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Abstract: This paper presents a model reduction of a boiler-header system. Since it is
desirable that the reduced model retains the structure of the full model where the boilers
are interconnected with the header, a structured model reduction technique is applied, which
takes the entire system into account. This method requires the solution of two linear matrix
inequalities to obtain the structured Gramians of the system, but in general it is not possible
to guarantee feasibility of these linear matrix inequalities. However for stable systems that are
connected in series with a negative feedback-loop with strictly positive real subsystems, we prove
that solutions always exist. By showing that the boiler-header system belongs to this class of
systems it follows that the structured model reduction method can be applied regardless of the
system parameters.

Keywords: Model reduction; Boilers; Process models; Structural constraints; Convex
optimization; Network topologies.

1. INTRODUCTION

Control applications in the industrial settings frequently
involve parallel working units. Typical examples are a
set of parallel boilers feeding steam to a common header
(Fig. 1a), parallel working pumps, turbines, chemical re-
actors, etc. These parallel units are usually operated in
multiple on/off configurations, where individual units are
turned on/off according to process needs and optimal
allocation schemes.

Design of Advanced Process Control (APC) – typically
switched models Model Predictive Control (MPC) – has
to consider this variability and requires a model of the full
plant for each feasible on/off configuration. The number
of configurations can be in the order of hundreds (plants
with up to ten parallel boilers are not an exception). As the
behavior of parallel units is mostly similar, it is common
or even necessary (due to observability / controllability)
to include them as a reduced order model (Fig. 1b). On
the other hand it is favorable to retain as much physical
interpretation as possible in the remaining part of the
model for the ease of subsequent controller design, e.g.
parameters tunning for Kalman filter, MPC, etc.

⋆ The authors gratefully acknowledge the financial support of the
European Commission FP7 project ”WIDE” (project no. 224168),
the Swedish Foundation for Strategic Research and the Swedish
Research Council.

One obvious solution is to find individual models of each
parallel unit, combine them accordingly to the selected
on/off configuration, apply balanced order reduction and
combine the resulting low order model with the model of
the remaining part of the process. However, this naive ap-
proach can give biased or even unstable result. The reason
is that the reduction is done locally and not with respect
to the full interconnected model. For this reason the naive
approach is not recommended. Performing identification
experiment for each feasible on/off configuration is possi-
ble only for a very small number of parallel units. Larger
number of parallel units require a different approach.

Model reduction where various structural constraints are
taken into account (”structured model reduction”) has
been considered in several papers. For example, in Enns
(1984) frequency-weighted model reduction problems are
considered, and in Anderson and Liu (1989) controller re-
duction is considered. More general interconnection struc-
tures have been considered in, for example, Li and Pa-
ganini (2005); Vandendorpe and Van Dooren (2007); Sand-
berg and Murray (2009). In this paper, we use a Linear Ma-
trix Inequality (LMI) based approach, similar to the one
presented in Sandberg and Murray (2009). This approach
goes back to earlier work where generalized Gramians are
used to reduce uncertain models, see Beck et al. (1996).

The main challenge in structured model reduction is
to reduce models locally while ensuring a small global
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Fig. 1. Example of process with parallel working units:
parallel working boilers feeding steam to common
header. Notice closed-loop boilers operation by feed-
back from main header pressure (a). Model for APC
design requires merging boiler models to low order
model for every feasible on/off valve configuration (b).

model error. The advantage with the LMI-based approach
is that it offers a simple a priori error bound on the
global model error, much similar to the bound originally
derived in Enns (1984); Glover (1984). The disadvantages
are that the LMIs can be computationally expensive to
solve, and they may also be infeasible. For the class of
boiler-header models considered in this paper, however,
we show the involved LMIs are always feasible. Hence,
we prove that the structured model reduction problem
can always be solved for these systems, and this is also
the main contribution of the paper. The structured model
order reduction is demonstrated on a set of boilers whose
parameters are identified based on a high-fidelity model,
see Řehoř and Havlena (2010).

The structure of the paper is as follows: In Section 2 the
model of the boiler-header system is presented and the
purpose of the paper is stated. It is followed by Section 3,
giving a background of the theory used in the paper. In
Section 4 the feasibility of the structured model reduction
method for a particular set of systems to which the boiler-
header belongs is proven and it ends with a demonstration
of the method on a boiler-header system with identified
parameters.

2. MODELING AND PROBLEM FORMULATION

A motivating industrial example of units working in par-
allel is a set of boilers feeding steam to a common header
(Fig. 1). The header pressure is maintained by the boilers
that typically are fed with the same fuel flow. Each boiler
can with significant simplification be described by its in-
ternal boiler volume and hydrodynamic pipe resistance
between the boiler and the common header. There is also
dynamics from fuel flow to generated steam, which is

”normalized” by a local combustion controller (to avoid
oscillations / pushing among parallel units).

2.1 Boiler-Header Models

The linearized state space model of the i-th boiler is given
by

Ai =

(

−1/Ti 0
1/Vi −Ki/Vi

)

, Bi =

(

Ks/Ti 0
0 Ki/Vi

)

,

Ci = ( 0 Ki ), Di = ( 0 −Ki ),

ui =

(

FF
HP

)

, yi = SFi,

(1)

where

FF . . . . . Fuel Flow [t/hrs],
SF . . . . . . Steam Flow [t/hrs],
HP . . . . . Header Pressure [MPa],

and

Vi . . . . . . i-th boiler pressure constant [kg/MPa/3.6],
Ki . . . . . . i-th boiler pipe to header ”conductivity”

[kg/s/MPa/3.6],
Ks . . . . . . units of steam from unit of fuel [−],
Ti . . . . . . i-th boiler 1st order time constant for fuel

flow to steam flow delay [s].

The header model is a simple integrator. It integrates
the difference between steam inflow from the boilers and
demand driven steam outflow to form the header pressure

AH = (0) , BH = ( 1/VH −1/VH ) ,
CH = (1) , DH = ( 0 0 ) ,

u =

(

SF
SD

)

, y = ( HP ),
(2)

SD . . . . . Steam Demand [t/hrs],

VH . . . . . Header pressure constant [kg/MPa/3.6].

B11

Header

-1

+ +

+

++

Fuel Flow 

(FF)

B1N

B21

D1

B2N

DN

Steam Flow 

(SF)

Header 

Pressure 

(HP)

Fig. 2. The boiler-header system can be written as a nega-
tive feedback-loop in series with a parallel connection
of stable systems.

The full plant model is composed of N boilers and a single
header with the following ”external” inputs and outputs

u =

(

FF
SD

)

, y =

(

HP
SF

)

.

It can be written on the form given by Fig. 2, which is
interesting since that allows for structured model order
reduction to be applied if the subsystems fulfill some
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conditions that are given in Section 4. From the state-
space description in (1), the transfer function matrix of
the i-th boiler can be calculated as

Gbi
(s) =

(

Gb1,i
(s) Gb2,i

(s)
)

=

(

KiKsi

ViTi(s+
1

Ti
)(s+

Ki
Vi

)
− Kis

s+
Ki
Vi

)

.

With N different boilers connected in parallel it follows
that the steam flow to the header is given by the sum

SF(s) =

N
∑

i=1

Gb1,i
(s) · FF(s) +

N
∑

i=1

Gb2,i
(s) · HP(s).

Turning to Fig. 2, it is seen that by choosing B1i(s) =
−Ksi

KiTi(s+
1

Ti
)
, B2i(s) =

−K2

i

Vi(s+
Ki
Vi

)
and Di = Ki the block

diagram in Fig. 2 is equivalent to the original state-space
description since the steam flow can be written as

SF(s) =

N
∑

i=1

(B1i(s) · B2i(s)) · FF(s)

−
N
∑

i=1

(B2i(s) + Di) · HP(s)

=
N
∑

i=1





Ksi
K2

i

TiKiVi

(

s + 1
Ti

)(

s + Ki

Vi

)



 · FF(s)

+

N
∑

i=1





K2
i

Vi

(

s + Ki

Vi

) − Ki



 · HP(s)

=

N
∑

i=1

Gb1,i
· FF(s) +

N
∑

i=1

Gb2,i
· HP(s)

We want to have a state-space realization of the full boiler-
header system with N boilers based on the block diagram
in Fig. 2 to do structured model reduction. For the systems
B1i(s) a natural state-space realization is

A
(i)
1 = −

1

Ti
, B

(i)
1 = −

Ksi

KiTi
, C

(i)
1 = 1, D

(i)
1 = 0

and connecting them in parallel yields the 1-input, N-
output system

A1 = diag
(

A
(1)
1 , A

(2)
1 , ..., A

(N)
1

)

B1 =
(

B
(1)
1 , B

(2)
1 , ..., B

(N)
1

)T

C1 = diag
(

C
(1)
1 , C

(2)
1 , ..., C

(N)
1

)

D1 =
(

D
(1)
1 , D

(2)
1 , ..., D

(N)
1

)T

.

For the systems B2i(s)+Di the state-space realization can
be written as

A
(i)
21 = −

Ki

Vi
, B

(i)
21 = −

K2
i

Vi
, C

(i)
21 = 1, D

(i)
21 = Ki

and the parallel connection becomes a N + 1-input, 1-
output system. Defining

B̄21 = diag
(

B
(1)
21 , B

(2)
21 , ..., B

(N)
21

)

,

B̃21 =
(

B
(1)
21 , B

(2)
21 , ..., B

(N)
21

)T

, D̃21 =

N
∑

i=1

D
(i)
21

a state-space realization is

A21 = diag
(

A
(1)
21 , A

(2)
21 , ..., A

(N)
21

)

B21 =
(

B̄21, B̃21

)

C21 =
(

C
(1)
21 , C

(2)
21 , ..., C

(N)
21

)

D21 =
(

01×N D̃21

)

.

To perform structured model order reduction on the sys-
tem we require that the closed-loop system is stable, see
Sandberg and Murray (2009). This is not the case when
the header is modeled as an integrator according to (2),
but if the header pressure is fed back to the steam demand
input with a constant gain KH , the pole is moved to the
left half-plane. This remedy is undone after the model re-
duction, which is possible since the header is not reduced.
The feedback can be thought of as modeling a pressure
dependent header load of the system, see Fig. 1. This gives
the new state-space realization of the header

A22 = −
KH

VH
, B22 =

1

VH
, C22 = 1, D22 = 0. (3)

Combining the N boilers and the header, the full boiler-
header system can be realized as

A =





A1 0 0

B̄21C1 A21 −B̃21C22

0 B22C21 A22 − B22D̃21C22





B =

(

B1

0
0

)

, C =

(

01×N 01×N 1

01×N 11×N −D̃21

)

, D = 0,

(4)

with the input u = FF and the output y = (HP SF)
T
.

2.2 Problem Formulation

The purpose of this paper is to present a model reduction
of the boiler-header system with the constraint that the
header is not subject to reduction. The transfer function

matrix of the system is given by G(s) =

[

A B
C D

]

, using the

state space realization (4) and the objective is to find the

reduced system Ĝ, where the header (A22, B22, C22,D22)
has not been reduced, such that a small upper bound for
the closed-loop model error ‖G − Ĝ‖∞ is attained.

3. STRUCTURED MODEL ORDER REDUCTION

Structured model order reduction is a model reduction
technique that can be applied to systems composed of sub-
systems that are connected with some network dynamics.
The idea is to reduce the subsystems while retaining the in-
terconnection structure and keeping the global model error
small. It is based on the idea of balancing the system. Two
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methods for this were proposed in Sandberg and Murray
(2009). Method 1 uses the controllability and observability
Gramians P and Q given by the Lyapunov equations

AP + PAT + BBT = 0, AT Q + QA + CT C = 0,

similarly to what is done in Vandendorpe and Van Dooren
(2007). It is helpful to use a partition with a block Q11, P11

for the subsystem that should be reduced and another
block Q22, P22 for the header that is not reduced

Q =

[

Q11 Q12

QT
12 Q22

]

, P =

[

P11 P12

PT
12 P22

]

.

The method balances the system by the coordinate trans-
formation x1 = T x̄1 that makes the transformed Grami-
ans Q̄11 = TT Q11T and P̄11 = T−1P11T

−T subsystem
balanced, which means that

P̄11 = Q̄11 = Σ = diag {σ1, ..., σn} ,

σ1 ≥ ... ≥ σn, σi =
√

λi(P11Q11) =
√

λi(P̄11Q̄11).

This heuristic often works well, but it gives no a priori
error bound. By imposing a block-diagonal structure on
the Gramians P and Q, which is done with Method 2,
this can be remedied. Instead of solving the Lyapunov
equations, the following Linear Matrix Inequalities (LMIs)
are formed

min trace P
AP+PAT +BBT <0

P=diag{P11,P22}

min trace Q
AT Q+QA+CT C<0

Q=diag{Q11,Q22}.

. (5)

The solutions to the LMIs are called structured controlla-
bility and observability Gramians. Just as for Method 1, a
coordinate transformation of the system can be found by
making the Gramians subsystem balanced.

Finally either truncation of the balanced states, which
gives a good approximation at high frequencies or singular
perturbation, which is good for low frequency approxima-
tion, is used to reduce the model order. Structured model
reduction of networked systems using structured control-
lability and observability Gramians has the advantage of
providing an a priori error bound, namely

‖ G − Ĝ ‖∞≤ 2
n
∑

i=r+1

σi, (6)

where r is the order of the reduced interconnected system
and by minimizing the trace in (5) an upper bound on the
sum of the structured Hankel singular values is guaranteed.
However it is not always so that the LMIs given by (5) are
feasible. See Li and Paganini (2005); Vandendorpe and Van
Dooren (2007); Sandberg and Murray (2009) for further
details on structured model reduction.

4. EXISTENCE OF STRUCTURED GRAMIANS

4.1 Theory

Because the LMI (5) does not always admit solutions, it is
interesting to identify special classes of systems for which
feasibility can be guaranteed. A cascade connection of two
stable systems is one such case. The dynamics matrix A
for such a system can be written on lower triangular form,
which motivates Proposition 4.1.

Proposition 4.1. Assume A =

(

A11 0
A21 A22

)

, where A11

and A22 are stable. Then there exists a structured

controllability Gramian P =

(

P1 0
0 P2

)

> 0 and a

structured observability Gramian Q =

(

Q1 0
0 Q2

)

> 0

satisfying AP + PAT + BBT < 0 and
AT Q + QA + CT C < 0 respectively.

Proof: The proof is only given for the structured control-
lability Gramian, since it is analogous for the structured
observability Gramian. The Lyapunov equation gives the
conditions

AP + PAT + BBT =

(

A11P1 0
A21P1 A22P2

)

+

(

P1A
T
11 P1A

T
21

0 P2A
T
22

)

+

(

B1B
T
1 B1B

T
2

B2B
T
1 B2B

T
2

)

< 0 ⇔

(i) A11P1 + P1A
T
11 + B1B

T
1 < 0

(ii) A22P2 + P2A
T
22 + B2B

T
2

−
(

A21P1 + B2B
T
1

) (

A11P1 + P1A
T
11 + B1B

T
1

)−1

·
(

P1A
T
21 + B1B

T
2

)

< 0

(i) follows directly since there is always a P1 > 0 solving
A11P1 + P1A

T
11 + B1B

T
1 < 0 when A11 is stable.

Next try to find a P2 solving (ii).

(

A11P1 + P1A
T
11 + B1B

T
1

)−1
< 0 ⇒

D ≡
(

A21P1 + B2B
T
1

) (

A11P1 + P1A
T
11 + B1B

T
1

)−1

·
(

P1A
T
21 + B1B

T
2

)

≤ 0.

This means −D ≥ 0 and thus B2B
T
2 − D ≥ 0 which

implies the existence of a P2 > 0 satisfying (ii).

Another case which admits solutions to the LMIs given by
(5) is when two strictly positive real systems are connected
in negative feedback. Strictly positive real systems are of
interest because of their importance in passivity theory,
see for example Khalil (2002).

Proposition 4.2. The negative feedback interconnection of
two strictly positive real (SPR) systems with dimensions
n1, n2 and with minimal realizations (A1, B1, C1,D1) and
(A2, B2, C2,D2) respectively admits a structured control-

lability Gramian P =

(

P1 0
0 P2

)

and a structured observ-
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ability Gramian Q =

(

Q1 0
0 Q2

)

, where P1, Q1 ∈ R
n1×n1

and P2, Q2 ∈ R
n2×n2 .

Proof: The proof is only given for the structured control-
lability Gramian. The Kalman-Yakubovich-Popov lemma
can be used to prove the proposition. It states that for
strictly positive real systems of minimal realization there
exists matrices P̄i = P̄T

i > 0, Li, Wi and positive constants
ǫi with i ∈ {1, 2} such that

P̄iAi + AT
i P̄i =−LT

i Li − ǫiP̄i

P̄iBi = CT
i − LT

i Wi

WT
i Wi = Di + DT

i .

Using this, we can define the storage functions Vi(x) =

xT
i P̄ixi that satisfy V̇i ≤ 2uT

i yi − ǫix
T
i P̄ixi, which means

that the systems are strictly passive. By connecting these
two systems in negative feedback it follows that the feed-
back system is asymptotically stable with the Lyapunov
function V (x) = V1(x1) + V2(x2) satisfying V̇ (x) ≤
−ǫ1x

T
1 P̄1x1 − ǫ2x

T
2 P̄2x2. The time derivative of the Lya-

punov function can also be expanded using the state-
space realizations as V̇ (x) = xT

(

P̄ Ā + ĀT P̄
)

x, where

Ā =

(

A1 − B1LD2C1 −B1LC2

B2MC1 A2 − B2MD1C2

)

is the dynamics

matrix of the feedback system with L = (I + D2D1)
−1

,

M = (I + D1D2)
−1

and P̄ =

(

P̄1 0
0 P̄2

)

. This implies that

P̄ Ā + ĀT P̄ ≤

(

−ǫ1P̄1 0
0 −ǫ2P̄2

)

which we will now use to

prove the existence of a structured controllability Gramian
for the feedback system.

The negative feedback system is given by Ā and B̄ =
(

BT
1 0
)T

, which means that we want to show that there

exists a P =

(

P1 0
0 P2

)

satisfying PĀ + ĀT P + B̄B̄T < 0

We can verify that the LMI holds if we let P1 and P2 be
scaled versions of the positive definite matrices P̄1 and P̄2

given by the KYP-lemma since,

P̄ Ā + ĀT P̄ ≤

(

−ǫ1P̄1 0
0 −ǫ2P̄2

)

≤ −η1I < 0 (7)

for some η1 belonging to
0 < η1 < |max

{

λi(−ǫ1P̄1), λi(−ǫ2P̄2)
}

|. Since there

exists an η2, 0 ≤ λmax

(

B̄B̄T
)

≤ η2, such that

0 ≤ B̄B̄T ≤ η2I, it follows that

η2 + 1

η1

(

P̄ Ā + ĀT P̄
)

+ B̄B̄T ≤

≤ −(η2 + 1)I + B̄B̄T ≤ −(η2 + 1)I + η2I < 0

and thus we have found a P = (η2+1)
η1

(

P̄1 0
0 P̄2

)

, which is

a structured controllability Gramian for the negative
feedback system.

For SPR systems in a negative feedback loop connected in
series with a stable system Proposition 4.1 and Proposition
4.2 can be combined to give the following Proposition.

G22

G21G1

-1

Fig. 3. Block diagram of two SPR systems G21 and G22

connected with negative feedback in series with a
stable system G1.

Proposition 4.3. A stable LTI system of dimension n1

connected in series with two strictly positive real systems
of order n21 and n22 connected with negative feedback
(Fig. 3) admits a structured controllability Gramian

P =

(

P1 0
0 P2

)

and a structured observability Gramian

Q =

(

Q1 0
0 Q2

)

, where P1, Q1 ∈ R
(n1+n21)×(n1+n21) and

P2, Q2 ∈ R
n22×n22 .

Proof: The proof is only given for the structured control-
lability Gramian. The system will have a state-space repre-

sentation of the form A =

(

A11 0
A21 A22

)

and B =

(

B1

B2

)

,

where index 1 is associated with system 1 and index 2 is
associated with the feedback-loop.

With the same reasoning as in Proposition 4.1 we want to
show that there exists matrices P1 and P2 satisfying

(i) A11P1 + P1A
T
11 + B1B

T
1 < 0

(ii) A22P2 + P2A
T
22 + B2B

T
2

−
(

A21P1 + B2B
T
1

) (

A11P1 + P1A
T
11 + B1B

T
1

)−1

·
(

P1A
T
21 + B1B

T
2

)

< 0

It is always possible to find a P1 > 0 solving (i),
since A11 is assumed to be stable. To find a P2 > 0
solving (ii), begin by noting that there exists a block

diagonal P̄2 =

(

P̄21 0
0 P̄22

)

> 0 satisfying A22P̄2 +

P̄2A
T
22 < 0 according to Proposition 4.2. We know that

B2B
T
2 −

(

A21P1 + B2B
T
1

) (

A11P1 + P1A
T
11 + B1B

T
1

)−1
·

(

P1A
T
21 + B1B

T
2

)

≥ 0. This means that we can rescale

P̄2 with an η > 0 such that P2 = ηP̄2 solves (ii) by
using the same reasoning as in Proposition 4.2. Thus
we have found a structured controllability Gramian P =
(

P1 0
0 P2

)

=





(

P1 0
0 P21

)

0

0 P22



 with dimensions P1 ∈

R
(n1+n21)×(n1+n21) and P2 ∈ R

n22×n22 .
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4.2 The Boiler-Header System

In Section 2 it was shown that the boiler-header plant
can be written as a subsystem connected in series with
a negative feedback loop, i.e. it has the same structure
as in Proposition 4.3. The parallel connection of the sub-
systems B1i(s) corresponds to system G1 in Proposition
4.3, the parallel connection of the subsystems B2i(s) + Di

corresponds to system G21 and the header corresponds to
system G22. We now want to show that the conditions for
Proposition 4.3 are fulfilled for the plant. Beginning with
the header it follows from the state-space description in
(3) that its transfer function is GH(s) = 1

VH(s+KH/VH) ,

i.e. it is SPR.

Further if the transfer functions B2i(s)+Di were SPR, the
parallel connection of them would also be SPR, since the
parallel system would be stable,

∑

i Gi(iω) + GT
i (−iω) >

0 ,∀ω if it was true for each individual subsystem and
∑

i Gi(∞) + GT
i (∞) > 0 since Di > 0. And further since

the transfer functions B1i(s) are stable, it would follow
that all conditions for Proposition 4.3 are fulfilled which
proves the existence of a structured controllability and
observability Gramian P and Q respectively for the boiler-
header system. However it turns out that the subsystems
B2i(s)+Di are not SPR, but only output strictly passive.
Even so, Proposition 4.4 shows that the conclusion still
holds.

Proposition 4.4. A negative feedback of a parallel connec-
tion of n subsystems B2i(s) + Di = Kis

s+
Ki
Vi

, denoted as

subsystem 1, and the SPR header, denoted as subsystem 2,
admits structured controllability and observability Grami-
ans P and Q.

Proof: The structure of the proof is the same as that
of Proposition 4.2 with the difference that subsystem 1
is output strictly passive instead of SPR. For the parallel
system it holds that

1

2

d

dt
xT

1 P1x1 +

n
∑

i=1

1

Ki

(

y
(i)
1

)2

≤ uT
1 y1 (8)

where P1 = diag
(

V1

K2

1

, V2

K2

2

, ..., Vn

K2
n

)

and y
(i)
1 is the output

of subsystem B2i(s) + Di. For the SPR header

1

2

d

dt
xT

2 P2x2 +
1

2
ǫ2x

T
2 P2x2 ≤ uT

2 y2, (9)

where P2 is given by the KYP-lemma. Given that subsys-

tem B2i(s)+Di =

[

Ai
1 Bi

1

Ci
1 Di

1

]

and introducing the notation

C̄1 =







C1
1 0 0

0
. . . 0

0 0 Cn
1






, D̄1 =







D1
1
...

Dn
1






, K̄ =







1
K1

0 0

0
. . . 0

0 0 1
Kn







it follows that by summing (8) and (9)

ĀT

(

P1 0
0 P2

)

+

(

P1 0
0 P2

)

Ā

≤ −2

(

C̄T
1 K̄C̄1 C̄T

1 K̄D̄1C2

CT
2 D̄T

1 K̄C̄1
1
2ǫ2P2 + CT

2 D̄T
1 K̄D̄1C2

)

< 0,

where Ā =

(

A1 −B1C2

B2C1 A2 − B2D1C2

)

.

To arrive at the first inequality it can be noted that
uT

1 y1 = −uT
2 y2 and the last inequality can be derived by

looking at the Schur complement. The rest of the proof is
identical to the last part of the proof of Proposition 4.2
beginning at (7).

4.3 Algorithm Demonstration

The algorithm will be demonstrated on a system of 3
parallel boilers feeding a single header. It will be demon-
strated on a model identified from simulated data in order
to have a ”correct model” for comparison. To maintain
the relation with practical problems the models of the
individual boilers and the header were obtained as follows.
Data sets for identification were obtained by step-testing
a Simulink model with high-fidelity boiler models. The
obtained data was burdened by additive noise with the
same spectrum as the noise estimated from industrial data.
The models were identified by a state-of-the-art grey-box
identification algorithm based on iterative re-optimization
of prediction and simulation criterion mixture, see Řehoř
and Havlena (2010). The identified parameters are:

i 1 2 3

Vi 61129 54412 50645
Ki 202.57 271.29 313.39
Ti 108.48 101.22 99.92
Ks 4.59 4.58 4.57
Vh 7000

In Fig. 4 and 5, the step response and frequency response
of the original full system is compared with the reduced
systems of order 3 obtained by applying structured model
order reduction and locally balanced model order reduc-
tion respectively. The LMIs (5) were solved using Yalmip
and SeDuMi, see Löfberg (2004); Sturm (1999). It is clear
that the local model reduction which naively balances the
boilers without taking the header into account is out-
performed by the structured reduction which bases the
reduction on the behavior of the full system. Calculating
the H∞-norm of the model error ‖G−Ĝ‖∞ when the steam
demand is set to be proportional to the header pressure,
it is found to be 0.3146 and the upper bound (6) becomes
0.6274, which is indeed relatively tight.

5. CONCLUSION

This paper has shown that structured model order reduc-
tion can always be applied to a class of systems to which
the boiler-header system belongs. It has also demonstrated
that the proposed method outperforms balanced model
reduction that is done locally on the boilers and therefore
ignores the header interconnection.
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Fig. 4. Step response comparison.
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