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Abstract— This paper extends a state projection method

for structure preserving model reduction to situations where

only a weaker notion of system structure is available. This

weaker notion of structure, identifying the causal relationship

between manifest variables of the system, is especially relevant

is settings such as systems biology, where a clear partition of

state variables into distinct subsystems may be unknown, or not

even exist. The resulting technique, like similar approaches,

does not provide theoretical performance guarantees, so an

extensive computational study is conducted, and it is observed

to work fairly well in practice. Moreover, conditions character-

izing structurally minimal realizations and sufficient conditions

characterizing edge loss resulting from the reduction process,

are presented.

I. INTRODUCTION

Simplified representations of dynamical systems play an

important role in understanding, redesigning, and controlling

their underlying dynamic phenomena. This can be especially

true in situations where the underlying system is large

and structured in a complex network of interconnections.

Examples of such systems include biological systems, so-

cial networks, the internet, economic industrial organization,

chemical reaction networks, power systems, transportation

networks, epidemic transmission systems for infectious dis-

eases, etc.

Reducing the complexity, while preserving the fidelity of

a model, is the primary challenge for developing these sim-

plified representations. The key question then becomes what

measures of complexity and fidelity to use to meaningfully

formulate the simplification problem.

For linear systems, the measure of system complexity has

traditionally been system order. Since linearity already con-

strains the richness of behavior available to each differential
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equation in the system, the number of differential equations

necessary to describe a particular input-output relationship

then becomes a meaningful measure of system complexity.

System order is the measure considered by realization

theory, which characterizes state representations with input-

output characteristics that exactly match a given transfer

function. There we see that rational, proper transfer functions

can always be exactly realized by systems of order greater

or equal to a particular number, called the McMillan degree

of the transfer function.

Model reduction, however, considers state representations

with order less than the degree of a given transfer function

[10]. In this case, the input-output characteristics of the state

equations will only approximate the transfer function, and

it is precisely the sense of approximation that traditionally

defines the fidelity of the simplified representation. This

notion of fidelity emphasizes the input-output dynamics of

the system.

For large complex systems, though, the input-output dy-

namics alone may not be an adequate measure of fidelity. For

these systems, system structure may be an equally important

characteristic for understanding, redesigning, or controlling

the system since, for example, only distributed interaction

may be feasible. In this case, model reduction must not only

approximate the dynamics of the system, but it also must

reflect a priori knowledge of the system structure to the

extent possible.

Unfortunately, traditional approaches to model reduction

focus only on dynamic approximation and do not gener-

ally preserve interconnection structure. Nevertheless, recent

work has considered this issue, and a number of structure-

preserving methods have been suggested [18], [8], [16], [1],

[13], [14], [15]. These methods, however, all assume that the

structure of the complex system is known a priori in a very

strong sense. In particular, a partition of the entire state space

is assumed to be known, enabling a decomposition of the
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system into the interconnection of a finite set of subsystems.

Assuming knowledge of such a partition may be rea-

sonable in some cases, especially when considering engi-

neered systems constructed as the explicit interconnection

of physically and spatially separate “solid-state” subsystems.

This could be the case, for example, when interconnecting

distinct mechanical or electrical modules to form a com-

posite system, or in a networked control system where the

interconnection structure is fully known.

In other situations, however, assuming a priori knowledge

of a partition over the entire state space of the complex

system could be unreasonable. For example, when modeling

a chemical reaction network of a biological system, one

may not even be aware of many of the chemical species

involved in intermediate reactions, much less their reaction

pathways. As a result, it could be unreasonable to expect

that one would know how to meaningfully partition all of

the states of the system into distinct subsystems. In these

situations, a weaker notion of a priori structural information

is necessary to formulate a meaningful structure-preserving

model reduction problem.

A weaker notion of system structure has been developed

in the context of the network reconstruction of biochemical

systems [6]. This notion of structure is characterized by

a factorization of a system’s transfer function, called the

dynamical structure function, and it characterizes the causal

relationship between manifest variables (i.e. system inputs

and outputs) without imposing any particular structural form

on the rest of the system.

This paper formulates the structure-preserving model re-

duction problem assuming only weaker a priori structural

information, as characterized by the dynamical structure

function of the system. A state projection technique similar to

that in [15] is then applied, and it is found to deliver reduced

models with good dynamic fidelity. Nevertheless, unlike

situations where strong a priori structural information is

available, the technique is shown to not necessarily preserve

structure in the weaker sense, and conditions for structure

preservation are then provided.

The outline of the paper is as follows. The next section

compares and contrasts the strong and weak notions of sys-

tem structure introduced here. Section III then formulates the

structure preserving model reduction problem, and Section

IV describes a procedure to approximate its solution. Section

V illustrates the performance of a state-projection reduction

technique through an extensive computational study, and

Section VI characterizes situations when the technique will

fail to preserve structure. Section VII then concludes the

paper.

II. BACKGROUND: CHARACTERIZING STRUCTURE

In this work we assume that the transfer function, G(s),
of a specified LTI system is known. Note that this represen-

tation of the system completely characterizes its input-output

dynamics, but describes nothing of its internal structure.

This section then compares and contrasts different ways

of characterizing partial structure information of the system.
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Fig. 1. Interconnection structure of a system with strong partial structure
information. Notice that nodes represent systems, and the hub-spoke pattern
emphasizes the existence of a global partition on all of the system states.

First, note that complete structural information is character-

ized by the state-space equations describing how the system

actually computes its outputs given the input and initial

conditions; we call this the complete or computational struc-

ture of the system. We next discuss strong partial structure

information vs. weak partial structure information of the

system and show that, although they may be described by

graphical duals, the type of a priori information requirements

they impose are very different.

A. Strong Partial Structure Information

One way to encode partial structure information about a

system is to decompose the composite system into q + 1
distinct subsystems. One of these subsystems, N(s), is a

special module that characterizes the system structure and

interconnects the other q subsystems; the others, Gi(s), i =
1, 2, ..., q, are completely distinct and decoupled and do

not interact except through N(s). In this setting, replacing

any subsystem Gi(s) with another system, Ĝi(s), preserves

the composite system structure, as encoded in N(s), as

long as the dimensions of the inputs and outputs of Ĝi(s)
conform to the ports made available by removing Gi(s). The

mathematical representation of the composite system then

becomes the lower fractional transformation of the system

N(s) and a block diagonal system G(s), Fl(N,G), with

Gi(s) on the ith block of G.

The strong sense of structural understanding required by

this definition of structure is a global partition on all the

states of the complex, composite system resulting in the

diagonalization of G. This may be the case, for example, in

mechanical or electrical engineered systems where 1) com-

plexity is achieved through the interconnection of a number

of submodules, each with its own input-output characteris-

tics, and 2) the interaction between subsystems is completely

known (characterized by N(s) and diagonal G), even if the

internal structure (i.e. a state-space representation) of each

subsystem is not specified. Other names for this strong type

of partial structural information include subsystem structure

or the solid-state structure of the system.
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In this setting, it is natural to describe the structure

of the composite system graphically by associating each

subsystem with a node of a graph. The input and output

signals of these subsystems are then represented as edges of

the graph, interconnecting the nodes commensurate with the

interconnection information of N(s). If only the input-output

characteristics of N(s) are known, then the graph takes on a

hub-spoke pattern, with N(s) as the hub and each subsystem

Gi(s) as a satellite system interconnected only to N(s)
(see Fig. 1). This pattern illustrates the strong information

requirements emphasized by the diagonal structure of G.

B. Weak Partial Structure Information

A different way to encode partial structure information

about a system is to characterize the open-loop causal de-

pendence between manifest variables of the system. Note that

unlike the transfer function, which communicates no struc-

tural information about the system, this characterization fixes

the structure among measured outputs, and among system

inputs and measured outputs, without specifying anything

about the structure among the rest of the system states. In

particular, unlike strong partial structure information, this

notion of structure does not require knowledge or existence

of a global partition of all system states in order to be

meaningful.

The mathematical representation of the weak partial struc-

ture of a system employs a pair of matrix functions, sim-

ilar to transfer functions, called the dynamical structure

function of the system. In fact, it can be shown that the

dynamical structure function of a system, (Q(s), P (s)),
is a factorization of its transfer function, G(s), given

by G(s) = (I − Q(s))−1P (s). Note that the G(s) here is

the transfer function of the entire, interconnected system,

whereas in the previous section G referred to a structured

component of the complete system; the notational convention

used in various sections of this paper follows that of each

separate development in the literature, and any confusion

should be clear from context.

To see how the dynamical structure function is derived,

consider the system given by:
[

ż1

ż2

]

=

[

Ā11 Ā12

Ā21 Ā22

] [

z1

z2

]

+

[

B̄1

B̄2

]

u

y =
[

C̄1 C̄2

]

[

z1

z2

]

+
[

D̄
]

u
(1)

where
[

z′1 z′2
]

′

∈ R
n, is the full state vector with z1 ∈ R

p,

y ∈ R
p (p < n) are the measured outputs, and u ∈ R

m

is the control input. Without significant loss of generality,

we assume
[

C̄1 C̄2

]

has full row rank and D̄ = 0 (these

assumptions simplify the exposition but do not restrict the

results). We first consider the change of basis on the state

variables yielding:
[

ẏ
ẋ

]

=

[

A11 A12

A21 A22

] [

y
x

]

+

[

B1

B2

]

u

y =
[

I 0
]

[

y
x

]

.
(2)

Taking Laplace Transforms of the signals in (2), we find
[

sY
sX

]

=

[

A11 A12

A21 A22

] [

Y
X

]

+

[

B1

B2

]

U (3)

Solving for X , gives

X = (sI − A22)
−1

A21Y + (sI − A22)
−1

B2U

Substituting into the first equation of (3) then yields

sY = WY + V U

where W = A11 + A12 (sI − A22)
−1

A21 and V =
A12 (sI − A22)

−1
B2 + B1. Let D be a matrix with the

diagonal term of W , i.e. D = diag(W11,W22, ...,Wpp).
Then,

(sI − D) Y = (W − D) Y + V U

Note that W −D is a matrix with zeros on its diagonal. We

then have

Y = QY + PU (4)

where

Q = (sI − D)
−1

(W − D) (5)

and

P = (sI − D)
−1

V (6)

The matrix Q is a matrix of transfer functions from Yi to Yj ,

i 6= j, or relating each measured signal to all other measured

signals (note that Q is zero on the diagonal). Likewise, P
is a matrix of transfer functions from each input to each

output without depending on any additional measured state

Yi. Together, the pair (Q(s), P (s)) is the dynamical structure

function for the system (1).

Note that when discussing the structure of a system, it

is often convenient to distinguish between the dynamical

structure, given by (Q,P ), and its network structure, char-

acterized by the Boolean structure of (Q,P ). The Boolean

structure of a matrix function Q is simply a matrix B(Q)
with elements B(Q)ij = 0 if and only if Qij = 0, otherwise

B(Q)ij = 1. The network structure of a system is thus given

by B(Q, P ).
This weak sense of structure may be particularly useful

for describing the relationships between measured variables,

for example, in biochemical or social systems. In these more

“fluid” systems, not only might it be unreasonable to assume

knowledge of an explicit non-trivial partition on all system

states into distinct subsystems, but such a partition may not

even exist. The dynamical structure of a system, however,

always exists, regardless of whether the stronger sense of

structure is meaningful or not.

In this setting, it is natural to describe the structure of the

complex system graphically by associating each measured

output and input with a node of the graph. Edges are then

identified with each non-zero entry in (Q,P ). In this way

we observe that weak partial structure employs the dual

graphical structure from that used by strong partial struc-

ture, with nodes representing signals and edges representing

systems. For this reason, other names for this weak type of
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partial structure include signal structure, manifest structure,

or the fluid structure of the system. Note, however, that the

internal states of systems represented by these edges are

not necessarily distinct, thus truly weakening the structural

information necessary to employ this representation.

III. PROBLEM FORMULATION

Realization problems transition to model reduction prob-

lems when the order of the representation is reduced be-

yond some threshold: systems with order greater than this

threshold can exactly produce the desired behavior, while

those with order less than the threshold must approximate

the desired behavior. The context for model reduction is

thus characterized by the minimal threshold defining this

transition.

The McMillan degree of a transfer function is the minimal

order necessary to realize it, and thus it is the relevant

threshold for typical model reduction. Generating a particular

structure, however, may demand a higher order than the

McMillan degree, and so we distinguish between dynamic

and structural minimality as follows.

Definition 3.1: Given a structure (Q,P ) of the transfer

function G, with G = (I − Q)−1P , then a realization of G
with order n is dynamically minimal if every realization of G
has order n̄ ≥ n, and it is structurally minimal if it generates

(Q,P ), in the sense of satisfying (2)-(6), and if every other

realization that generates (Q,P ) has order n̄ ≥ n. We call

the order of a dynamically minimal realization the degree of

the system, and the order of a structurally minimal realization

the structural degree of the system.

It is easy to see from the definition that a dynamically

minimal realization that generates the desired structure will

also be structurally minimal. It may be less obvious that

a realization may be structurally minimal without being

dynamically minimal, that is, that certain structures of given

transfer functions require non-dynamically minimal realiza-

tions.

Although dynamic minimality is fully characterized by the

controllability and observability of a realization, a compa-

rable characterization for structural minimality remains an

open problem (see [19] for a more thorough discussion).

A partial characterization, however, is available through the

following conditions.

Theorem 3.1: Given the system characterized by (2) with

associated dynamical structure function (Q,P ) and transfer

function G(s) = (I −Q(s))−1P (s), if the realization (2) is

dynamically minimal, then it is also structurally minimal.

Proof: We prove by contradiction. Suppose that the

realization (2) is dynamically minimal. Suppose, for contra-

diction, that the realization (2) is not structurally minimal.

Then there exists a lower order realization (Ã, B̃, [I0]) with

identical dynamical structure function (Q,P ). But since

G(s) = (I − Q(s))−1P (s), this realization is also a lower

order realization of G(s). This contradicts that the realization

(2) was dynamically minimal.

This first result draws a connection between dynamical

minimality and structural minimality. It is important to note

that the converse of Theorem 3.1 is not valid, i.e. not all

structurally minimal realizations are dynamically minimal.

To see why this is true, consider any system (2) with only

two measured states and non-trivial network structure Q
that is not dynamically minimal. Clearly, such a system is

structurally minimal since removal of a state would abolish

the notion of network structure, i.e. Q would not even

be defined. Our next result is a necessary condition that

further clarifies the subtle relationship between structural and

dynamic minimality.

Theorem 3.2: Given the system characterized by (2) with

associated dynamical structure function (Q,P ), define the

transfer function of the “hidden” system

H = A12(sI − A22)
−1

[

A21 B2

]

. (7)

If the realization (2) is structurally minimal, then H is

dynamically minimal.

Proof: G can be expressed as the lower fractional

transform Fl(M,H), where the “measured” system M is

given as

M =









A11 B1 I
I 0 0

[

I
0

] [

0
I

]

0









. (8)

Suppose that H is not minimal. Then there exist matrices

(Ã22, [Ã21 B̃2], Ã12) such that

A12(sI−A22)
−1

[

A21 B2

]

= Ã12(sI−Ã22)
−1

[

Ã21 B̃2

]

and forming a dynamically minimal realization of H . The

corresponding realization of G, given by

A =

[

A11 Ã12

Ã21 Ã22

]

B =

[

B1

B̃2

]

C =
[

I 0
]

has dynamical structure function (Q,P ), but lower order than

the realization (2), forming a contradiction.

The definition of structural minimality (Definition 3.1)

provides the context for structure preserving model reduc-

tion, with structure characterized in the weak sense of the

dynamical structure function, and Lemma 3.2 demonstrates

that any structure preserving model reduction problem will

consider systems with dynamically minimal “hidden” com-

ponent H . The problem we want to solve then becomes:

Problem: Given a system G with dynamical structure

function (Q,P ) and structural degree n, and a non-negative

integer ñ < n, find an approximate system G̃ with dynamical

structure function (Q̃, P̃ ) and structural degree ñ such that

1) B(Q̃, P̃ ) = B(Q,P ), and

2) G̃(s) = arg min ‖G − G̃‖∞.

This research does not solve this problem. Note that even

without the structural requirements, the optimization problem

given by the second point is well known to be non-convex

and hard. Nevertheless, we demonstrate that a state projection

reduction method known to preserve structure in the strong

sense (when it exists) can be adapted to perform reasonably
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well with only weak structural information. Moreover, al-

though it does not necessarily preserve structure in the weak

sense, conditions for when it fails to do so are provided.

The next sections describe the method, empirically explore

its performance, and analyze its ability to preserve structure

as described by the Boolean structure of (Q,P ).

IV. STRUCTURED BALANCED TRUNCATION

Standard approaches to the unstructured version of the

above problem, such as Hankel norm approximation or bal-

anced truncation, are suboptimal in the H∞ sense. Likewise,

the approach taken here is also suboptimal, and it is an

extension of balanced truncation adapted to accommodate

system structure.

Typical balanced truncation is a state projection method

that eliminates the least controllable and observable states in

a system. It accomplishes this by first changing basis of the

state space of a system realization so that the controllability

and observability grammians of the system are equal and

diagonal, and ordered (i.e. Xc = Yo = Σ ≥ 0, where Σ is

diagonal with elements ordered from largest to smallest). The

fact that such a transformation exists and is unique is well

established, see for example [2], and the resulting diagonal

elements of Σ are called the Hankel singular values of the

system [9]. State projection is then used to truncate the states

corresponding to the smallest Hankel singular values until the

desired model order is realized.

Theoretical results that make balanced truncation useful

include a guarantee that the reduced system will remain

stable if the original system is stable, and the existence of

both lower and upper a priori bounds on the H∞ norm of

the error between the reduced and complete system [11].

Nevertheless, system structure is not necessarily preserved

in the reduced model [4], [3].

To preserve structure in the strong sense, balanced trun-

cation was developed in [15], [8], [17], [12], [15]. A priori

knowledge of system structure is reflected by the availability

of a structured realization of the system, which is any

realization of the system that conforms to the structure

Fl(N,G) with G block diagonal. From this realization, the

controllability gramian, Xc, and observability gramian, Yo,

are computed.

Note that even though the realization is structured, Xc and

Yo are generally full matrices with no apparent structure.

If they were block diagonal, however–conformal with the

subsystem structure of the system–then the transformation

needed to balance them would likewise be block diagonal.

Essentially, each subsystem could then be balanced indepen-

dently without affecting the others.

This observation motivates the search for a block diag-

onal transformation that balances each subsystem (along

the diagonal blocks of Xc and Yo)–even though the off-

diagonal blocks are non-zero with no particular relation-

ship or structure. It can be shown that such a structured

transformation always exists and is unique, generating a

local change of basis within each subsystem such that the

resulting controllability gramian and observability gramian

have a particular structure, with diagonal blocks that are

1) equal, 2) diagonal, 3) positive semidefinite, and 4) with

entries ordered from largest to smallest within the block–

while the off diagonal blocks have no particular relationship

or structure.

If the off-diagonal blocks were zero, then the diagonal

entries would, in fact, be the Hankel singular values of

each subsystem, considered independently and “open loop”

or disconnected from the rest of the system. When the

off-diagonal blocks are non zero, however, these diagonal

elements of the gramians do not correspond to the Hankel

singular values of the subsystem. Nevertheless, they do carry

a similar interpretation, that of identifying relatively more (or

less) controllable and observable subsystem states–except as

seen from the inputs and outputs of the entire interconnected

system (i.e. external to the entire interconnected system)

rather than from the inputs and outputs of the particular

subsystem. As a result, these diagonal entries of the gramians

are called the structured Hankel singular values of the

interconnected system with strong a priori structure.

Subsystem structure preserving model reduction uses state

projection to truncate states from the various subsystems that

correspond to small structured Hankel singular values until

the desired order is achieved for the complete, interconnected

system. The method will preserve the subsystem structure

of the system. Nevertheless, most of the other guarantees

for typical balanced truncation are lost: the reduced system

may be unstable, even when the the complete interconnected

system is stable, and although an upper bound of the H∞

norm of the error is provided, in [15] it is not an a priori

bound that can be computed before the reduced system is

constructed, although the recent work [14] does offer a priori

bounds using an idea from frequency-based model reduction.

In this work we adapt this procedure to relax the need

for strong, a priori partial structure information. The idea is

that every system of the form (1) has a trivial subsystem

structure found by changing basis as in (2) and considering

the subsystem of measured states, y, and the subsystem

of hidden states, x. The subsystems M and H , defined

in (8) and (7), conform to this strong subsystem structure,

with M as the “hub system” (denoted N in the structure

preserving model reduction literature), and H as the only

“satellite system” (denoted G in the structure preserving

model reduction literature, where here it would only have a

single block, G1, since no other structure on H is assumed

to necessarily exist).

Although this trivial two-block subsystem structure is not

interesting in the strong structural sense, it is semi-universal,

in that it applies to a very wide class of systems of the

form (1), and it may still exhibit any conceivable weak

structure among the system’s manifest variables. Moreover,

Lemma 3 from [5] demonstrates that dynamical structure is

invariant to coordinate transformations on the hidden states,

thus enabling the use of structured transformations without

affecting manifest structure of the system.

As a result, the structure preserving model reduction

method described above can be applied in situations where

ThA04.2

3260

Authorized licensed use limited to: KTH THE ROYAL INSTITUTE OF TECHNOLOGY. Downloaded on May 06,2010 at 08:45:54 UTC from IEEE Xplore.  Restrictions apply. 



only a distinction between manifest and latent variables is

known a priori, and the structure to be preserved is described

by the dynamical structure function of the system. As there

are few theoretical guarantees for this procedure–even when

strong a priori structural information is available–the next

section presents the results of an extensive computational

study exploring the performance of the procedure for a

variety of systems.

V. RESULTS FROM A COMPUTATIONAL STUDY

Since the state projection technique for reduction sug-

gested in the previous section does not necessarily preserve

stability of a system, nor provide bounds on the dynamic

fidelity of the reduced model, nor guarantee structure preser-

vation in the weak sense, we engaged a computational study

to explore the performance of the technique. The results

of the study are displayed in Table 1. The study generated

approximately 50 stable random examples from 27 different

classes of systems. Each of these systems were randomly

chosen to be of order between 10 and 40 total states. The 27

classes were formed by considering three major parameters

for each system: number of outputs, connectivity level of

the network structure, and the number of states removed by

truncation (i.e. “chop”). For each of these parameters, three

categories were defined as follows:

1) Small number of outputs: .05n ≤ p ≤ .20n
2) Medium number of outputs: .21n ≤ p ≤ .35n
3) Large number of outputs: .36n ≤ p ≤ .50n
4) Sparse connectivity: p ≤ number of edges in Q ≤

p + p2
−2p

3

5) Mid-level connectivity: p + p2
−2p

3 ≤ number of edges

in Q ≤ p + 2(p2
−2p)
3

6) Dense connectivity: p + 2(p2
−2p)
3 ≤ number of edges

in Q ≤ (p2 − p)
7) Low chop: number of hidden states removed by trun-

cation ≤ n−p

3

8) Medium chop: n−p

3 ≤ number of hidden states re-

moved by truncation ≤ 2(n−p)
3

9) High chop:
2(n−p)

3 ≤ number of hidden states removed

by truncation ≤ (n − p)

For each example, a number of performance characteristics

were measured. First, the stability of the reduced system

was checked. Then, the ability of the procedure to preserve

structure in the weak sense was measured by counting the

number of edges lost in the network structure of the reduced

system. Finally, the dynamic fidelity was measured by the

relative or “scaled” size of the error, ‖G−G̃‖∞/‖G‖∞. The

results of these experiments are presented in Table 1. The

average value of each measure over the roughly 50 random

experiments performed for each category are reported. From

these results, we draw the following conclusions.

First, note that although instability is possible, it was rare

to lose stability through truncation. Although this may have

been affected by our use of diagonally dominate A matrices

in the system realization when generating stable random

systems, it is still encouraging to note that even without

stability guarantees the procedure generally delivers stable

reduced order models.

Second, we observe that although weak structure was

preserved most of the time, an average as high as 15% of the

edges in Q can be lost by the procedure. This motivates the

characterization of edge loss discussed in the next section.

Finally, the dynamic fidelity of the procedure appears to

be excellent. Although one category reports an average error

as high as 30% of the norm of G, generally the error is well

below 1−3%. Note that ǫ refers to values smaller than 10−3.

The singular value plot and structured singular values for a

typical example are shown in Figures 2 and 3 respectively.

In this example, n = 40, p = 3, and 27 hidden states were

truncated.

VI. SUFFICIENT CONDITIONS FOR EDGE LOSS

It is easy to understand how an edge may be lost through

the reduction process. If, for example, the edge connecting

two measured outputs y1 and y2 is realized through a hidden

state xn, so that y1 −→ xn −→ y2, and that hidden state is

eliminated in the truncation process, then we would expect

the edge not to be present in the network structure of the

reduced model.This observation lead us to the following

characterization of edge loss.

Definition 6.1: A realization of the form (2) is hidden

balanced if its controllability and observability gramians

(with block structure conformal to the partition in (2)),

Xc =

[

Xc11 Xc12

Xc21 Xc22

]

, Yo =

[

Yo11 Yo12

Yo21 Yo22

]

,

satisfy Xc22 = Yo22 = Σ, were Σ > 0 is diagonal.

Theorem 6.1: Given a system G with network structure

B(Q,P ) and a hidden balanced realization given by




ẏ
ẋ1

ẋ2



 =





A11 A12 A13

A21 A22 A23

A31 A32 A33









y
x1

x2



 +





B1

B2

B3



u

y =
[

I 0 0
]





y
x1

x2



 ,

(9)

where x1 and x2 partition the hidden states of the system. Let

aT = [aT
2 aT

3 ] be the ith row of [A12 A13], b = [bT
2 bT

3 ]T

be the jth column of [AT
21 AT

31]
T , and T2 be the unitary

transformation constructing the Schur form of A22. Consider

the system G̃ with network structure B(Q̃, P̃ ) and hidden

balanced realization given by
[

ẏ
ẋ1

]

=

[

A11 A12

A21 A22

] [

y
x1

]

+

[

B1

B2

]

u

y =
[

I 0
]

[

y
x1

]

,
(10)

obtained by truncating x2 from the system (9). Then an edge

in the ijth position is lost as a result of truncation, meaning

[B(Q)]ij = 1 and [B(Q̃)]ij = 0, if [A11]ij = 0, [B(Q)]ij =

1, and the matrix T2a2b
T
2 T ∗

2 is lower triangular with zero on

the diagonals.
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Q Size Connectivity Chop Unstable n p States Chopped Edges in Q Edges Lost Scaled Error
Small Sparse Low 4% 19.8 2.3 3.7 2.6 0 ǫ

Small Sparse Med 6% 22.4 2.66 10.2 3.3 0 .0609
Small Sparse High 0% 20.0 2.5 12.2 2.8 0 0.0119
Small Mid Low 0% 20.5 2.8 3.7 5.2 0 ǫ

Small Mid Med 0% 22.7 2.7 10.8 4.1 0 ǫ

Small Mid High 0% 21.6 3.1 12.9 5.9 .5 .0184
Small Dense Low 0% 29.1 4.2 4.9 14.6 0 ǫ

Small Dense Med 2% 27.1 4.1 12.6 13.6 0 ǫ

Small Dense High 4% 29.4 4.2 18.1 14.8 0 .0060
Med Sparse Low 0% 22.2 6.3 3.7 21.2 0.1 .0014
Med Sparse Med 0% 22.5 6.7 3.8 13.2 0 ǫ

Med Sparse High 0% 25.01 6.7 13.1 11.8 1.9 .0140
Med Mid Low 2% 25.7 3.7 4.1 11.1 .2 .0075
Med Mid Med 0% 22.5 6.4 9.0 23.3 0 .0106
Med Mid High 0% 23.3 6.6 11.6 23.4 .5 .0028
Med Dense Low 0% 25.9 7.8 3.6 60.2 0 .0303
Med Dense Med 0% 28.1 8.0 10.2 62.2 0 .0959
Med Dense High 0% 24.7 7.2 12.4 49.7 0 .3147
High Sparse Low 0% 22.1 10.0 2.9 23.8 0 ǫ

High Sparse Med 0% 23.5 10.0 7.3 19.5 0 .0081
High Sparse High 0% 22.72 10.0 8.28 25.92 0 .0646
High Mid Low 0% 20.2 9.0 2.6 49.6 0 ǫ

High Mid Med 0% 20.6 8.9 6.5 44.5 2.0 .0013
High Mid High 0% 25.9 11.8 9.8 83.54 .14 .3001
High Dense Low 0% 25.5 11.3 2.8 127.6 .04 .0519
High Dense Med 0% 21.8 9.4 7.3 93.2 .12 .2256
High Dense High 0% 24.4 11.0 9.1 120.9 .12 .1700

TABLE I

NUMERICAL RESULTS

Proof: We begin by noting that [B(Q̃)]ij = 0 if and

only if A11 = 0 and [A12(sI − A22)
−1A21]ij = 0, since

W̃ = A11+[A12(sI−A22)
−1A21] and Q̃ = (sI−D̃)−1(W̃−

D̃), where D̃ = diag(W̃11, W̃22, ..., W̃pp).

Although (sI−A22)
−1 may not have any particular struc-

ture in general, (sI − T2A22T
∗

2 )−1 will be upper triangular

since T2A22T
∗

2 is the Schur form of A22, and the inverse

of an upper triangular matrix is upper triangular. Noting that

[A12(sI −A22)
−1A21] = [A12T

∗

2 (sI −T2A22T
∗

2 )−1T2A21],
we see that the ijth entry will be identically 0 if and only

if aT
2 T ∗

2 (sI − T2A22T
∗

2 )−1T2b2 = 0 for almost all s ∈ C.

The triangular structure of (sI − T2A22T
∗

2 )−1 can now

be exploited to force certain combinations of the entries of

the vectors aT
2 T ∗

2 and T2b2 to be zero in order to keep the

product aT
2 T ∗

2 (sI − T2A22T
∗

2 )−1T2b2 = 0 for almost all

s. These zeroing combinations are efficiently expressed in

the requirement that the outer product T2a2b
T
2 T ∗

2 be lower

triangular, with zeros on the diagonal. These conditions are

only sufficient, however, since for particular cases there may

be other ways to achieve aT
2 T ∗

2 (sI − T2A22T
∗

2 )−1T2b2 = 0
for almost all s without zeroing out pairwise products of

certain entries of a and b.

This theorem characterizes sufficient alignment conditions

for an edge to be lost through the truncation process dis-

cussed in this paper. Although as a practical matter it may

be easy to compute B(Q̃, P̃ ) and directly compare it with

B(Q,P ) to detect edge loss, these conditions help distinguish

situations where truncation is guaranteed to simplify the

dynamical structure of the reduced order model.

This loss of edges can actually be valuable in situations

where a structured system is identified from noisy data. In

these situations, network reconstruction algorithms will find

fully connected structures fit the data as well or better than

sparse structures. As a result, there is a tendency to over

estimate structure, and many approaches actively work to

compensate for this tendency by explicitly rewarding sparsity

of the estimate [7].

The alignment conditions provided in Theroem 6.1 offer

the hope for a new approach to this problem by using

model reduction to both simplify the dynamic expression of

a model and to purposefully simplify the structure estimate,

eliminating only those edges that result from noise. Future

work will explore these issues.

VII. CONCLUSION

This paper extended a state projection technique for struc-

ture preserving model reduction to situations where only a

weak notion of system structure is available. Strong partial

structure information and weak partial structure information

were defined and compared, and characterizations for struc-

turally minimal realizations, in the weak sense, were given.

An extensive computational study of the reduction process

was conducted, demonstrating that it typically performs well

in spite of the lack of theoretical guarantees on stability

or performance bounds. Nevertheless, the technique does

not always strictly preserve structure in the weak sense,

and sometimes a reduced model may lose edges compared

with the network structure of the original system. Sufficient

conditions for edge loss were then provided, demonstrating
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Fig. 3. Structured Hankel Values for the Hidden Balanced Realization

certain alignment properties that reveal how this approach

to model reduction may contribute in the future to network

reconstruction from noisy data.
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