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Abstract— The aggregation and estimation of values over
networks is fundamental for distributed applications, such as
wireless sensor networks. Estimating the average, minimal and
maximal values has already been extensively studied in the
literature. In this paper, we focus on estimating empirical
distributions of values in a network with anonymous agents.
In particular, we compare two different estimation strategies
in terms of their convergence speed, accuracy and communi-
cation costs. The first strategy is deterministic and based on
the average consensus protocol, while the second strategy is
probabilistic and based on the max consensus protocol.

Index Terms— distributed computation, consensus, data ag-
gregation, order statistics

I. INTRODUCTION

Aggregating data over networks is essential for many
distributed systems. However, simple aggregations such as
averaging loses a lot of the information contained in the
original data set. Aiming to expand the set of available
aggregation tools, we propose and characterize algorithms
that estimates empirical Probability Mass Functions (PMFs)
over networks. Specifically, we consider collaborative anony-
mous agents that aim to compute estimates of empirical
distributions in the shortest possible time.

A. Literature review

The vast literature on the estimation of probability den-
sities / mass functions over networks can be divided in the
main classes of parametric and non-parametric approaches.

Parametric approaches generally assume the estimand to
have a certain structure before obtaining observations, e.g.,
to be a sum of Gaussians. Examples are the distributed
implementations of the Expectation-Maximization (EM) al-
gorithm [1], [2], [3], [4]. Nonparametric approaches instead
do not fix the structure a priori, but rather select it from
the observations. This class comprises the various distributed
kernel density estimation [5], classification [6] and clustering
approaches [7].
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Besides the parametric / non-parametric classification, the
existing literature can also be characterized on how the
information is propagated and aggregated over the network.
We notice strategies based on pre-established hierarchical
tree routing structures, where the various nodes compute
summaries of the empirical distributions in their sub-trees
and propagate them towards the root, eventually obtaining
the approximated statistics of the whole network in a bottom-
up fashion [8], [9], [10], [11]. Other strategies are instead
based on gossip communications, and exploit averaging
techniques to explicitly compute Cumulative Distribution
Functions (CDFs) [12], [13], [14]. Other techniques are
based on estimating how many agents are in a certain specific
state [15], [16].

B. Statement of contributions

We propose a novel algorithm with the properties: •
be symmetrically distributed, i.e., without leaders / leader
election steps, and with agents executing the same algorithm
in parallel. • be privacy preserving, i.e., avoiding the possi-
bility of tracing or characterizing a single agent. • exploit
aggregation techniques, where the size of the exchanged
information packets is constant in time. • be fast, i.e., s.t. the
time for all the agents to share the same estimate is small.

Our proposed strategy is based on max-consensus (see
Sec. III). As the max-consensus converges in no more than
the steps needed to transmit information between arbitrary
nodes in the network, this is one of the fastest possible
aggregation mechanism. This emphasis on fast convergence
is because time can be the crucial factor in many practical
situations (e.g., in control applications).

From an algorithmic point of view our strategy departs
from [12], [13], [17] by substituting the average consen-
sus schemes with max-consensus. This apparently minor
modification actually makes the two estimators completely
different, and opens a variety of novel problems. In fact,
while the average consensus scheme requires exchanging
very few scalars per iteration and where the agents computes
the exact PMF asymptotically in time, the max consensus
scheme converges much faster than the average one, but
not to the exact value. Indeed, the statistical performance
depends on how many scalars are exchanged per iteration.
We specifically characterize the temporal behavior of the
performance of the max-consensus strategy, concluding when
it is preferable to the average consensus strategy.



II. STATEMENT OF THE ESTIMATION PROBLEM

Consider a strongly connected network G = (V, E) of V =
|V| agents communicating through the links E . Let Vi denote
the set of neighbors of agent i, and V(i)

t the set of the t-steps
neighbors of agent i. We recall that V(i)

t can be defined for
t = 0 as V(i)

0 = {i} and, for t ≥ 1, through the recursion

V(i)
t

.
=

⋃
(i,j)∈E

V(j)
t−1 . (1)

Let every agent i ∈ V belong to a discrete state z(i) ∈
NB

.
= {0, . . . , B − 1} (NB being the set of plausible states),

e.g., given by sensor measurements. We are then interested in
distributively estimating the relative frequencies of the local
states z(1), . . . , z(V ). I.e., if nb

.
=
∣∣{i s.t. z(i) = b}

∣∣ is the
number of agents in state b, then we aim to estimate the PMF

pb
.
=
nb
V

b ∈ NB (2)

given that the network size V is unknown while the plausible
states NB are known.

We restrict our focus to distributed algorithms where
each agent i ∈ V has a local variable x(i)(t) that can be
modified at time t+1 by accessing the states x(j)(t)’s of the
neighboring nodes, and performing the aggregation operation

x(i)(t+ 1) = f
(
x(i)(t), x(j1)(t), x(j2)(t), . . .

)
,

j1, j2, . . . ∈ Vi

that preserves the dimension of x(i)(t). Furthermore, at every
time t each agent computes a local estimate of the PMF
function from the local variable x(i)(t),

p̂
(i)
b (t) = g

(
x(i)(t)

)
for an appropriate estimation function g(·).

The estimation strategy is thus defined by the initial
variables x(i)(0), the update function f and the estimation
function g. In order to compare different estimation strategies
we consider the Mean Squared Error (MSE) as a performance
index J , i.e.,

J
(
p̂1, . . . , p̂B

) .
= E

 1

V ·B
∑

b∈NB ,i∈V

(
pb − p̂(i)b

)2 (3)

where the expectation is taken over the initial conditions.

Remark 1 For notational simplicity we consider static net-
works. Nonetheless it is straightforward to handle time-
varying topologies by substituting the edges E with a time-
dependent set E(t), and the neighborhoods V(i) with the
time-dependent counterparts V(i)(t).

The problem analyzed in this manuscript is to propose and
compare different estimation schemes.

III. ESTIMATORS BASED ON CONSENSUS PROTOCOLS

We consider two particular estimators, one based on
average consensus strategies (see also [12], [13], [17]), and a
novel one based on max consensus strategies and structurally
similar to the size estimation techniques in [18], [19].

In the following, we abstract away the message trans-
mission and consider a distributed system where agents
communicate by synchronous rounds. At each round, and
over each edge, only a constant size message is transmitted,
and no messages are lost.

Remark 2 For notational simplicity we consider syn-
chronous communications. Nonetheless this could be relaxed
for both estimators, since they can be adapted to operate with
gossip asynchronous transmissions.

A. Estimator based on Average consensus

In the average consensus protocol, the local variable is
a B-dimensional real vector x(i)(t) ∈ RB containing the
estimate of the PMF. At initialization, each node set its local
variable based on its own state,

x
(i)
b (0) =

{
1, if z(i) = b

0, otherwise.

Let xb denote the vector of all agents’ states x(i)b . It is
known that if at each time the local variables are updated
with an average consensus update like

xb(t+ 1) = Wxb(t) b ∈ NB (4)

where W is a doubly-stochastic weight matrix (for example
chosen as the Metropolis weights), then, assuming perfect
computations1, every x(i)b (t) converges to the average of the
initial values [21]. Thus

x
(i)
b (t)

t→∞−−−→ 1

V

∑
j∈V

x
(i)
b (0) =

nb
V

= pb.

The PMF estimate is simply

p̂
(i)
b (t) = x

(i)
b (t). (5)

To describe the convergence properties of (4), recall that
the estimation error can be bounded by an exponential
function [22], i.e., by∣∣∣∣pb − p̂b(t)∣∣∣∣2 ≤ ce−αt
where c and α depend on the initial condition, the network
topology and the choice of the weights.

Remark 3 We do not consider more advanced protocols,
such as accelerated average consensus [23], or finite-time
average consensus [24]. The rationale for this choice is that
we want to characterize the simplest averaging algorithm,
with the smallest demands from both communication and
computational points of view.

1For simplicity we do not consider quantization effects, e.g., [20].



B. Estimator based on Max consensus

In the max consensus protocol, the local variable is a B×
M -dimensional real matrix x(i)(t) ∈ RB×M whose elements
are initially set based on the local state as

x
(i)
b,m(0) ∼

{
U [0, 1] , if z(i) = b

0, otherwise
(6)

where U [0, 1] is the uniform distribution between 0 and 1.
Then at each time t, the local variables are updated with the
max consensus update

x
(i)
b,m(t) = max

j∈Vi

{
x
(j)
b,m(t− 1)

}
, b ∈ NB ,m = 1, . . . ,M.

(7)
Notice that the definition of t-steps neighborhood V(i)

t pre-
cisely captures the agents that contributed to the generation
of x(i)b,m(t), i.e.,

x
(i)
b,m(t) = max

j∈V(i)
t

{
x
(j)
b,m(0)

}
. (8)

Let V (i)
t

.
=
∣∣∣V(i)
t

∣∣∣,
p
(i)
b (t)

.
=

∣∣{i ∈ V(i)
t s.t. z(i) = b}

∣∣
V

(i)
t

, (9)

and n
(i)
b (t)

.
= p

(i)
b (t)V

(i)
t . As shown in Sec. IV, the

Maximum Likelihood (ML) estimator for n(i)b (t) given the
x
(i)
b,m(t)’s is

n̂
(i)
b =

(
1

M

M∑
m=1

−ln
(
x
(i)
b,m

))−1
. (10)

Now, since

p
(i)
b (t) =

p
(i)
b (t)∑

β∈NB
p
(i)
β (t)

=
n
(i)
b (t)∑

β∈NB
n
(i)
β (t)

because of the functional invariance property of ML estima-
tors [25, Thm. 7.2.10, p. 320], the ML estimate of p(i)b (t)

given the x(i)b,m(t)’s is

p̂
(i)
b (t) =

n̂
(i)
b (t)∑

β∈NB
n̂
(i)
β (t)

. (11)

For t ≥ d (d being the network diameter) the max consensus
strategy converges globally, and n(i)b (t) = nb, thus the PMF
estimated p(i)1 (t), . . . , p

(i)
B (t) converges to an estimate of the

global PMF p1, . . . , pB .
Remarkably, this estimator provides additional esti-

mates of the distributions of the states in every t-steps
neighborhood. Considering a certain agent i, the set of
p
(i)
b (0), p

(i)
b (1), . . . correspond to local views of the neighbor-

hoods empirical distribution that can be used by i to rapidly
infer if close neighbors tend to have the similar states.

We notice that estimator (11) has strong similarities
with the size estimators proposed in [26], [27], [28].

Nonetheless, as reported in the following section, its sta-
tistical properties are essentially different since each vector[
p̂
(i)
1 (t), . . . , p̂

(i)
B (t)

]
has correlated components.

We also notice that appropriate termination rules can be
based on estimates of the diameter d of the network, again
obtained by exploiting max consensus approaches as in [19],
[29].

We finally notice that, under continuity assumptions, the
stochastic generation mechanism proposed in (6) is not
a design parameter. As soon as we neglect quantization
effects, substituting U [0, 1] with another continuous proba-
bility distribution leads to estimators with identical statistical
performance, see [18].

C. Summary of the differences between the two estimators

The max consensus scheme (11) converges in d steps to
an estimate of the true PMF. Given a fixed M , its MSE
J (3) will vary up to time t = d and then remain constant.
Increasing M , the MSE curves are also expected to get closer
and closer to zero, due to the consistency property of ML
estimators.

The average consensus scheme (5) requires nodes to
exchange less information, and is in general converging
asymptotically for t → +∞. These comments are graphi-
cally represented in fig. 1.

d

t

J

ave. cons. estim.
max cons. estim., low M
max cons. estim., high M

Fig. 1: Graphical representation of the properties from the
estimators. By increasing M it is possible to let the max
consensus estimator (11) perform better than the average
consensus scheme (5) for t ≤ d.

The aim is to find conditions on M and on the network for
which it is possible to state which algorithm is preferable for
t ≤ d, i.e., when time is a concern. To this end, we first need
to describe the statistical properties of the max consensus
estimator.

IV. STATISTICAL CHARACTERIZATION OF THE MAX
CONSENSUS PMF ESTIMATOR

For notational simplicity we consider the stationary state
where the max consensus has already been computed, i.e.,
where x

(i)
b,m(t) = xb,m

.
= maxi∈V

{
x
(i)
b,m(0)

}
. With this

assumption the joint PMF p (n̂b ; n1, . . . , nB ,M) is equal
to p

(
n̂
(i)
b (t) ; n

(i)
1 (t), . . . , n

(i)
B (t),M

)
. To derive these dis-

tributions we then consider that if b 6= β then xb,m is
statistically independent of the parameter nβ . Thus, from
simple order-statistics arguments [30],

p (xb,m ; n1, . . . , nB) = p (xb,m ; nb) = nb (xb,m)
nb−1



for all m (we omit the dependency on the parameter M for
notational brevity). Since the xb,m’s are i.i.d. we have

p (xb,1, . . . xb,M ; nb) =

M∏
m=1

p (xb,m ; nb)

= nMb

M∏
m=1

(
xb,m

)nb−1
(12)

To derive p (n̂b ; nb) consider that z .
= −ln ((xb,m)) is an

exponential random variable with rate nb, i.e.,

p (z ; nb) =

{
nbe
−nbz if z ≥ 0

0 otherwise . (13)

From (10), Mn̂−1b is the sum of M i.i.d. exponential random
variables with rate nb, i.e., Mn̂−1b is a Γ variate with shape

M and scale
1

nb
. Thus M−1n̂b ∼ I-Γ (M,nb), i.e.,

p (n̂b ; nb,M) = I-Γ (M,Mnb)

= Γ (M)
−1 1

n̂b

(
Mnb
n̂b

)M
exp

(
−Mnb

n̂b

)
where M is the shape and Mnb the scale. For the esti-
mate (11), p̂b is thus the ratio of correlated sums of inverse-
Gamma variates, each with its own scale.

Unfortunately to the best of our knowledge there exists
no currently available literature describing the distribution
of this kind of variates. The closest manuscripts in fact
characterize ratios of the form x

x+y where x and y are
independent inverse Γ variates [31]. Moreover both the
Gamma and inverse Gamma distributions are not closed, i.e.,
linear combinations of independent copies of these kind of
variates have not the same original distribution, up to location
and scale parameters, see [32]. This means that there is no
possibility to reduce the fraction (11) to the case described
in [31], and characterization of the statistical properties of
p̂b must rely on Monte Carlo (MC) integration methods.

Case NB = {0, 1}
In this case p̂(i)b (t) becomes a special ratio that is described

in [31]. The probability density for p̂0 is then

pp̂0 (x ; n0, n1,M)=

(
x(1− x)

)M−1
(
n0
n1

)M
B (M,M)

(
1 +

n1 − n0
n0

x

)−2M
(14)

where B (·, ·) is the Beta function and x ∈ [0, 1]. Its
cumulative distribution is given by (18) where

2F1 (a, b; c;x)
.
=

+∞∑
i=0

(a)i (b)i
(c)i · i!

xi (15)

is the Gauss hypergeometric function and

(x)i
.
= x(x+ 1) · · · (x+ i− 1) (16)

is the so called Pochhammer symbol (with the convention
that (x)0 = 1). From this, it is possible to compute the

moments of p̂0 (and thus of p̂0 − E [p̂0]) using the relation

E
[
(p̂0)

k
]

=



B (M + k,M)

B (M,M)
F(k,M, n0, n1)

if n0 > n1(
n0
n1

)k
B (M + k,M)

B (M,M)
F(k,M, n1, n0)

otherwise.
(17)

where

F(k,M, a, b)
.
= 2F1

(
k,M ; 2M + k;

a− b
a

)
(notice that n0 and n1 appear in inverted positions in the
two cases in (17)).

When n0 = n1 the estimators are unbiased for every M ,
otherwise, as expected, they are only asymptotically unbiased
(for M → +∞).

In figures 2 and 3 we evaluate the relative bias and MSE
of the estimator based on the design parameter M and on the
distribution of the states. Notice that the MSE performances
follow the typical O

(
1
M

)
property for this kind of estimators.

20 40 60 80 100

10−2

10−1

M

E
[ p̂ 0−

p
0

;
M

p
0

] n0 = 10, n1 = 90
n0 = 40, n1 = 60

Fig. 2: Dependency of the relative bias E
[
p̂0−p0
p0

; M
]

on M
for various values of n0 and n1. The estimators are unbiased
for every M if n0 = n1.

20 40 60 80 100

10−2

10−1

100

M

E

[ ( p̂
0
−
p
0

p
0

) 2 ;
M

]

n0 = 10, n1 = 90
n0 = 40, n1 = 60
n0 = 50, n1 = 50

Fig. 3: Dependency of the relative MSE E
[(

p̂0−p0
p0

)2
; M

]
on M for various values of n0 and n1.

Remark 4 The performances indicators summarized in fig-
ures 2 and 3 are valid for general p̂(i)b (t)’s when associated



Fp̂0 (x ; n0, n1,M) =

(
1 +

n1
n0

1− x
x

)−M
MB (M,M)

· 2F1

(
M, 1−M ;M + 1;

(
1 +

n1
n0

1− x
x

)−1)
(18)

with the local n(i)b (t)’s. The derivations of this section thus
also characterize the behavior of the estimators during the
transient.

V. COMPARISONS

Here we compare the performance between the average
consensus based estimator (5) and the max consensus based
estimator (11) during their transients. Our primary goal is to
determine when to choose each algorithm, and how to tune
the parameter M for the max consensus estimator.

We consider four different network topologies, i.e., the line
topology (fig. 4a), the cyclic topology (fig. 4b), the cyclic
grid topology (fig. 4c), and a geometric random topology
(fig. 4d), each network consisting of 100 agents.

(a) Line network

(b) Cyclic network (c) Cyclic grid
network (2× 50)

(d) Geometric
random network

Fig. 4: Network topologies, with 100 nodes.

We evaluate the algorithms with Monte Carlo (MC)
simulations, using the MSE (3) as the performance index,
where the mean is taken over all agents and all MC runs.
For each network the communication protocol proceeds in
synchronous rounds, where nodes cyclically repeat the steps
described in (4) and (7).
• First experiment - fig. 5: we select a random initial state

for each MC run, where each agent is in state z(i) = 0 or
z(i) = 1 with equal probability. The figure shows the 95%
confidence intervals for both the average consensus based
estimator as well as for the max consensus based estimator
with M = 10, M = 100 and M = 1000.

As expected, the average consensus based estimator con-
verges asymptotically to the true value. The max consensus
based estimator converges instead in a finite time (after d
steps, d .

= diameter of the network) to an estimate whose
MSE decreases with M . In this scenario the choices M =
100 and M = 1000 yield similar and reasonable precisions
that outperform the average consensus in most cases.

We observe that for the max consensus-based scheme a
remarkable phenomenon may appear, specially when M is
small (M = 10), the MSE increases with the number of
iterations. This behavior is induced by a combination of facts:

first, the MSE index considered sums the agents’ local MSEs.
Second, small M ’s induce estimates with high statistical
variance, i.e., increase the chances that at least one agent
will have some p̂

(i)
b (t) noticeably overestimated. At time

t = 1 this overestimation does not greatly influence the
overall MSE, since it affects only the erroneous agent, but as
time passes, the max consensus spreads the overestimation
through the agents.
• Second experiment - fig. 6: we now consider a single

worst-case initial distribution of the states z(i), where the
leftmost half of the agents in fig. 4 are in state 0 and the
rightmost half are in state 1. Notice that this is actually not an
unreasonable distribution, since for estimation applications in
wireless sensor networks the communication topology and
the measured environmental quantities might be spatially
correlated.

Since there is only one fixed initial state, the average
consensus based estimator is deterministic and unique. The
figure thus compares the confidence intervals of the max
consensus estimators (depending upon the realization of the
x
(i)
b,m’s) against the performance of the deterministic average

consensus estimate.
The outcome is that the max consensus based estima-

tor (11) can be much faster and more accurate than the aver-
age consensus counterpart (5), even for very small M ’s (even
though a larger M improves the accuracy). The motivation
is that if the distribution of the states is not geographically
homogeneous then the max consensus is much more efficient
at propagating information about certain states through the
network.

VI. CONCLUDING REMARKS AND FUTURE DIRECTIONS

The two distributed estimators of empirical PMFs over
networks considered here, one based on max consensus
and one based on average consensus, have several intrinsic
differences. With the average consensus, agents exchange
messages containing only 1 scalar, while with the max
consensus they exchange messages containing M scalars (M
being a design parameter). For the average, convergences is
asymptotic in time, while for the max, convergence is in
finite time. With the average, the final estimate is equal to
the true value, while with the max the final estimate has a
statistical precision that is directly related to M .

The results indicate that there is no uniformly better
algorithm: while in certain situations the average consensus
strategy is the most reasonable approach, in some others
it is outperformed by the max consensus. The rationale is
based on how the states of the peers are distributed across
the network and how fast the consensus strategies mix the
information. If the states are geographically clustered (close
nodes have similar states), then the max consensus scheme
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(a) Line network (Diameter d = 99)
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(b) Cyclic network
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(c) Cyclic grid network (2× 50 nodes)
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Fig. 5: Comparison of max-consensus based estimator against the average consensus based estimator. Each network consists
of 100 nodes, and the network diameter d is marked in the figures. The shaded regions mark the 95% confidence interval
for the max-consensus estimator, while the two solid lines mark the upper and lower end of the 95% confidence interval
for the average-consensus estimator.

is generally preferable, because it is faster in spreading in-
formation of the existence of other states across the network.

This work opens a variety of future research directions.
The first one is a more precise characterization of when each
strategy performs better than the other, and how to tune M .
The next one is how to exploit the estimation to perform
fast detection of changes in the aggregated network state.
Another important direction is to associate the state with
local topological properties, e.g., by setting it equal to the
number of neighbors, and estimate the most likely shape of
the network.
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