $G = \langle N, H, P, \rangle_i \rangle$ is a function that assigns an action in A(h) to every history in $\{h \in H \setminus Z: P(h) = i\}$
 - Strategy depends on N,H,P
- Example strategies:
 - Player 1: (2:0), (1:1), (0:2)
 - Player 2: (y,y,y), (y,y,n), (y,n,n), (y,n,y), (n,y,n), (n,y,y), (n,n,y), (n,n,n)

Outcomes

- The outcome O(s) of a strategy profile (s_i)_{i∈N} in the extensive game with perfect information
 G=<N,H,P, ≥_i > is the terminal history h∈Z that results
 if every player follows its strategy s_i.
- $O(s) = (a^1, a^2, \dots a^K) \in Z$ such that

$$s_{P(a^1,...,a^k)}(a^1,...,a^k) = a^{k+1} \quad 0 \le k \le K$$

Example I contd.

• What is the solution of the game?

KTH VETENSKAP OCH KONST

Nash equilibrium

 A Nash equilibrium of an extensive game with perfect information G=<N,H,P, ≥_i> is a strategy profile s^{*} such that for ∀i∈N

$$O(s_{-i}^*, s_i^*) \succeq_i O(s_{-i}^*, s_i) \quad \forall s_i$$

- A Nash equilibrium of an extensive game with perfect information $G = \langle N, H, P, \geq_i \rangle$ is the Nash equilibrium of the strategic game $G^* = \langle N, (A_i), (\geq_i') \rangle$ given as
 - $A_i = S_i$
 - $a \geq_i' a' \Leftrightarrow O(s_i, s_{-i}) \succeq_i O(s_i', s_{-i}) \quad \forall s, s' \in S = \times_{i \in N} S_i$

Example I revisited

		(y,y,y)	(y,y,n)	(y,n,n)	(y,n,y)	(n,y,n)	(n,y,y)	(n,n,y)	(n,n,n)
	(2:0)	2,0	2,0	2,0	2,0	0,0	0,0	0,0	0,0
	(1:1)	1,1	1,1	0,0	0,0	1,1	1,1	0,0	0,0
	(0:2)	0,2	0,0	0,0	0,2	0,0	0,2	0,2	0,0

Another example (II)

- N={1,2}
- H={∅, (A),(B),(A,C),(A,D),(A,C,E),(A,C,F)}
- P(∅)=1,P(A)=2,P((A,C))=1
- Strategies
 - S₁={(A,E),(A,F),(B,E),(B,F)}
 - S₂={(C),(D)}
- Strategy is not necessarily consistent
 - Outcomes are indifferent
- Corresponding strategic game

György Dán, https://people.kth.se/~gyuri

B

Α

F

D

С

С

Reduced strategy

- The reduced strategy of player *i* in an extensive game 1 with perfect information $G = \langle N, H, P, \geq_i \rangle$ is a function f_i such that
 - its domain is $dom(f_i) \subseteq \{h \in H: P(h) = i\}$
 - $h \in dom(f_i) \Leftrightarrow h = (a^k)$ and for all its subsequences $h' = (a^k)_{k=1...L}$ with P(h') = i we have $f_i(h') = a_{L+1}$
- Example II reduced strategies
 - Player 1
 - f₁(∅)=B
 - f₁(∅)=A and f₁((A,C))=E
 - f₁(∅)=A and f₁((A,C))=F
 - Player 2
 - f₂(A)=C
 - f₂(A)=D

E

a

D

()

F

Reduced strategic form

For $i \in N$ actions $a_i \in A_i$ and $a'_i \in A_i$ are equivalent if for $\forall a_{-i} \in A_{-i}$ we have $(a_{-i}, a_i) \sim_j (a_{-i}, a'_i)$ for every $j \in N$.

KTH VETENSKAP OCH KONST

Computational Game Theory – P2/2023

A similar example (III)

- N={1,2}
- H={∅,B,T,(T,L),(T,R)}
- P(∅)=1, P(T)=2
- Nash equilibria?
 - Strategic form

(T,R) (B,L)

	L	R
Т	0,0	2,1
В	1,2	1,2

• Reduced strategic form

	L	R
Т	0,0	2,1
В	1,2	1,2

L R 1,2 0,0 2,1

More suitable equilibrium

Computational Game Theory – P2/2023

György Dán, https://people.kth.se/~gyuri

concept?

Subgame of a game

- $H|_{h} = \{h': (h, h') \in H\},\$
- $P|_h(h')=P(h,h')$ for $h' \in H|_h$,
- $h' \geq_{i|h} h'' \Leftrightarrow (h,h') \geq_i (h,h'')$

Computational Game Theory – P2/2023

Subgame perfect equilibrium

A subgame perfect equilibrium of an extensive game with perfect information $G = \langle N, H, P, \rangle_i \rangle$ is a strategy profile s^* such that for every player $i \in N$ and every nonterminal history $h \in H \setminus Z$ for which P(h) = i

 $O(s_{-i}^*|_h, s_i^*|_h) \succeq_i|_h O(s_{-i}^*|_h, s_i) \quad \forall s_i$

for every strategy s_i of player *i* in the subgame G(h).

- Example:
 - The NE of the game were
 - (B,L)
 - (T,R)
 - What are the SPE of the game?
 - what are the nonterminal histories?

György Dán, https://people.kth.se/~gyuri

L

B

R

One deviation principle

Let $G = \langle N, H, P, \geq_i \rangle$ be a finite horizon extensive game with perfect information. The strategy profile s^* is a SPE of G iff for every player *i* and every history $h \in H$ for which P(h) = i we have

 $O(s_{-i}^*|_h, s_i^*|_h) \succeq_i|_h O(s_{-i}^*|_h, s_i) \quad \forall s_i$

for every strategy s_i of player *i* in the subgame G(h) that differs from $S_i \mid_h$ only in the action it prescribes after the initial history of G(h).

- Consequence
 - Can find the SPE of a finite horizon game with backwards induction (and some patience)

Existence and uniqueness of SPE

 Every finite extensive game with perfect information has a SPE.

• Proof

Use the one deviation principle to construct a SPE from every terminal history $h \in Z$

- If none of the players is indifferent between any two outcomes then the SPE is unique.
- Q: What about finite/infinite horizon?

Example I again

• What are the SPE of the game?

Iterated elimination of weakly dominated actions and SPE

- For a finite extensive game with perfect information and no indifferent outcomes the IEWDA in the strategic form of the game *can* lead to the unique SPE
 - depends on the order of elimination
- Example
 - What is the SPE?
 - What is the order of IEWDA?

B

Computational Game Theory – P2/2023

Some extensions

- Introduce an "environment" player c
 - P(h)=c for some $h \in H \setminus Z$
 - *c* picks action from $A_c(h)$ at random (with density $f_c(h)$)
 - preferences interpreted over lotteries
 - called chance moves
- Imperfect information
 - Players may not know other players' past actions
 - Notion of *information set*
- Introduce simultaneous moves
 - P(h)⊆N
 - History $h \in H$ is a sequence of vectors

Mixed vs. Behavioral strategies

- Does not lead to new solutions
- Mixed strategy of player *i*
 - Probability measure over the set of player *i*'s pure strategies
- Behavioral strategy of player *i*
 - Collection of independent probability measures over the sets of possible actions for each non-terminal history
- Kuhn's theorem: In an extensive game of perfect recall for every mixed strategy there is a behavioral strategy that yields the same payoff to every player.

Example

- Player 1's pure strategies
 - (R,I,I), (R,I,r),(R,r,I),(R,r,r)
 (L,I,I), (L,I,r),(L,r,I),(L,r,r)
- Player 2's pure strategies
 - (A), (B)
- Player 1's mixed strategies
 - $\alpha_{11},\ldots,\alpha_{18}$
- Player 2's mixed strategies
 - α₂₁, α₂₂
- Player 1's behavioral strategies
 - α₁₁₁, α₁₁₂
 - α₁₂₁, α₁₂₂
 - α₁₃₁, α₁₃₂
- Player 2's behavioral strategies
 - α₂₁, α₂₂

A last example

- Slightly modified BoS game
- Player 1 can burn a dollar bill before
- What is the SPE?

	BB	BS	SB	SS
0B	3,1	3,1	0,0	0,0
0S	0,0	0,0	1,3	1,3
BB	2,1	-1,0	2,1	-1,0
BS	-1,0	0,3	-1,0	0,3

 $u_1(h) \ge 3/4$

0

	В	S
В	2,1	-1,0
S	-1,0	0,3

B

Repeated games

- A set of players N
- A set of actions for each player A
- Players play the "constituent" strategic game repeatedly
- Number of times the game is played can be
 - infinite
 - finite
- Objective vs. subjective number of repetitions
- Formally
 - Extensive game with simultaneous moves

Infinitely Repeated Game

- $H = \{\emptyset\} \cup \{\bigcup_{t=1}^{\infty} A^t\} \cup A^{\infty}$
- $P(h) = N \forall t$
- \geq_i^* is a preference relation on A^{∞} that satisfies the condition of weak separability, i.e., if $(a^t) \in A^{\infty}$, $a, a' \in A$, and $a \geq_i a'$ $(a^1, \dots, a^{t-1}, a, a^{t+1}, \dots) \ge_i (a^1, \dots, a^{t-1}, a', a^{t+1}, \dots)$
- Strategy of player *i* assigns an action to every $h \in H \setminus Z$ $(Z=A^{\infty})$

Preference relations

- Preference relation \geq_i^* based on the payoff u_i in G
 - assume u_i is bounded
- Payoff profile of G

$$v = \underline{u}(a) = (u_1(a), \dots, u_{|N|}(a)) \quad for \quad a \in A$$

v is a feasible payoff profile of G if

$$v = \sum_{a} \lambda_{a} \underline{u}(a), \quad \sum_{a} \lambda_{a} = 1$$

- How can strategies be compared?
 - Payoffs have "time" dimension
 - (0,0,1,0,0,0,....) (0,1,0,0,0,0,....) ???
 - Model different forms of "human" preferences
 - compare sequences of payoffs

δ -discounted criterion

Payoff profile in the repeated game

$$\sum_{t=1}^{\infty} \delta^{t-1} v_i^t \quad \delta \in (0,1)$$

- Preference relation defined as $(v^t) \succeq_i^* (w^t) \Leftrightarrow \sum_{t=1}^{\infty} \delta^{t-1} (v_i^t - w_i^t) \ge 0 \quad \delta \in (0,1)$
- δ -discounted infinitely repeated game of $G = \langle N, (A_i), (u_i) \rangle$

$$(1,1,1,0,0,0,...) \succ (0,0,0,2,2,2,2,...) \qquad \delta < \sqrt[3]{\frac{1}{3}} \\ (0,0,0,2,2,2,2,...) \succ (1,1,1,0,0,0,...) \qquad \delta > \sqrt[3]{\frac{1}{3}}$$

Computational

Limit of means criterion

Payoff profile in the repeated game

• Preference relation defined as

$$(v^t) \succ_i^* (w^t) \Leftrightarrow \liminf_{T \to \infty} \frac{1}{T} \sum_{t=1}^T (v_i^t - w_i^t) > 0$$

• Limit of means infinitely repeated game of $G = \langle N, (A_i), (u_i) \rangle$

 $(0,...,0,2,2,2,2,...) \succ (1,1,1,...,1,0,0,0,...)$ $(-1,2,0,...) \sim (0,...)$

Computational Game Theory – P2/2023

Overtaking criterion

• Payoff profile in the repeated game

Preference relation defined as

 $\sum_{t=1}^{\infty} (v_i^t)$

$$(v^t) \succ_i^* (w^t) \Leftrightarrow \liminf_{T \to \infty} \sum_{t=1}^T (v_i^t - w_i^t) > 0$$

• Overtaking infinitely repeated game of $G = \langle N, (A_i), (u_i) \rangle$

 $(1,-1,0,\ldots) \sim (0,\ldots)$ $(-1,2,0,\ldots) \succ (0,\ldots)$

Famous example

• Infinitely repeated prisoner's dilemma

Constituent game

	Do not confess	Confess
Do not confess	3,3	0,4
Confess	4,0	1,1

- Should the players play the NE of the constituent game?
 - Is that a NE?
- What is a subgame perfect equilibrium?
- What payoff profiles should we expect?

Folk theorems

- Characterize the set of payoff profiles of the repeated game
 - Nash equilibrium
 - Subgame perfect equilibrium
- Proofs constructive
 - Strategies that lead to the profile
 - Strategies often described as state machines
 - finite
 - infinite
- Not strong results
 - depend on the criterion used

The worst outcome: Minmax

Player *i*'s <u>minmax</u> payoff: The lowest payoff that other players can force upon player *i*

 $v_i = \min_{a_{-i} \in A_{-i}} \max_{a_i \in A_i} u_i(a_{-i}, a_i)$

- Use it as a threat
 - *p*_{-*i*} is the most severe punishment
 - $B_i(p_{-i})$ are the best responses to the punishment
- Enforceable payoff profile (and corresponding outcome *a*) $w_i \ge v_i \quad i \in N$
- Strictly enforceable payoff profile (and outcome *a*) $w_i > v_i \quad i \in N$

Example (mixed vs. pure)

- Pure strategies
 - *v*₁=1, *v*₂=1
- Mixed strategies
 - Player 1's minmax payoff

 $v_{T}(q) = -3q + 1$ $v_{M}(q) = 3q - 2$

• q=α₂(L)

	L	R
Т	-2,2	1,-2
М	1,-2	-2,2
В	0,1	0,1

• Minimize max(v_T, v_M, v_B) - $q=0.5 \rightarrow v_T = v_M = -0.5, v_1 = v_B = 0$

• $p_T = \alpha_1(T), p_M = \alpha_1(M)$

$$v_{L}(p_{T}, p_{M}) = 2(p_{T} - p_{M}) + (1 - p_{T} - p_{M})$$

 $v_{R}(p_{T}, p_{M}) = -2(p_{T} - p_{M}) + (1 - p_{T} - p_{M})$

• Minimize max(v_L, v_R) - $p_T=0.5$, $p_M=0.5 \rightarrow v_2=v_L=v_R=0$

Computational Game Theory - P2/2023

The worst outcome

- Every Nash equilibrium payoff profile of the repeated game of G = <N, (A_i), (u_i) > is an <u>enforceable payoff profile</u> of G
 - for the limit of means criterion
 - for the δ -discounting criterion ($\delta \in (0,1)$)
- Proof:

Assume s^* is NE and $w_i < v_i$ for player *i* (i.e., not enforcable)

Then s_i^* can be improved $s_i'(h) \in B_i(s_i(h)) \implies w_i \ge v_i \implies s^*$ is not a NE

Nash folk theorems

- <u>Limit of means</u>: Every <u>feasible enforceable</u> payoff profile of $G = \langle N, (A_i), (u_i) \rangle$ is a NE payoff profile for the limit of means infinitely repeated game of G.
 - play each outcome *a* for β_a number of times in every cycle of rounds

$$w = \sum_{a \in A} \frac{\beta_a}{\gamma} u(a), \text{ where } \gamma = \sum_{a \in A} \beta_a$$

- players j ≠i punish player i who first deviates from this strategy by playing (p_{-i})_j forever
 - player *i* loses by deviating $\Rightarrow NE$
- <u> δ -discounted</u>: Let w be a <u>feasible strictly enforceable payoff</u> profile of $G = \langle N, (A_i), (u_i) \rangle$. Then $\forall \varepsilon > 0 \exists \delta^* < 1$ s.t. if $\delta > \delta^*$ then the δ -discounted infinitely repeated game of G has a NE with payoff profile $w', |w-w'| < \varepsilon$.

Plausibility

• Consider these two constituent games

- Threat is not credible
 - Punishes the punisher

Perfect folk theorems

- Punishment phase should not punish the punisher
 - Punish deviation for a limited amount of time
 - Just enough to cancel out the gain of the deviation
 - Compensate the punisher if needed
- PFT for limit of means criterion
 - Every <u>strictly enforceable feasible</u> payoff profile
 - Punish for a limited length of time
- PFT for overtaking criterion
 - Any <u>strictly enforceable</u> outcome a*
 - Punish for a limited length of time and punish misbehaving punishers

PFT for the discounting criterion

- Let a^* be a <u>strictly enforceable</u> outcome of $G = \langle N, (A_i), (u_i) \rangle$. Assume that there is a collection $(a(i))_{i \in N}$ of strictly enforceable outcomes of G s.t.
 - $a^* \succ_i a(i)$
 - $a(j) \succ_i a(i)$

for all $j \in N \setminus \{i\}$. Then $\exists \delta^* < 1$ s.t. $\forall \delta > \delta^*$ there is a subgame perfect equilibrium of the δ -discounted infinitely repeated game of G that generates the path (a^t) in which $a^t = a^*$ for $\forall t$

• Proof:

- Start with profile a*
- Punish deviation of player j
 - Play (p_{-j},B_j(p_{-j})) for a period L large enough
 - Then choose outcome *a*(*j*)
 - Unless a punisher *k* misbehaves
 - choose a(k) for period L to punish the misbehaving
 punisher

D. Fudenberg, E.S.Maskin, "The folk theorem in repeated games with discounting or with incomplete information", Econometrica, vol. 54, pp. 533-554, 1986

Computational Game Theory – P2/2023

Computational Game Theory – P2/2023

PFT for the discounting criterion

- Deter player *i* from deviating from outcome a(j)
- KTH VETENSKAP OCH KONST

• Choose *L* large enough $M - u_i(a(j)) < L(u_i(a(j)) - v_i) \quad \forall i \in N, j \in \{0\} \cup N$ *Gain from deviation* • Choose $\delta < 1$ s.t. for $\delta > \delta$ $M - u_i(a(j)) < \sum_{k=2}^{L+1} \delta^{k-1}(u_i(a(j)) - v_i)$ *Gain from deviation Discounted loss of payoff during punishment*

- Deter punisher from deviating from the punishment rule
 - Choose $\delta^* > \delta' s.t.$ for $\delta > \delta^*$

$$\sum_{k=1}^{L} \delta^{k-1} \left(M - u_i(p_{-j}, b_j(p_{-j})) \right) < \sum_{k=L+1}^{\infty} \delta^{k-1}(u_i(a(j)) - u_i(a(i)))$$

Deviation gain for the punisher Potential punishment of the punisher

D. Fudenberg, E.S.Maskin, "The folk theorem in repeated games with discounting or with incomplete information", Econometrica, vol. 54, pp. 533-554, 1986

Computational Game Theory – P2/2023

Some extensions to infinitely repeated games

- Long run and short run players
- Overlapping generations of players
- Randomly matched opponents

Finitely repeated games

Let $G = \langle N, (A_i), \geq_i \rangle$ be a strategic game, A_i is compact, and \geq_i is continuous. A repeated game of G is an extensive game with perfect information and simultaneous moves $G = \langle N, H, P, \geq_i^* \rangle$ in which

•
$$H = \{ \varnothing \} \cup \left\{ \bigcup_{t=1}^{T} A^{t} \right\}$$

- *P*(*h*)=*N*
- \geq_i^* is a preference relation on A^T that satisfies the condition of weak separability, i.e., for $\forall t$

 $(a^{t}) \in A^{T}, a \in A, a' \in A, a \succeq_{i}^{*} a' \Longrightarrow (a^{1}, ..., a^{t-1}, a, a^{t+1}, ...) \succeq_{i}^{*} (a^{1}, ..., a^{t-1}, a', a^{t+1}, ...)$

- Strategy of player *i* assigns an action to every $h \in H \setminus Z$
- Preference relation (similar to limit of means)

$$(v^t) \succ_i^* (w^t) \Leftrightarrow \frac{1}{T} \sum_{t=1}^T (v_i^t - w_i^t) > 0$$

• T period finitely repeated game

Example

• Finitely repeated PD

	Do not confess	Confess
Do not confess	3,3	0,4
Confess	4,0	1,1

• Should the players play the NE of the constituent game?

Another example

• Modified PD

	L	Μ	R
Т	3,3	0,4	0,0
С	4,0	1,1	0,0
В	0,0	0,0	0.5,0.5

Should the players play the NE of the constituent game?

Minmax payoffs in all NE

- If the **payoff profile in every NE** of the constituent game G is the profile (v_i) of **minmax payoffs** in G then for any value of T the outcome $(a^1,...,a^T)$ of every NE of the T-period repeated game of G is such that a^t is a NE of G for t=1,...,T.
 - Proof: by contradiction. If not all actions are NE, player *i* can improve by exchanging the last non-NE action to the NE, and then play $B_i(p_{-i})$.
- If the constituent game G has a **unique NE payoff profile** then for any T the **action profile** chosen after any history in any SPE of the T-period finitely repeated game of G **is a NE of G**.
 - Proof: by induction, the last period has to be a NE, etc.

Nash folk theorem

 If the constituent game G has a NE a* s.t. u_i(a*)>v_i then for any <u>strictly enforceable outcome a'</u> of G and ε>0 ∃T* s.t. the T period repeated game of G has a NE (a¹,...,a^T) for which

$$\left|\frac{1}{T}\sum_{t=1}^{T}u_{i}(a^{t})-u_{i}(a^{t})\right|<\varepsilon\quad\forall T>T^{*}$$

- Proof sketch:
 - Play a' until period T-L
 - Play *a** after period *T*-*L*
 - Punish player *j* by playing (p_{-j})_i
 - Choose *L* to cancel gain of deviation $\max_{a \in A} u_i(a'_{-i}, a_i) - u_i(a') \le L(u_i(a^*) - v_i)$
 - Choose T^* big enough to be within ε

$$\left|\frac{1}{T^{*}}[(T^{*}-L)u_{i}(a')+Lu_{i}(a^{*})]-u_{i}(a')\right| < \varepsilon$$

Perfect folk theorem

- Let a^{*} be a <u>strictly enforceable</u> outcome of the constituent game *G*. Let *G* be s.t.
 - ∀*i*∈N there are two NE of G that differ in their payoffs for player *i*
 - there is a collection (a(i))_{i∈N} of strictly enforceable outcomes of G such that

•
$$a^* \succ_i a(i) \quad \forall i \in N$$

 $a(j) \succ_i a(i) \quad \forall j \in N \setminus \{i\}$

Then $\forall \varepsilon > 0 \exists T^*$ s.t. the T-period repeated game of G has a SPE $(a^1, ..., a^T)$ in which

$$\left|\frac{1}{T}\sum_{t=1}^{T}u_{i}(a^{t})-u_{i}(a^{*})\right|<\varepsilon\quad\forall T>T^{*}$$

Dynamic games

- Players make decisions at different points in time
- Extensive game
 - Players make decisions one by one
 - Can learn about the environment and others' choices
- Repeated game
 - Players play multiple strategic games
 - Decision is influenced by the history
 - Extension of extensive game
- Other forms of dynamic games
 - Stochastic game
 - Differential game

Reduction of the history set

Consider an extensive game G=<N,H,P,(u_i)>

- For all t we can write $u_i(a^0,...,a^T) = u_i(h^t, f^t)$ (f^t is future)
- For each *t* partition the set of histories
 - ${H^t(h^t)}_{t=0...T}$ disjoint and exhaustive

Computational Game Theory - P2/2023

Sufficient partition

• identical action spaces

 $A_{i}^{t+\tau}(h^{t}, a^{t}, ..., a^{t+\tau-1}) = A_{i}^{t+\tau}(h^{t'}, a^{t}, ..., a^{t+\tau-1}) \quad \forall i, \forall \tau \ge 0$

- utility functions represent the same preferences
 - uniqueness of the utility function to an affine transformation

 $u_{i}(h^{t}, f^{t}) = \lambda_{i}(h^{t}, f^{t})u_{i}(h^{t'}, f^{t}) + \mu_{i}(h^{t}, h^{t'}, f^{t})$

- Trivial sufficient partition
 - $H^t(h^t) = \{h^t\}$

Payoff relevant history

- Payoff relevant history is the minimal sufficient partition
 - the coarsest sufficient partition

Computational Game Theory - P2/2023

Markov strategy

- Markov strategy is a strategy that is measurable with respect to the payoff relevant history $H^{t}(h^{t}) = H^{t}(h^{t'}) \Rightarrow \sigma_{i}^{t}(h^{t}) = \sigma_{i}^{t}(h^{t'}) \quad \forall i$
 - consistent with rationality no coarser history would give equally good payoffs
- No need to know the entire history

Computational Game Theory - P2/2023

Markov perfect equilibrium

- Sufficient condition for existence (mixed case)
 - finite-horizon extensive game
 - infinite-horizon extensive game with continuous payoff profile at $\infty \lim_{t \to \infty} \sup_{h, \tilde{h} \ s.t. \ h^t = \tilde{h}^t} |u_i(h_i) u_i(\tilde{h}_i)| = 0$
 - δ -discounted criterion (δ <1), per-period payoffs are bounded

E. Maskin, J. Tirole, "Markov Perfect Equilibrium, I," Journal of Economic Theory, vol. 100, pp. 191-219, 2001

Computational Game Theory – P2/2023

Stochastic games

- History summarized in "state"
 - Available actions depend on the state
 - Current payoffs depend on the state and the actions
 - A stochastic game $G = \langle N, K, (\Delta A_i(k)), Q, \geq_i \rangle$ consists of
 - Set *N* of players
 - Set *K* of states
 - Sets of mixed action profiles on A_i(k)
 - Transition function $Q = (q(k^{t+1}|k^t, a^t))$
 - Preference relation on the sequence of outcomes and states (objective function)
 - δ-discounted

$$u_i = \sum_{t=0}^{\infty} \delta^t g_i(k^t, a^t)$$

• Limit of means

Markov (stationary) strategy in Stochastic Games

- *h'* and *h* two histories both leading to state *k*
- a_i and $a_{i'}$ actions chosen by player *i* after *h* and *h'* resp.
- value V_i(k,s_{-i}) highest expected payoff i can achieve starting from state k

Value function
$$V_i$$

 $V_i(k; s_{-i}) = \max_{a_i \in A_i(k)} \mathbb{E} \left[g_i(k, s_{-i}(k), a_i) + \delta \sum_{k' \in \mathbf{K}} q(k' | k, s_{-i}(k), a_i) V_i(k', s_{-i}) \right]$

• Maximizers form Markov best response

Existence of MPE

- Markov perfect equilibria always exist in stochastic games with a finite number of states and actions.
 - Proof:
 - Markov strategic form
 - Agent (*i*,*k*) has u_i of player *i* starting from state k $u_{i,k}(a) = \mathbb{E}\left[\sum_{i\geq 0} \delta^t g_i(k^t, a(1, k^t), \dots a(N, k^t)) | k^0 = k\right]$
 - Finite states \Rightarrow finite # of agents and actions
 - There is a mixed strategy NE ($\sigma^*_{i,k}$)
 - Markov strategy of player *i* is $\sigma_{i,k}^{*} = \sigma_{i,k}^{*}$
 - Depends on the state only
 - By construction it is subgame perfect
 - agents optimize in each state
- Other existence results

etc.

- Countably infinite state space
 - T. Parthasarathy, "Existence of Equilibrium Stationary Strategies in Discounted Stochastic Games", Sankhya Series A, vol 44, pp. 114-127,

Computational Game Theory – P2/2023

Differential games

Continuous time stochastic games

- A differential game $G = \langle N_i(k^t), (h_j^t), (u_i) \rangle$ consists of
 - Set *N* of players often |*N*|=2
 - State vector $k^t = (k_1^t, \dots, k_n^t) \in \mathbb{R}^n$
 - Sets of actions $A_i(k^t) \in R_i^a$
 - Transition functions $\frac{dk_{j}^{t}}{dt} = h_{j}^{t}(k^{t}, a^{t})$
 - Payoff functions

$$u_{i} = \int_{0}^{T} g_{i}^{t}(k^{t}, a^{t}) dt + v_{i}^{T}(k^{T})$$

• Initial condition

$$k^0 = k(0) \in \mathbf{R}^n$$

Example

- Simple pursuit game in the plane
 - Two players: P and E
 - P has speed W
 - E has speed w
 - W>w
 - State variable
 - Position
 - Action space
 - Angle
- Objective
 - Time of capture
- Markov perfect equilibrium?
 - Direct fleeing

R. Isaacs, "Differential Games: A Mathematical Theory with Applications to Warfare and Pursuit, Control and Optimization", Courier Dover, 1999

Computational Game Theory – P2/2023

Literature

- D. Fudenberg, J. Tirole, "Game Theory", MIT press, 1991
- M.Osborne, A Rubinstein, "A course in game theory", MIT press, 1994

- T. Parthasarathy, "Existence of Equilibrium Stationary Strategies in Discounted Stochastic Games", Sankhya Series A, vol 44, pp. 114-127, 1982
- D. Levhari, L.Mirman, "The great fish war", Bell Journal of Economics, 1980, pp.322-344
- J.H. Case, "Towards a theory of many player differential games", SIAM Journal of Control, vol. 7, 1969, pp 179-197.
- A. Starr and Y.C. Ho, "Nonzero-sum differential games", Journal of Optimization Theory and Applications, vol 3., 1969., pp. 183-206