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Voltage perturbation in passive circuit S —   

Uncertainty in optimal voltage estimate —  

 

 

 

 

With or without active compensation, a trade-off exists: 
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Observer Effect - Example 
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Motivation 
• The observer effect has been extensively studied in 

quantum mechanics, but seems overlooked in a classical 
mechanics setting 

• We want to know the performance limits of devices 
when resources, such as DOFs, energy, temperature, and 
time, are finite or limited 

 

• How well — and what — can we actually implement from 
a small collection of physical building blocks? Related to 
circuit synthesis (M. Smith, B.D.O. Anderson, et al.) 

• Similar questions currently being asked in synthetic 
biology (R. Murray, D. Del Vecchio, et al.)  



Measurement Model 

• A physical system S with a property y(t) we want to 
measure. Together with conjugate variable u(t) it 
forms a port [external work rate = u(t)Ty(t)] 

 

 

Example:  y(t) = velocity, voltage,… 

  u(t) = force, current,… 

• Treat u as a small perturbation um from measurement 
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• Interconnect S to a measurement device M through a 
communication medium I, during a short time [0,t] 

 

 

 

• Problems: 

– What is the best estimate of y(t) we can get? 

– How much must S simultaneously be perturbed? 
(=back action, retroactivity,…) 

• Assumption: Medium I is well modeled by a lossless 
wave equation, in thermal equilibrium at time t=0 

 

 

 

 

 

Measurement Model 



• Mechanics: 

 

• Circuits: 

 

• Electromagnetic fields:   

 

• At the terminals for times 0 < t < l/v: 

 
 

(Z>0 [acoustic/characteristic] impedance, TZ temperature, v wave 
velocity, l medium length, and white noise wZ(t) due to FD-theorem. 
Transmission line                  .) 

 

 

 

Why Lossless Wave Equation? 
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• Mechanics: 

 

• Circuits: 

 

• Electromagnetic fields: 

 

• Assume exact initial state of wave equation unknown 

• In thermal equilibrium: Assign the expected energy 
½kBTZ to each mode 

• Total effect at the terminal sums up to white noise, see 
Nyquist, 1928  (or Sandberg, Delvenne, Doyle, 2010) 

 

 

 

 

Where Does the Noise Come From? 
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Unmeasured vs. Measured System 
• Unmeasured system 

 

 

 

 

 

• For small t: 

S
y(t)

y(t) = CeAtx0

= y0+CAx0t+O(t2)

• Measured system 

 

 

 

 

 

• For small t: 



Measurement Back Action 
• Difference between un-measured and measured output 

=: back action of measurement  

 

 

 

• Deterministic back action: 

 

(Present even when TZ = 0. M-1 := CB is the “inverse inertia” of S) 

• Stochastic back action: 

 

 

S
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Idealized Measurement Device M* 

• The measurement device M produces an estimate      of  

 

 

 

• In best case, M has exact models of S and I, and knows 
the temperature TZ (but not exact state of I) ) Kalman 
filter M* optimal: 

 
 

• Any M with less or equal knowledge is no better than M* 
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Lower Bounds on Accuracy 
• Accuracy of M* determined from differential filter Riccati 

equation:  

 

 

 

• Assume zero knowledge at t = 0: 

• Series expansion of P (t) gives 

 

• Optimal measurement accuracy: 
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Back Action and Accuracy Trade-Off  
 

 

• Back action: 

 

• Measurement accuracy: 

 

 

• Trade-off: 

 

Trade-off independent on small t and medium impedance Z!  
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• Back action: 

 

• Measurement accuracy: 

 

 

• Trade-off: 

 

Trade-off independent on small t and medium impedance Z! 
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Mechanical Example 
 

 

 

 

 

 

• Inverse inertia M-1:=CB=1/m2 

• Det. back action         , stoch. back action   

• Measurement accuracy 

• Trade-off: 

 

 

back action£ accuracy ¸ 2kBTZ=m2



Mechanical Example 

• kB = 1.4¢10-23 J/K 

• TZ = 300 K 

• Not visible at  

macroscopic level 

• Significant at 

microscopic level 

 

atoms cells MEMS 



Outline 

• Measurement model 

• Measuring deterministic systems 

• Measuring port-Hamiltonian systems in 
thermal equilibrium (details in paper) 

 



System S in Thermal Equilibrium  

• Only ratio TZ/TS determines trade-off. Is this result 
essentially different from before? 

 

• Not really, as system temperature TS ! 1 we obtain 
earlier result since rate of learning also goes to infinity 

• System inertia disappeared and was replaced by 
system temperature TS 

• When TS is really small, only small improvement in 
accuracy since we already know a lot about the system 

back action ¸ 2TZ

TS
£¢accuracy

back action£ accuracy ¸ 2kBTZ=m



Summary 
• There are general trade-offs between measurement 

accuracy and back action for classical measurements 

• Holds not only for passive system S and particular M 
(compare Sandberg, Delvenne, Doyle, IEEE TAC 2010) 

• Lossless measurement medium of temperature TZ  

• System with “inverse inertia” M-1 = CB (first Markov 
parameter) and completely unknown initial state 

 

• System of temperature TS 
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