
Frequency-Weighted Model Reduction

with Applications to Structured Models

Henrik Sandberg and Richard M. Murray

Abstract— In this paper, a frequency-weighted extension of a
recently proposed model reduction method for linear systems
is presented. The method uses convex optimization and can be
used both with sample data and exact models. We also obtain
bounds on the frequency-weighted error. The method is com-
bined with a rank-minimization heuristic to approximate multi-
input–multi-output systems. We also present two applications —
environment compensation and simplification of interconnected
models — where we argue the proposed methods are useful.

I. INTRODUCTION

The frequency-weighted model reduction problem is ar-

guably a more important problem than the unweighted one;

at least in the context of closed-loop control systems. For

process models it is usually mainly around the cross-over

frequency a good model match is needed, for example. For

controller reduction problems, frequency weights are also

essential, see [1]. It may seem that weights should not

make the problem much more complicated, and that simple

extensions of balanced truncation [2] or optimal Hankel

norm approximation [3] should solve the problem. This is

only partly true. In [4], [5], extensions of these methods to

the frequency-weighted case are given. Even though these

extensions often work well, it is hard to prove when a priori.

The book [1] describes many other methods that have been

suggested for frequency-weighted model reduction.

In [6], [7], a new approach is taken to solve the model

reduction problem. Instead of solving high-dimensional Lya-

punov equations, as in balanced truncation and Hankel norm

approximation, a relaxation that makes the approximation

problem convex is introduced. In [7], bounds on the approx-

imation error are obtained. The method is flexible and always

delivers stable approximations. In this paper, we extend the

method slightly by including frequency weights, and show

how the error bounds are changed. We also combine the

method with a rank-minimization heuristic, introduced in [8],

to approximate multi-input–multi-output (MIMO) systems.

Furthermore, we present two applications where we argue

that frequency-weighted model reduction is useful. The first

application deals with finding low-complexity updates to

existing feedback controllers. The updates are introduced

to compensate for complex environments that disturb the

controlled system. The idea of including a model of the

environment and to compensate for it has been used in

distributed control of vehicle formations, see [9]. The other

This work was supported by the Hans Werthén foundation and a post-
doctoral grant from the Swedish Research Council.

H. Sandberg and R.M. Murray are with California Institute of Technology,
Control and Dynamical Systems, M/C 107-81, Pasadena, CA 91125, USA.
{henriks,murray}@cds.caltech.edu

application is the problem of reducing the complexity of an

interconnected linear system, whilst taking its structure into

account. Model reduction of interconnected and structured

systems is a problem that has received some attention re-

cently, see, for example, [10]–[14].

The organization of the paper is as follows: In Section II,

the frequency-weighted model reduction technique is de-

scribed along with an example. In Section III, the application

to environment compensation is presented, along with an

example. In Section IV, the application to interconnected

linear systems is described. In Section V, some conclusions

and suggested future work are given.

Notation

H∞ and H−
∞ denote the sets of stable and anti-stable

transfer function matrices (TFMs), respectively. RH∞ are

the stable rational TFMs, and RnH∞ the stable rational

TFMs of McMillan degree less or equal to n. Similar

definitions hold for H−
∞. The TFM G(s) belongs to L∞

if the norm ‖G‖∞ � supω σ̄(G(jω)) is finite, where σ̄ is

the largest singular value. ‖ · ‖H denotes the Hankel norm,

see [3], [15]. We define G∼(s) � G(−s)T , and Z (Z+) are

the (non-negative) integers, R the real numbers, and C the

complex numbers with j being the imaginary unit and ∗ the

complex conjugate.

II. FREQUENCY-WEIGHTED MODEL REDUCTION

The problems we end up solving in this paper are

frequency-weighted model reduction problems. There are

many methods available for solving such problems, see,

for example, [1]. Typically these methods use state-space

techniques and it is hard to bound their approximation error

a priori. Error bounds are important since they can be used

to guarantee good approximations. The methods we suggest

here do always preserve stability, comes with error bounds,

and can be used both with frequency data samples and with

exact models.

A. Frequency-weighted approximation problem

The problem we would like to solve can be formulated as

min
Ĝ

‖Wo(G − Ĝ)Wi‖∞ subject to Ĝ ∈ RrH∞, (1)

where G ∈ RH∞ is a given TFM together with frequency-

dependent weights Wi,Wo ∈ RH∞ and r ∈ Z+. To the best

knowledge of the authors, no polynomial time algorithm is

available to solve (1), and the suboptimal methods mentioned

in the introduction are frequently used instead. In this paper,
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we relax the problem (1) and thereby obtain a problem that

can be solved with convex optimization.

The first method, presented in Section II-B, only deals

with single-input–single-output (SISO) models. The second

method, presented in Section II-C, can be applied to multi-

input–multi-output (MIMO) models as well. How the meth-

ods can be combined is also discussed in Section II-C.

B. SISO frequency-weighted approximation

It is not known how to solve the desired approximation

problem (1) using convex optimization. In [6], a relaxation

technique that makes the unweighted discrete-time problem

convex is introduced. We here use an analogous relaxation

for the weighted continuous-time problem. Instead of the

desired problem (1), we suggest to solve the problem

min
a,b,c

γ subject to

∥

∥

∥

∥

w1

w2

(

G −
b

a
−

c

a∼

)∥

∥

∥

∥

∞

< γ, (2)

where a,w1, w2 are Hurwitz polynomials, G ∈ RH∞ and

SISO, and

a(s) = sr + ar−1s
r−1 + . . . + a1s + a0

b(s) = brs
r + br−1s

r−1 + . . . + b1s + b0

c(s) = cr−1s
r−1 + cr−2s

r−2 + . . . + c1s + c0

w1

w2

,
w2

w1

∈ RdH∞,
b

a
∈ RrH∞,

c

a∼
∈ RrH

−
∞.

Similar to [6], we can re-parameterize the problem. Define

B(s)

A(s)
�

a∼(s)b(s) + a(s)c(s)

a∼(s)a(s)

where

A(s) = (−1)rs2r + A2r−2s
2r−2 + . . . + A2s

2 + A0

B(s) = B2rs
2r + B2r−1s

2r−1 + . . . + B1s + B0.

There is a one-to-one correspondence between the set of

polynomials {A(s), B(s)} and {a(s), b(s), c(s)}. The direc-

tion {a(s), b(s), c(s)} → {A(s), B(s)} is obvious. The other

direction follows if we enforce the condition A(jω) > 0 for

all ω. Since A(jω) > 0, and A(s) = A(−s) by construction,

we can compute a spectral factor a(s) of A(s). It follows that

we can choose a(s) as a Hurwitz polynomial of degree r.

Once a(s) is determined, we can solve for b(s), c(s) as the

unique solution to the polynomial equation

a∼(s)b(s) + a(s)c(s) = B(s),

for instance by constructing a Sylvester matrix from a(s) and

a∼(s) (which are coprime). Hence, instead of solving (2),

we can equivalently solve the the quasi-convex optimization

problem

min
A,B

γ subject to

∣

∣

∣

∣

w1(jω)

w2(jω)
(G(jω)A(jω) − B(jω))

∣

∣

∣

∣

< γA(jω), (3)

A(jω) > 0 for all ω. (4)

The above problem is quasi-convex because for each fixed γ,

the constraints (3)–(4) are convex in the unknown polynomial

coefficients {Ak}, {Bk}. The approximation accuracy γ can

be minimized using a bisection algorithm. The constraint (4)

can be enforced for all ω with a linear matrix inequality

(LMI) using the Kalman-Yakubovich-Popov (KYP) lemma,

or sum-of-squares techniques, see [16].

Whereas (4) should always be enforced for all ω to

guarantee existence of a stable spectral factor a(s), (3) can be

enforced on a grid {ωk}. This is of interest if only samples

of G(jω) are known. Enforcing (3) for a high-order G(s)
for all ω using the KYP lemma leads to an LMI of high

dimension that may not be practical to solve. It can then

be an effective alternative to compute frequency samples of

G(jω). This of course requires that G(jω) does not vary

much between the samples.

In the problem (2), an unstable term c/a∼ is introduced

to make the problem convex. This may seem like an odd

thing to do, but a similar idea is also used in optimal Hankel

norm approximation, see [3], where the added unstable term

belongs to the entire set RH−
∞. The following theorem

shows that the unstable term c/a∼ can be bounded, and

how stable approximations Ĝ can be chosen. A discrete-time

unweighted counterpart is given in [7].

Theorem 1: Assume that
∥

∥

∥

∥

w1

w2

(

G −
b

a
−

c

a∼

)∥

∥

∥

∥

∞

≤ γ (5)

where G ∈ RH∞ and w1, w2, a, b, c satisfy the assumptions

in (2).

(i) Define Ĝ1 �
b

a
∈ RrH∞. Then

∥

∥

∥

∥

w1

w2

(

G − Ĝ1

)

∥

∥

∥

∥

∞

≤ γ

(

1 + 2r

∥

∥

∥

∥

w1

w2

∥

∥

∥

∥

∞

∥

∥

∥

∥

w2

w1

∥

∥

∥

∥

∞

)

.

(ii) Define Ĝ2 �
b

a
+

c2

w1

∈ Rr+dH∞ where

w1(s)c(s)

w2(s)a∼(s)
=

c1(s)

a∼(s)
+

c2(s)

w2(s)

is a stable/anti-stable decomposition. Then
∥

∥

∥

∥

w1

w2

(

G − Ĝ2

)

∥

∥

∥

∥

∞

≤ γ(1 + 2r).

(iii) Let γmin be the infimum of all γ such that (5) holds.

Then

inf
Ĝ∈RrH∞

∥

∥

∥

∥

w1

w2

(

G − Ĝ
)

∥

∥

∥

∥

∞

≥ γmin.

Proof:

(i) We first give a bound on ‖c/a∼‖∞. This can be done by

using an argument from [7] which is based on Nehari’s

theorem [15]. We have that ‖G − b/a − c/a∼‖∞ ≤
γ ‖w2/w1‖∞. Since (G − b/a) ∈ RH∞ and c/a∼ ∈
RrH

−
∞, it follows that ‖c/a∼‖H ≤ γ ‖w2/w1‖∞, and

using a standard bound from [15] that ‖c/a∼‖∞ ≤
2rγ ‖w2/w1‖∞. Using this and the triangle inequality

in (5) gives the stated bound.
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(ii) Using the stable/anti-stable decomposition, we have that

‖(w1/w2)(G − b/a − c2/w1) − c1/a∼‖∞ ≤ γ. Now,

use a similar Nehari theorem argument as in (i) to obtain

‖c1/a∼‖∞ ≤ 2rγ (notice that the weight does not

appear now). The bound in the statement again follows

from the triangle inequality.

(iii) The approximation b/a + c/a∼ belongs to a set that is

larger than (and contains) RrH∞. Hence,

γmin � inf
a,b,c

∥

∥

∥

∥

w1

w2

(

G −
b

a
−

c

a∼

)∥

∥

∥

∥

∞

≤ inf
Ĝ∈RrH∞

∥

∥

∥

∥

w1

w2

(

G − Ĝ
)

∥

∥

∥

∥

∞

.

The bounds derived in Theorem 1 should mainly be seen as

theoretical justification for the method, and to help guide the

choice of approximations and weights. We expect the bound

in (i) to be conservative in general. This is because we used

the submultiplicative property of the L∞-norm to derive it.

If the weight attains large and small values, then the bound

is always large. However, numerical experiments show that

Ĝ1 often are good approximations.

The bound in (ii) is more attractive since it only depends

on γ and the approximation order r. The price is that Ĝ2

has d more states than Ĝ1. It is then important to choose

low-order weights. A typical low-order weight can be in the

form
w1(s)

w2(s)
=

ω2
0(s/α + 1)2

s2 + 2ζω0s + ω2
0

.

Here ω0 is typically chosen to be close to the cross-over

frequency of G (where good approximation is desired), with

a damping parameter 0 < ζ < 1. The factor (s/α + 1)2 in

the numerator is introduced to make the weight biproper. A

biproper weight is a common assumption in weighted model

reduction, see [1], and is also assumed in Theorem 1. Often

it is reasonable to choose α ≫ ω0. Then Ĝ2 has two poles

in −α whose break points are far away from the cross-over

frequency. In this case, it may be reasonable to discard these

poles and simply use

Ĝ2 =
b

a
+

c2(0)

w1(0)
∈ RrH∞,

as approximation (if the break points in c2(s) also are large).

The bound (iii) is interesting since it shows that the

problem we solve actually gives a lower bound on what can

be achieved at all with any stable model of McMillan degree

r. The upper and lower bounds together tell how far away

the approximations Ĝ1 and Ĝ2 at worst are from an optimal

solution.

C. MIMO frequency-weighted approximation

The MIMO method we suggest here requires that the

stable poles {pi}
r
i=1 of Ĝ(s) are fixed from the start. The

poles could be determined by first running the SISO approx-

imation technique in Section II-B on each entry Gij(s) of

the (p × m)-dimensional TFM G(s), for example.

Once the poles are fixed, the problem is to find the zeros of

Ĝ such that the McMillan degree of Ĝ is as small as possible,

while the weighted error ‖Wo(G − Ĝ)Wi‖∞ is small. To

solve this problem, we use the heuristic suggested in [8].

Assuming that pi are distinct1, use the parametrization

Ĝ(s) = Ĝ0 +
r

∑

i=1

1

s − pi

Ĝi, (6)

and we shall fix Ĝi ∈ C
p×m, where Ĝ∗

i = Ĝj when p∗i =
pj . The McMillan degree of (6) is given by

∑r

i=1
rank Ĝi.

Minimization of the rank of a matrix subject to LMIs is

known as a difficult and nonconvex problem. However, there

exist simple and effective heuristics, such as the ones in [8]

and [10]. In [8], the trace-class (or nuclear) norm of Ĝi,

‖Ĝi‖1 =

min{p,m}
∑

k=1

σk(Ĝi),

where σi are the singular values, is minimized instead of the

rank. The minimization problem we solve is the following:

Fix a desired approximation accuracy γ > 0. Then solve

min
Ĝi

r
∑

i=1

‖Ĝi‖1 subject to ‖Wo(G − Ĝ)Wi‖∞ ≤ γ, (7)

where Ĝ is given by (6). This is a convex optimization

problem. How to solve it by means of LMIs is shown in [8]

for the case when (7) is enforced on a frequency grid {ωk}
and without weights. To add weights only require minor

changes. To enforce (7) for all ω, one can again use the

KYP lemma. A problem is that the resulting LMI is often

of high dimension. How to enforce similar conditions more

effectively for all ω is shown in [17].

As γ is decreased to obtain a better approximation, the

McMillan degree of Ĝ typically increases until there no

longer is a feasible solution to (7). Hence, there is a trade-off

between approximation accuracy and complexity. An upper

bound on the McMillan degree of Ĝ is r · min{p,m}. If G
is SISO we do not need to minimize the sum of trace norms.

Instead we can simply minimize γ as in Section II-B.

D. Implementation and an example

We implement the above methods using the LMI solver

SeDuMi [18] with YALMIP [19]. The method in Section II-

B is used to fix the poles for the method in Section II-C.

Example 1: We want to find a model Ĝ that minimizes

the relative error

‖(G − Ĝ)G−1‖∞, (8)

for the model G shown in Fig. 1. This is a common criterion

in model reduction (see [1]) where Wo = I and Wi =
G−1. We assume knowledge of G(jω) only on a 75-point

frequency grid in the interval [0.1, 3] rad/s. The McMillan

degree of the TFM G(s) that is used to produce the data is

112. Notice that most standard model reduction techniques

1Generically pi are distinct. If not, we have to modify the parametrization
in (6) slightly.
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Fig. 1. The transfer function matrix G(s) (solid) from Example 1 and

the 13th-order approximation Ĝ(s) (dashed). The relative approximation
criterion (8) has been used over the frequency interval [0.1, 3] rad/s.

require a state-space model of G to work. The methods we

proposed here can be applied directly to sample data, on the

other hand.

In the first step of the approximation procedure, described

in Section II-B, we approximate each entry of G separately,

minĜij
‖(Gij − Ĝij)/Gij‖∞, i, j = 1, 2, using r = 2 or

r = 4 depending on the entry. This gives us a set of 10 stable

poles {pi}
10
i=1 to be used in the second step. In the method

in Section II-C, we have a trade-off between the accuracy γ
and the degree of Ĝ. An upper bound on the degree of Ĝ
is 20 (r = 10, p = m = 2). We choose γ = 0.34, which

gives a 13th-order approximation. Ĝ is plotted together with

G in Fig. 1, and there is seen to be a good fit over the

interval [0.1, 3] rad/s. We can easily realize Ĝ with a state-

space model and then apply balanced stochastic truncation

(see [1]) that is often used to approximate state-space models

with respect to a relative criterion (8). An additional three

states can then be removed without causing much additional

error.

Remark 1: For the method in Section II-C, we use sin-

gular value decompositions to determine the numerical rank

of Ĝi. After this, Gilbert’s realization, see [15], is used to

construct a minimal state-space realization of Ĝ. The method

in Section II-C is based on a heuristic, and it is recommended

that one applies a state-space model reduction technique to Ĝ
to check if further states can be removed. Because the degree

of Ĝ should be fairly low already (13 in the example), this

should not be a major computational task.

III. APPLICATION 1: ENVIRONMENT COMPENSATOR

In this section, we study a TFM P (s) (“the plant”) that is

interacting with an environment modeled by G(s):

y = P (u + w)

w = −Gy + l, (9)

−1

K P

−G

−Ĝ

yref y

n

l
+

+
++

+

Fig. 2. The environment compensator using the feedback (10).

where the output y(t) ∈ R
m is available for feedback control

of P and also influences the environment. The control signal

is u(t) ∈ R
o. The signal w(t) ∈ R

p represents the influence

from the environment on the plant, and l(t) ∈ R
p is an

additional external disturbance. The environment is assumed

to be stable and is modeled by the (p×m)-dimensional TFM

G ∈ RH∞. It influences P through the feedback (9). We

assume throughout that the feedback connection of P and

G is internally stable, and hence (I + PG)−1 ∈ RH∞. The

environment G may be a TFM of high McMillan degree.

The problem we consider here is to find a low-complexity

feedback controller for P that compensates for the dis-

turbances that are generated by the environment G. The

controller will consist of two parts: One part depends on

P , and is assumed to be fixed. The other part depends also

on the environment G.

This problem should be of interest when a plant is

working in a possibly changing and complex environment.

Applications we have in mind include vehicles (modeled by

P ) driving in a formation of other vehicles (modeled by G),

see [9], and a generator or subnetwork (P ) acting in a larger

power system (G). We will not discuss these applications

further here. Instead, we focus on how the problem can be

formulated and solved using weighted model reduction. In

particular, we show how the methods proposed in Section II

are useful.

We use the feedback

u = K(yref − y) + Ĝy, (10)

where the TFM K is a well-tuned controller for P , designed

without taking the environment G into account. yref is

a reference signal, and Ĝ an approximate model of the

environment. The controlled system is shown in Fig. 2. The

closed-loop transfer function is

y = (I + P (K + ∆))−1P (Kyref + l + (Ĝ − K)n),

where ∆ = G−Ĝ is the environment model error. If ∆ = 0,

the response to references, yref , and to disturbances, l, is

the same as when P is not connected to the environment G.

Notice, however, that the response to measurement noise, n,

depends on Ĝ.

One rationale for choosing Ĝ, when elimination of load

disturbances l is of interest, is to match the closed-loop
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Fig. 3. The upper plot shows magnitude data from the environment

G (solid), a fourth-order approximation Ĝ (dashed), and a sixth-order

approximation Ĝ (dash-dotted) from Example 2. The lower plot shows the
weight P 2/(1 + PK)2 used in the approximation.

transfer functions from l to y. If K has been chosen to fulfill

requirements from the unconnected system, we then choose

Ĝ so that the error

(I + PK)−1P − (I + PK + P∆)−1P

≈ (I + PK)−1P∆(I + PK)−1P,

is small. Here we have used a first-order Taylor expansion,

which is valid for small P∆. This leads to the weights Wo =
Wi = (I + PK)−1P in the approximation problem (1). Of

course, the above technique can be generalized to other cases,

such as when reference following is the main concern.

Example 2: In this example, we assume that the plant is

P (s) = 1/(s + 1)4 and we choose K as a PID-controller

K(s) = 2
(

1 + 1

2.5s
+ s

1+0.05s

)

. A Bode diagram of the

environment G is shown in Fig. 3. It is seen to be a

highly resonant system with many poles and zeros close

to the imaginary axis. Such systems are generally hard to

approximate with low-order systems. We use Wi = Wo =
(1 + PK)−1P , which is also shown in Fig. 3. Furthermore,

we assume knowledge of frequency samples of G(jω) on an

uniform grid {ωk} = {0.2, 0.21, . . . , 1.2}.

To obtain Ĝ, we first use the method in Section II-B with

r = 4 and r = 6 to fix the poles of Ĝ. When r = 4 we obtain

γ = 0.24 and when r = 6 we obtain γ = 0.04. Instead

of using Ĝ1 or Ĝ2 as approximations, we extract the poles

{pi}, and use them to get improved approximations with the

method in Section II-C. This gives ‖Wo(G − Ĝ)Wi‖∞ =
0.272 and 0.269, using r = 4 and 6, respectively. Since the

example is SISO, the McMillan degree of Ĝ is equal to r. A

load step response test is shown in Fig. 4, with and without

the environment model Ĝ in (10). As can be seen, adding

just a low-order model Ĝ almost brings the behavior back to

nominal, even though the environment G is very complex.

Remark 2: We also computed Ĝ using frequency-

weighted balanced truncation [4], for comparison. This

yielded ‖Wo(G − Ĝ)Wi‖∞ = 0.316 and 0.469, using

0 10 20 30 40 50 60 70 80 90 100
−0.2

0

0.2

0.4

0.6

0 10 20 30 40 50 60 70 80 90 100
−0.2

0

0.2

0.4

0.6

Time

Fig. 4. The load step response test in Example 2. In the upper plot, P is
just controlled by K. In the nominal case (solid) it is not connected to the
environment G, and in the other case (dashed) it is connected to G. The
resonant environment G introduces oscillations in the system. In the lower

plot, fourth- and sixth-order models Ĝ (dashed and solid, respectively) are
added to the feedback (10), and are seen to almost bring the performance
back to nominal.

four and six states in Ĝ, respectively. Notice that weighted

balanced truncation works better with four states than with

six states. There is no guarantee that increasing the number

of states will yield a better approximation, using this method.

We also implemented weighted Hankel norm approximation

[5], but we did not yield an approximation of comparable

accuracy using fewer states than six.

The proposed methods perform well in comparison to

other methods here. Again remember that the proposed

methods use less data to compute Ĝ, since the other methods

require a state-space model of G. However, this is just

one example, and a more thorough comparison between the

proposed methods and the methods in, for example, [4], [5],

[10], [20], would be interesting to perform.

IV. APPLICATION 2: APPROXIMATION OF

INTERCONNECTED LINEAR SYSTEMS

In this section, we will formulate two weighted model

reduction problems that are relevant for simplification of

interconnected linear systems. We use the model setup from

[13]. Consider a collection of n TFMs Gi(s) that models

the subsystems in the interconnected structure. The inter-

connected linear system is given by

b(s) =







b1(s)
...

bn(s)






=







G1(s) 0
. . .

0 Gn(s)













a1(s)
...

an(s)







� G(s)a(s),

a(s) = Kb(s) + Hu(s), y(s) = Fb(s),

where u is the external input, y the output, and a, b are

interconnection signals. K, H , and F are real constant

matrices of appropriate dimensions. K is the connectivity

matrix and contains the interconnection structure of Gi(s).
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We assume that the interconnected system is internally stable

so that (I−KG)−1 ∈ RH∞. The TFM of the interconnected

system is given by y(s) = F (I − G(s)K)−1G(s)Hu(s).

A. Simplification of subsystem dynamics Gi(s)

We are looking for an approximation Ĝ(s) with the

same block-diagonal structure as G(s). Using the method

in Section II-C, we can seek approximations in the form

Ĝ(s) = Ĝ0 +
r

∑

i=1

1

s − pi

Ĝi

where Ĝi has the same block-diagonal structure as G(s).
Such a structure is easily enforced in LMI solvers. To

simplify the subsystem dynamics, one can for example solve

min
Ĝi

r
∑

i=1

‖Ĝi‖1 subject to ‖(I − KG)−1K(Ĝ − G)‖∞ < γ,

block structure(G(s)) = block structure(Ĝi),

where the weight comes from the small-gain theorem. If γ <
1, it guarantees that the interconnected system is stable using

Ĝ instead of G. Other weights result if we try to match

closed-loop transfer functions, as was done in Section III.

B. Simplification of interconnection structure K

Another interesting problem is to simplify the intercon-

nection structure. One complexity measure of the intercon-

nection structure is the rank of K. If the rank of K is

equal to l, then there are only l independent signals that

connects the subsystems. If we simplify the system with

the respect to the rank of K, we gain insight about what

signals are most important in the structure. We can use the

rank minimization heuristic in Section II-C to simplify the

interconnection structure whilst maintaining the stability of

the interconnected system. For example, using the small-gain

theorem, we obtain

min
K̂

‖K̂‖1 subject to ‖(I − GK)−1G(K̂ − K)‖∞ < γ.

If γ < 1, we have guaranteed stability. As the approxima-

tion error tolerance γ is increased, we typically obtain an

approximation K̂ of lower rank.

V. CONCLUSION

In this paper, we have shown how a recently proposed

model reduction technique [6] can be used together with

frequency weights. The technique can also be combined with

a rank-minimization heuristic to deal with MIMO systems.

We presented two applications where the suggested tech-

niques are useful. First, there was an application where the

problem was to update an existing feedback controller with

a simple compensator for complicated environments. We

called this environment compensation, and gave an example.

Second, we showed how the methods can be used to sim-

plify linear models while maintaining their interconnection

structure. Future work will include further evaluation of the

suggested techniques for the applications in Sections III and

IV.
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