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Abstract— Control systems utilizing wireless sensor and ac-
tuator networks can be severely affected by the properties of
the wireless links. Radio fading and interference may cause
communication outage of several samples in situations when
the radio environment is noisy and low transmission power is
desirable. We propose a method to compensate for outages by
introducing a predictive outage compensator (POC), which is
a filter to be implemented at the receiver sides of networked
control systems and that generates artificial samples during the
outage. The main contribution of the paper is to show that a
POC can be derived based on a Kalman filter formulation and
that it is possible to achieve good performance with a low-
order implementation based on Hankel norm approximation.
Tradeoffs between achievable closed-loop performance, outage
length, and POC order are discussed. The results are illustrated
on a simulated example of a multiple-tank process.

I. INTRODUCTION

Recent advances in low-power wireless radio and sensor
technologies have enabled the engineering of a new type of
networked sensing and control systems, which are now being
tested and evaluated in process industry. In these wireless
control systems, it is hard to prevent communication outages
to occur due to noisy radio environments. The outages
correspond to short time intervals during which sensor data
do not reach the controller node or control commands do not
reach the actuator node. The approach taken in this paper is
to investigate possibilities to compensate for outages using
software components in network devices. The work is par-
ticularly motivated by a case study within the SOCRADES
project [1], where wireless control of the floatation tanks in
an ore concentrator at Boliden in Sweden is studied.

Consider the networked control system in Fig. 1, which
shows how actuators, sensors and controllers are being con-
nected through a wireless network. Sensors and controllers
use a medium access control (MAC) protocol to decide
when to transmit sensor and control data over the network.
These data are received by the controllers and actuators. At
the input to each such device there is a predictive outage
compensator (POC), which is a filter that can generate
artificial samples during outage. If the MAC and POC are
working appropriately, they allow us to abstract away the
details of the network in the control design.

The main contribution of the paper is to show that a POC
can be derived based on a Kalman filter formulation, which
yield an optimal outage prediction under certain assumptions.
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Fig. 1. Actuator, sensor and control devices are interfaced to the network
through MAC and POC protocols

In general, such an optimal POC can be of high order.
We show that it is possible to achieve good performance
with a low-order implementation based on Hankel-norm
approximation. A special case of our formulation is the
commonly used zero-order hold compensator, which simply
holds the last control command during the outage.

Networked control under lossy communication links is
a very active research area. Relevant approaches include
networking protocols suitable for control [2], [3], compensa-
tion schemes for control and estimation algorithms [4], [5],
[6], [7], and joint communication and control designs [8],
[9]. Issues regarding stabilization of systems using smart
actuators for a given drop probability are handled in [10].
Predictive control has been extensively used in various
networked control settings, e.g., [11], [12]. The POC was
introduced in [13], where we showed that a fairly simple
filter significantly could improve the performance of control
systems under communication outages.

The outline of the paper is as follows. In Section II the
problem is defined. Section III characterizes the optimal
POC. Methods to device reduced order POCs and their error
bounds are given in Section IV. The method is exemplified
and evaluated on a simulated example in Section V. Con-
cluding discussions and future work are given in Section VI.

Notation: We have tried to use standard notation in
the paper. Let ℓ2 denote the Hilbert space of square-
summable signals, i.e., signals u with finite norm ‖u‖2 :=√

∑∞
i=−∞ |u(i)|2. By x̂(k|k′) we denote an estimate of

x(k), given all available measurements up until time k′.

II. PROBLEM FORMULATION

In this paper, we consider the problem of controlling a
linear plant P over a communication network with sporadic
outages. The plant P is given by

xp(k + 1) = Apxp(k) + Buu(k) + Bdd(k)

y(k) = Cpxp(k) + v(k),
(1)
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Fig. 2. The Predictive Outage Compensator.

where d, v are process and measurement noise, respectively.
When there is no communication outage, the control u(k) =
uc(k) is given by the controller C,

xc(k + 1) = Acxc(k) + Bcy(k)

uc(k) = Ccxc(k).
(2)

When there is a communication outage, the actuator does
not receive the controller output uc(k). The problem we
consider is how one during communication outage should
choose u(k). The design of the MAC is left outside the scope
of the paper. Further, we assume that the communication
between sensor and controller always is working.

The POC is designed to generate controls u(k) when uc(k)
is not received. We assume the POC takes the state-space
form

x̂(k + 1|k) = Ax̂(k|k − 1) + Kǫ(k)

û(k|k − 1) = Cx̂(k|k − 1),
(3)

where ǫ(k) = uc(k)−û(k|k−1) = uc(k)−Cx̂(k|k−1) is the
one-step-ahead prediction error of the POC, and û(k|k − 1)
is the predicted value of uc(k). The matrices A,K,C are
design parameters. A standing assumption in the paper is that
A − KC is a Schur matrix so that (3) is an asymptotically
stable system.

Equation (3) describes the POC when there is no commu-
nication outage, i.e., in “correction mode”. When an outage
occurs, say at time k′, the POC switches to “prediction
mode” and applies its prediction as input to the plant for
k > k′,

x̂(k + 1|k′) = Ax̂(k|k′)

u(k) = û(k|k′) = Cx̂(k|k′)
(4)

The operation of the POC is illustrated in Fig. 2. In outage,
the plant will evolve according to

xp,out(k + 1) = Apxp,out(k) + Buû(k|k′) + Bdd(k)

yout(k) = Cpxp,out(k) + v(k),

for k > k′ when the POC is used. We make the standing
assumption that the disturbance d(k) is independent of the
outage. The effect of the outage on the plant becomes

∆xp(k + 1) = Ap∆xp(k) + B∆u(k), (5)

where ∆u(k) = uc(k) − û(k|k′) and ∆xp(k) = xp(k) −
xp,out(k). To minimize the effect of the outage, we would
like to make ∆u(k) as small as possible. How large ∆u(k)
becomes of course depend on how the realization A,K,C
is chosen in (4).

In Section III, we characterize POCs that minimize the
disturbance E|∆u(k)|2 on the plant. We call these optimal
POCs. In Section IV, we then show how POCs can be
approximated.

Remark 1: We here assume that the POC only gets access
to the controller output uc(k) (when available). One could
extend the framework and let it have access to more data,
such as the controller state. An advantage with the current
set-up is that it does not require any modification of the
controller C.

Remark 2: If the system (5) is open-loop unstable even a
small ∆u(k) will cause the state ∆xp(k) to diverge. Hence
we can conclude that all open-loop unstable systems are
inherently difficult to handle.

III. OPTIMAL PREDICTIVE OUTAGE COMPENSATION

In this section, we characterize an optimal POC, given
that we know the models of P and C, and know a stochastic
model of the noise. Even if these assumptions are not always
true, it is still interesting to characterize the optimal solution
since it can be used for comparison with other solutions.

Let us first assume that the colored process noise d(k) is
given by

xd(k + 1) = Adxd(k) + Bww(k)

d(k) = Cdxd(k) + Dww(k),
(6)

and the measurement noise v(k) is white. Let

E

[
w(k)
v(k)

]

= 0, E

[
w(k)
v(k)

] [
w(l)
v(l)

]T

= Rδkl,

be the expected value and covariance of the white noise.
When there is no outage, the entire system evolves as




xp(k + 1)
xc(k + 1)
xd(k + 1)



 =





Ap BuCc BdCd

BcCp Ac 0
0 0 Ad





︸ ︷︷ ︸

Acl





xp(k)
xc(k)
xd(k)





+





BdDw 0
0 Bc

Bw 0





︸ ︷︷ ︸

N

[
w(k)
v(k)

]

uc(k) =
[

0 Cc 0
]

︸ ︷︷ ︸

Ccl





xp(k)
xc(k)
xd(k)



 .

(7)
The optimal estimator of the state in (7) using measurements
uc(k) is the Kalman filter,

x̂(k + 1|k) = Aclx̂(k|k − 1) + Kcl

[
uc(k)−Cclx̂(k|k − 1)

]
.

(8)
where

Kcl =
(
AclPCT

cl

)(
CclPCT

cl

)−1

P = AclPAT
cl + NRNT

−
(
AclPCT

cl

)(
CclPCT

cl

)−1(
AclPCT

cl

)T
,

(9)

see for example [14]. The optimal one-step-ahead prediction
of uc(k) is û(k|k−1) = Cclx̂(k|k−1). Note that the Kalman
filter (8) has the structure of the POC (3), and that optimal
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predictions of uc(k) based on measurements up until k′ are
generated by

x̂(k + 1|k′) = Aclx̂(k|k′), û(k|k′) = Cclx̂(k|k′), (10)

where x(k′+1|k′) is given by (8). Also the optimal predictor
(10) has the form of a POC in prediction mode (4). We can
conclude that the stochastically optimal POC is given by the
choices A = Acl, K = Kcl, and C = Ccl under the given
assumptions.

Remark 3: Note that we here consider the problem over
an infinite time horizon. This is a good assumption if the
communication outages are infrequent. If the time horizon
is finite, the optimal filter gain Kcl should be time varying,
see [14].

Next, we compute the prediction error of the optimal POC.
This error serves as a lower bound on the prediction error
of other POCs. We can note that the state dimension of the
optimal POC is large. How to approximate it is discussed in
Section IV.

A. Prediction Error

It is easy to characterize the statistics of the prediction
error ∆u(k) of the optimal POC. The Kalman filter gives
unbiased estimates and thus E∆u(k) = 0 for all k > k′. To
compute the variance E|∆u(k)|2, we need the covariance
of the state estimation error. Assuming that the Kalman
filter has been in operation a long time before the outage
at k′, the covariance of ∆x(k) is given by the solution to
the Riccati equation in (9), E∆x(k)∆x(k)T = P , where
∆x(k) = x(k) − x̂(k|k − 1) and x(k) is the state vector
in (7). The variance of the one-step-ahead prediction error is
E|ǫ(k)|2 = CclPCT

cl . When an outage occurs, the covariance
of the state estimation and prediction error evolve for k > k′

as

P (k + 1) = AP (k)AT + NRNT , P (k′) = P,

E|∆u(k)|2 = CclP (k)CT
cl .

The optimal POC minimizes the variance of the noise
∆u(k) in the model (5). How much effect this noise has
on the plant of course depends heavily on its dynamics. If
P is an unstable plant, even a small error ∆u(k) can harm
the process since it is controlled in open loop during outage.

IV. REDUCED-ORDER POCS

Let us represent the state-space POC by a linear opera-
tor û = Gǫ on ℓ2, realized by

G

{
x̂(k + 1|k) = Ax̂(k|k − 1) + Kǫ(k),

û(k|k − 1) = Cx̂(k|k − 1), x̂(k|k − 1) ∈ R
n,

(11)

where ǫ(k) = uc(k) − Cx̂(k|k − 1). As has been discussed
in Section III, the dimension n of the state vector x̂(k|k−1)
can be very large. This is the case if K is the Kalman gain
of the system, for example. It is of interest to investigate
how the order of the POC can be reduced, and to get an
understanding of the performance and complexity trade-off.
The reduced POC serves both as an approximation to be
implemented in devices with limited computational power
as well as a method to determine whether there is something
to gain or not by using a more advanced strategy to handle
outages or not. Let us denote a reduced-order POC by a

linear operator ûr = Grǫr on ℓ2, with order r < n, realized
by

Gr

{
x̂r(k + 1|k) = Arx̂r(k|k − 1) + Krǫr(k),

ûr(k|k − 1) = Crx̂r(k|k − 1), x̂r(k|k − 1) ∈ R
r,
(12)

where ǫr(k) = uc(k) − Crx̂r(k|k − 1). One method for
generating Gr from a given G is suggested next.

A. Hankel Approximation of G

Assuming, without loss of generality, that the outage
occurs at k′ = 0, we would like the reduced-order POC to
produce an outage prediction ûr(k|0) that is close to û(k|0),
for k > 0, for any input sequence uc(k), k ≤ 0. Using
operator notation, one way to formalize this requirement is
to make the criterion

‖ΓG(I + G)−1 − ΓGr
(I + Gr)

−1 ‖ (13)

small. Here ‖ · ‖ is the induced ℓ2-norm, and the stable
operators (I + G)−1 and (I + Gr)

−1 map the input uc into
the corrections ǫ and ǫr, respectively. The Hankel operator
ΓG is the past-input to future-output restriction of G, see for
example [15]. That is, ΓG := P+GP−, where P+, P− are
time-projection operators:

P+u = P+(. . . , u(2), u(1), u(0), u(−1), u(−2), . . .)

= (. . . , u(2), u(1), 0, 0, 0, . . .))

P−u = P−(. . . , u(2), u(1), u(0), u(−1), u(−2), . . .)

= (. . . , 0, 0, u(0), u(−1), u(−2), . . .),

so that ℓ2 = P+ℓ2 ⊕ P−ℓ2. The input-output map of ΓG is
given by

û(k|0) =

0∑

i=−∞

CAk−i−1Kǫ(i) = (ΓGǫ)(k), k > 0.

The reason for using approximation in the Hankel norm
is that it measures how past inputs affects future outputs.
This is natural since the POC is driven by the innovation
signal ǫ(k) up until time k′ = 0 after which it is no longer
computable and we instead use ǫ(k) = 0, k > k′ = 0. Since
the POC output is only of interest after the outage we are
effectively interested in how the past input signal ǫ(k) affects
future estimates û(k). This exact property is captured by the
Hankel norm.

Model order reduction is a well-studied topic, and there
are many methods available, see for example the book [16].
The problem of making (13) small does not fit clearly to any
of these methods, however. To be able to solve the problem,
we note that the following bound holds:

‖ΓG(I + G)−1 − ΓGr
(I + Gr)

−1 ‖

≤ ‖(ΓG − ΓGr
)(I + Gr)

−1‖

+ ‖ΓG((I + G)−1 − (I + Gr)
−1)‖. (14)

We will proceed by minimizing the first term of this upper
bound. It turns out that it is then possible to use that solution
to bound the second term, and thus to bound the error
criterion (13).

Note that the rank of the Hankel operator is equal to
the McMillan degree of the corresponding system, i.e.,
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rankΓG = n, if (A,K,C) is a minimal realization. To make
the first term in the upper bound (14) small, we therefore
want to solve the problem

min
rank ΓGr

≤r
sup

‖ǫr‖2≤1

‖(ΓG − ΓGr
)ǫr‖2 =: γ1(r), (15)

where ǫr = (I + Gr)
−1uc. The approximation problem (15)

can be solved using the famous AAK-lemma, see [17]. In
particular, it is well-known that γ1(r) = σr+1(G) where
σi(G), i = 1, . . . , n, are the Hankel singular values of the
linear operator G, and methods for computing a state-space
realization (Ar,Kr, Cr) of the optimal G∗

r are available,
see [18], [19]. The Hankel singular values can be used to
determine a suitable approximation order r.

Assume now we choose an optimal Hankel approximation
G∗

r of G as the reduced POC . What can we then say about
the size of the second term in the bound (14)? We have that
(I + G)−1 − (I + Gr)

−1 = (I + G)−1(Gr −G)(I + Gr)
−1,

and as has been shown in [18], [19], there is an optimal
Hankel approximation G∗

r such that

‖G∗
r − G‖ ≤

n∑

i=r+1

σi(G). (16)

An upper estimate of the second term is therefore

‖ΓG((I + G)−1 − (I + G∗
r)

−1)uc‖2

= ‖ΓG(I + G)−1(Gr − G)ǫr‖2 ≤ γ2(r)‖ǫr‖2 (17)

where γ2(r) = σ1(G) ‖(I+G)−1‖
∑n

i=r+1
σi(G), where we

have used that the induced norm of ΓG is equal to σ1(G).
This bound is expected to be quite conservative, since we
have used the submultiplicative property of the induced norm
and the upper bound (16) which is derived using the triangle
inequality. The reason this bound is used is that the authors
are not aware of any method to compute the induced norm
‖ΓG(I + G)−1(Gr − G)‖. We summarize the above results
in the following proposition.

Proposition 1: Suppose the system (12) is chosen as an
optimal Hankel approximation G∗

r of the stable system G
in (11). Then it holds for any input uc ∈ ℓ2 that

‖P+(û − ûr)‖2 = ‖ΓGǫ − ΓG∗

r
ǫr‖2 ≤ γ(r)‖ǫr‖2,

where γ(r) = γ1(r) + γ2(r) giving

γ(r) = σr+1(G) + σ1(G)‖(I + G)−1‖
n∑

i=r+1

σi(G).

Proposition 1 shows that if σi(G), i = r + 1, . . . , n are
small, then G∗

r is guaranteed to work well as a reduced-
order POC. The bound can be used as follows: A user of
the reduced-order POC can compute ‖ǫr‖2, since this is the
energy of the one-step ahead prediction error which is fed
into G∗

r . If ‖ǫr‖2 is small, it means that the environment
is not very noisy, and the prediction works well. If then an
outage occurs, we can be certain that the outage predictions
ûr do not deviate from the full-order prediction û more than
γ(r)‖ǫr‖2, under the same circumstances.

Remark 4: One restriction in Proposition 1 is that G must
be stable. This is not the case if an optimal POC has unstable
modes in the disturbance model (6), for example. This can
be handled by making a stable/anti-stable decomposition of

G, i.e., G = Gs +Gu, and then by approximating the stable
part Gs as above. The unstable term Gu can then be added
to the approximation G∗

s,r.
Remark 5: When G is an optimal POC as described in

Section III, it intuitively makes sense to make the reduction
criteria ‖ΓG −ΓGr

‖ small. The reason is that the correction
ǫ = (I +G)−1uc that is applied to ΓG then is an innovation
sequence, and is stochastically white noise. It therefore
contains an equal amount of all frequencies and to make
an unweighed criterion like ‖ΓG − ΓGr

‖ small is natural.

V. TANK EXAMPLE

To exemplify the proposed method, we consider a tank
process consisting of five identical tanks connected in series.
This system is motivated from a floatation process in an
ore concentrator at Boliden in Sweden, which is being
investigated for wireless control within the SOCRADES
project [1]. The control objective is to keep the level h5

in the lowest tank around an equilibrium point despite load
disturbances d entering the system. The manipulated variable
is the flow u from the pump.

The individual tanks are modelled using mass balance and
Bernoulli’s law. Assuming that the tanks have cross sectional
area A = 1 m2, outlet hole area a = 0.2 m2 and that the
gravitational acceleration is g = 10 m/s2, a linearized process
model around the equilibrium h0

i = 5 m and u0 = 2 m3/s is
given by






ḣ1

ḣ2

ḣ3

ḣ4

ḣ5




 =

1

τ

[−1 0 0 0 0
1 −1 0 0 0
0 1 −1 0 0
0 0 1 −1 0
0 0 0 1 −1

] 



h1

h2

h3

h4

h5



 +

[
1
0
0
0
0

]

( u+d ) (18)

where τ = A
a

√
2h0

i

g
= 5 s. The rise time of the water tank

system is about 30 s.

The controller C(s) = s+ωI

s

(
τds+1

βτds+1

)5
10ωI

s+10ωI
is derived

using loop-shaping, where ωI = 0.2, β = 0.30 and τd =
8.54. It gives cross-over frequency ωc = 0.22 rad/s and
phase-margin ϕm = 60o.

The process and controller are sampled with period Ts =
1 s and a disturbance model is derived to account for the
disturbance d as

xd(k + 1) = xd(k) + w(k)

d(k) = xd(k)

Ew(k)2 = 0.01

(19)

Combining the models for the process, controller and distur-
bance as in (7) one get a closed-loop system with McMillan
degree n = np + nc + nd = 5 + 7 + 1 = 13.

A. Optimal POC

The optimal POC G for the closed-loop tank system
is given by (8) with degree n = 13. We choose R =
diag([10−2, 10−4]), and simulate the system under the fol-
lowing scenario:

k = 0 : The system starts at rest and the disturbance d,
generated according to (19), starts to act on the system.
k = 40 : A communication outage occur between
controller and actuator and the POC is activated.
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Fig. 3. Comparison of POC behavior (solid) with Nominal behavior (dashed) under disturbance d (dotted)

k = 80 : Communication is restored and the controller
starts to actuate the system back into rest.

The resulting simulated behavior of G is shown in
Fig. 3(a). At time k = 0 the optimal POC is initialized to
have the same state as the true system and the prediction is
perfect. However at the same instant the disturbance starts
acting and the system states start to diverge, as a result
so does the estimation error. Effectively what now happens
is that the Kalman filter in the POC starts to estimate the
variance of the random-walk disturbance d via the internal
model. At k = 40 communication between the controller and
actuator is lost, hence so is the feedback into the predictor,
and the optimal POC starts to evolve in open loop predicting
control signals. If the state estimate in the optimal POC
has converged the prediction will be perfect, as long as the
disturbance does not change under the outage. However, if
the estimate has not fully converged, as is the case in this
example, the prediction will start to diverge. Still, one can
observe that the prediction error is small for the first 15
samples resulting in a very small deviation in the output
compared to the nominal case.

B. Hankel approximation

As discussed previously in the paper, it is often desirable
to have a POC of low order and therefore a reduced-order

approximation of the optimal POC G is desired. First it
is observed that the disturbance model (19) contains an
integration and that G hence is not asymptotically stable. To
handle this a stable/anti-stable decomposition of G is made
as G = Gs+Gu and reduction is made on the stable part Gs

only, see Remark 4. To determine a proper reduction order
r the singular values of Gs, shown in Fig. 4, are studied.
As seen there are significant drops between σ1(Gs) and
σ2(Gs), between σ3(Gs) and σ4(Gs) and between σ5(Gs)
and σ6(Gs), indicating that a good choice of the reduction
order r is to choose r in the set {1, 3, 5}. Performing optimal
Hankel norm approximation on Gs of order r one gets G∗

s,r

and the reduced POC as G∗
r = G∗

s,r +Gu of order r+1 since
Gu only contains the integrator state from the disturbance
model.

A quantitative bound γ(r) on the reduction is given in
Proposition 1. For the given example the bounds for the
suggested choices of r are presented in the table below
together with the true norm of ‖P+(û − ûr)‖2 and the
contribution from the partial bound γ1(r) in (15).

r ‖ǫr‖2 γ1(r)‖ǫr‖2 γ(r)‖ǫr‖2 ‖P+(û − ûr)‖2

1 0.35 0.77 11.87 0.39
3 0.29 0.25 2.99 0.26
5 0.32 0.03 0.25 0.02
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Fig. 4. Hankel singular values of the stable modes in the optimal POC

As seen, in this example, the bound imposed by γ1(r) is
close to the true value of ‖P+(û− ûr)‖2 whereas the upper
bound given by γ(r) is significantly larger. This is due to the
conservative derivations of the component γ2(r) from (17).
Evaluating the reduced POCs with reduction order r = 1 and
r = 3 on the same simulation scenario as before one gets
the results in Fig. 3(b) resp. Fig. 3(c).

At k = 0 the system starts at rest in the origin and the
reduced POCs are initialized accordingly to xr(0) = 0. As
before the disturbance d starts to act on the system imme-
diately causing it to diverge and the POCs start estimating
the states. The state associated with the disturbance model
will now, apart from the disturbance, accommodate the errors
due to the model reduction. When communication is lost
at k = 40 the POCs will as before evolve in open loop
predicting the control signal.

Studying the reduced POC of reduction order r = 1 in
Fig. 3(b) one can see that the prediction error as expected is
larger than for the optimal POC, this is due both to the model
approximation error and the fact that the estimator has not
fully converged when the outage occur. If one instead studies
the reduced POC of reduction order r = 3 in Fig. 3(c) the
prediction error is smaller than for order r = 1, although
the difference is not significant. However, if one studies the
output it is clear that the output tracking performance for the
reduced POC with r = 3 is almost identical to the optimal
POC.

C. Hold approximation

A common way to compensate for outages is to use a hold
POC. That is to use the last known value of the control signal
uc(k) as the one-step-ahead prediction. This POC is a first-
order approximation of the optimal POC with Ar = Kr =
Cr = 1 in (12). The resulting simulation over the studied
scenario from using this predictor is shown in Fig. 3(d).
As seen the control signal tracking is poor, resulting in a
large drift in the output compared to the nominal closed-
loop behavior.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed predictive outage compen-
sation as a method to reduce the influence of communication

outages in networked control systems. In particular, we
derived an optimal prediction scheme, and also showed how
the order of the predictor can be reduced by means of
Hankel-norm approximation. A priori approximation error
bounds of the predictor were derived, and the method was
also demonstrated on a simulated tank system.

The optimal predictor estimates the state of the entire
closed-loop system. An interesting topic for future work is
to find alternative methods of using this estimate. One could
use a separate open-loop controller in outage, for instance.
Another problem of both practical and theoretical importance
is how to generate controls to minimize the bump in the
control signal after a communication outage.
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