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Abstract: We consider identification of systems with a parallel serial (cascade) structure with
multiple-input and multiple-output signals. The statistical properties of estimated models are
studied with respect to input signals and possible sensor locations. The quality of the estimates
are analyzed by means of the asymptotic covariance matrix of the estimated parameters. This
is an extension of previous work on identification of cascaded linear systems. The key result
concerns systems where the sub-systems have common dynamics. An interesting observation is
that for this case the variance for the parameters belonging to the unmeasured subsystem always
is larger than for the other sub-systems. This is not true for general parameters. The variance
results can be used for optimal input and sensor location design. The results are illustrated by
some simple FIR examples and numerical evaluations.
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1. INTRODUCTION

System identification is about the estimation and valida-
tion of mathematical models of dynamical systems from
experimental data. It is common to have some physical
structural information to be included in the choice of the
model structure. We will consider systems with a parallel
serial structure with multiple-input and multiple-output
signals, as shown in Fig. 1. This class of systems generalizes
cascaded systems. This problem is partly motivated by the
discussion on the use of structural system identification
given in Wahlberg et al. (2007), and collaboration with
Honeywell Prague Laboratory on boiler control, see e.g.,
Baramov et al. (2007).
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Fig. 1. A parallel serial (PS) structure.
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Classical methods in system identification consider single-
input single-output (SISO) systems, and can often be
extended to multiple-input multiple-output (MIMO) sys-
tems, see e.g., Zhu (1998) for a process control perspec-
tive. It is important to take a priori information of the
structure of the system into account in order to reduce
the overall identification task. A priori information also
affects the choice of sensors and the design of input sig-
nal excitation. The paper Gevers et al. (2006) gives a
thorough variance analysis for identification of multi-input
systems, together with its implications for input design,
while Dayal and MacGregor (1997) consider multi-output
process identification. The paper Wahlberg et al. (2009a)
analyzes variance properties of cascade systems with three
subsystems. The main result is that if the true transfer
functions of the first and second subsystem are identical,
the output signal information from the second and third
subsystems will not affect the asymptotic variance of the
estimated model of the first subsystem. Identification of
cascaded systems is further studied in Sandberg et al.
(2010) and Wahlberg et al. (2009b).

The aim of the current paper is to extend the results in
Wahlberg et al. (2009a) to systems with a Parallel Serial
(PS) structure as depicted in Fig. 1.

The corresponding transfer functions are

y1(t) =G1(q)u1(t) + e1(t),

...

yp(t) =Gp(q)up(t) + ep(t),

yp+1(t) =Gp+1(q)

p
∑

i=1

Gi(q)ui(t) + ep+1(t),
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where q denotes the forward shift operator, i.e., q−1u(t) =
u(t− 1) using normalized sampling time. The system has
p inputs and p + 1 outputs. We assume that all transfer
functions Gk(q), k = 1, . . . , (p+ 1), are stable.

Several important questions have to be answered and
user choices have to be made when applying system
identification to this special structure.

• Which input signals should be applied and how
should the total power be distributed among the p
inputs?

• If only a subset of the p + 1 output signals can be
measured and with different sensor qualities. Where
should the sensors be located for best result?

• Does the dynamics of the sub-systems affect the iden-
tification result? For cascaded systems we know that
common dynamics give fundamental quality limita-
tions

A standard subspace method could be applied to MIMO
input-output data, but it is not straightforward to impose
the known structure of the problem, see for example Van
Overschee and De Moor (1996) or Ljung (1999). Examples
on how to incorporate some known structure in subspace
identification can be found in Lyzell et al. (2009) and
Hägg et al. (2010). It is also possible to apply a Prediction
Error Method (PEM) or the Maximum Likelihood (ML)
method to the structured MIMO problem. But because
of the transfer function products, such as Gp+1(q)G1(q),
simple linear model structures such as OE or ARX are
not directly applicable. However, structured PEM and
ML are statistically efficient methods also for this class
of identification problems.

The main contribution of this paper is to derive variance
results for identification of parallel serial structured sys-
tems and discuss the implications in input and sensor
design. We will mainly consider the case of two parallel
sub-systems together with a common serial sub-system.
The technique used in the paper can be used to analyze
more general structures.

The outline of the paper is as follows. In Section 2 we will
start by studying low order FIR systems. The general case
is studied in Section 3. A numerical example is given in
Section 4, while Section 5 concludes the paper.

2. VARIANCE ANALYSIS: FIR EXAMPLE

Consider the special case with three sub-systems in Fig. 2.

Here
y1(t) = G1(q, θ1)u1(t) + e1(t),

y2(t) = G2(q, θ2)u2(t) + e2(t),

y3(t) = G3(q, θ3)(G1(q, θ1)u1(t) +G2(q, θ2)u2(t)) + e3(t),
(1)

where the subsystems are first order FIR transfer functions

G1(q, θ1) = 1 + b1q
−1, θ1 = b1,

G2(q, θ2) = 1 + b2q
−1, θ2 = b2,

G3(q, θ3) = 1 + b3q
−1, θ3 = b3.

(2)

The objective is to identify the FIR parameters b1, b2 and
b3 from measurement of {u1(t), u2(t), y1(t), y2(t), y3(t)},
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Fig. 2. Three subsystem parallel serial system.

t = 1, . . . , N . We assume that the true system can be
described by the model structure (1) with the true FIR
parameters b01, b02 and b03, respectively. Furthermore, we
assume that e1(t), e2(t) and e3(t) are independent white
measurement noise processes with given variances λ1, λ2

and λ3, respectively.

To start, the input signals u1(t) and u2(t) are chosen as
independent white noise processes with variances 1. Given
the data set {u1(t), u2(t), y1(t), y2(t), y3(t)}, t = 1, . . . , N
the PEM estimate of the model parameters are given by,
see Ljung (1999) ,





b̂1
b̂2
b̂3



 = arg min
b1,b2,b3

[

1

N

N
∑

t=1

[y1(t)− u1(t)− b1u1(t− 1)]
2

λ1

+
1

N

N
∑

t=1

[y2(t)− u2(t)− b2u2(t− 1)]
2

λ2

+
1

N

N
∑

t=1

1

λ3
[y3(t)− u1(t)− u2(t)− (b1 + b3)u1(t− 1)−

(b2 + b3)u2(t− 1)− b1b3u1(t− 2)− b2b3u2(t− 2)]
2
]

(3)
The asymptotic (in N) covariance matrix of the parameter
estimates, which in this case corresponds to the Cramér-
Rao lower bound, is given by

Pθ =
1

N

[

E{Ψ(t)ΨT (t)}
]−1

,

where

Ψ(t) =









u1(t − 1)
√

λ1

0

0
u2(t − 1)

√

λ2

0 0

u1(t − 1) + b0
3
u1(t− 2)

√

λ3

u2(t − 1) + b0
3
u2(t− 2)

√

λ3

u1(t − 1) + u2(t − 1) + b0
1
u1(t − 2) + b0

2
u2(t− 2))

√

λ3













,

is the normalized predictor gradient. The expressions for
the parameter variances, that is the diagonal elements of
Pθ are lengthy and difficult to access. We will instead look
at some special cases. The notation ∼ is used to stress the
asymptotic relations.
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2.1 Preliminaries

If only the outputs from the parallel subsystems y1(t) and
y2(t) are used the asymptotic variances of the estimates of
b1 and b2 equal

Var b̂1 ∼
λ1

N
,

Var b̂2 ∼
λ2

N
.

(4)

This corresponds to setting λ3 = ∞ in the general
expression for Ψ(t) and Pθ.

In case the quality of the two sensors y1(t) and y2(t) are
much worse than for the last output y3(t), i.e., letting
λ1 → ∞ and λ2 → ∞ we have

Var b̂1 ∼
λ3

N

(2 + (b01)
2 + (b02)

2)−
(1 + b02b

0
3)

2

1 + (b03)
2

(b03 − b01)
2 + (b03 − b02)

2
,

Var b̂3 ∼
λ3

N

1 + (b03)
2

(b03 − b01)
2 + (b03 − b02)

2
,

which will be large if b01 ≈ b02 ≈ b03. The result is valid

for b̂2 as well due to symmetry, and is related to the work
by Wahlberg et al. (2009a), were this result is proved for
cascade structured systems.

2.2 Subsystems with common dynamics

From Wahlberg et al. (2009a) it is known that for cascade
structured systems with the two identical transfer func-
tions there is no improvement in the estimation of the first
subsystem obtained from the second measurement. For
this parallel serial system the variance of the parameter
estimates when the three subsystems are identical, i.e.,
b02 = b03 = b01 becomes

Var b̂1 ∼
1

N

(

λ1 −
λ2
1(1 + (b01)

2)

2λ3 + (λ1 + λ2)(1 + (b01)
2)

)

≤
λ1

N
.

(5)
Hence, for PS systems the estimate of b1 is improved from
the second measurement, c.f., (4).

However, if b02 = b03 = b01 and y2(t) is not measured
(λ2 = ∞) then

Var b̂1 ∼
λ1

N
,

Var b̂2 ∼
1

N

(

λ1 +
2λ3

1 + (b01)
2

)

,

Var b̂3 ∼
1

N

(

λ1 +
λ3

1 + (b01)
2

)

.

(6)

The expressions for b̂1 and b̂3 are exactly the expressions
obtained by Wahlberg et al. (2009a) for cascade structured
systems. An interesting observation is that the variance for

the parameter b̂2 belonging to the unmeasured subsystem
always is larger (λ3 > 0) than the variance for the two
other parameter estimates.

This observation is not true in general. It is quite easy

to find cases such that Var b̂1 > Var b̂2 when y2(t) is not

measured. For example

Var b̂1 −Var b̂2 > 0

⇔

λ1λ3b
0
3(b

0
1 − b02)(2 + b01b

0
3 + b02b

0
3) >

λ2
3(2 + (b01)

2 + (b02)
2)

for this case. If λ1 = λ3 = 1 and b01 = 3, b02 = −0.5, b03 = 2

then Var b̂1−Var b̂2 ≈ 0.40
N

. Hence, if one only can measure
one of the two output signals from the first sub-systems, it
is not always best to follow the intuition and measure the
output from the system corresponding to the parameter
one wants to identify.

If instead only two sub-systems are equal, b03 = b01, b
0
2 6= b01

and y2(t) is not measured (λ2 = ∞) then

Var b̂1 ∼
1

N



λ1 −
λ2
1

λ1 + λ3
(b0

1
−b0

2
)2+(b0

1
)2+1

((b0
1
)2+1)(b0

1
−b0

2
)



 ,

which always is smaller than the expression (6) obtained
when all three subsystems are equal.

If it is known in advance that G3 = G2 = G1, one
should incorporate this information to further constrain
the model. In this case this means that only one parameter,
b1, should be estimated. The asymptotic variance, when y2
is not measured, is

Var b̂1 ∼
1

N

λ1

1 +
8λ1(1+(b0

1
)2)

λ3

.

which could be considerably lower than (4). Hence, addi-
tional information about the structure should always be
incorporated.

2.3 Effects of input signals

Now consider the case when the same input signal is used
as inputs to both sub-systems, i.e., u1(t) = u2(t) and that
y2(t) is not measured (λ2 = ∞). The asymptotic variance

for b̂1 then equals

Var b̂1 ∼
λ1

N
.

Hence, nothing is gained by measuring y3(t) if the objec-
tive is to only estimate b1.

However, if the aim of the identification is to identify b3,
this input signal could be good for some special cases.
Consider the case when the second input is not measured,
i.e., λ2 = ∞ and λ1 = λ3 = b01 = 1, b02 = 2 and
b03 = 3. When the input signals are independent white
noise sequences, we have

Var b̂3 ∼
1

N

110

71
≈

1.55

N

and for the case u1(t) = u2(t)

Var b̂3 ∼
1

N

10

9
≈

1.11

N
.

Here the variance is smaller when using the same input
signal to both sub-sytems. If we instead have λ1 = λ3 =
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b03 = 1, b02 = 2 and b01 = 3 then we have for the independent
input signal case

Var b̂3 ∼
1

N

6

31
≈

0.19

N

and when the same input signal is used as the inputs

Var b̂3 ∼
1

N

2

9
≈

0.22

N
.

These simple examples above shows the important of
choosing input signals depending on what one wants to
identify.

3. VARIANCE ANALYSIS: GENERAL NUMBER OF
SUBSYSTEMS

In this section we will try to generalize some of the results
from the FIR-examples in the previous section. Consider
again the PS model structure (1) with arbitrary number
of parallel sub-systems

Given a data set {u1(t), . . . , up(t), y1(t), . . . , yp+1(t)}, t =
1, . . . , N the PEM estimates of the model parameters,

θ1 = [θ1,1, θ1,2, . . . , θ1,n1
]
T
,

...

θp+1 =
[

θp+1,1, θp+1,2, . . . , θp+1,np+1

]T
,

where ni denotes the number of parameters in θi, are given
by




θ̂1
.
.
.

θ̂p+1



 = arg min
θ1,...,θp+1

[

1

N

N
∑

t=1

[y1(t) −G1(q, θ1)u1(t)]
2

λ1

+ . . .+

1

N

N
∑

t=1

[yp(t) −Gp(q, θp)up(t)]
2

λp

+

1

N

N
∑

t=1

[

yp+1(t) −Gp+1(q, θp+1)
(
∑p

i=1
Gi(q, θi)ui(t)

)]2

λp+1

]

.

Define the (p+ 1) × (p+ 1) block matrix

Ψ(t) =



















G′

1
(q, θ1)u1(t)
√

λ1

0 0 . . .

0
G′

2
(q, θ2)u2(t)
√

λ2

0 . . .

.

.

.
. . .

0 0 . . .

0 0 . . .

0
Gp+1(q, θ3)G′

1
(q, θ1)u1(t)

√

λp+1

0
Gp+1(q, θ3)G′

2
(q, θ2)u2(t)

√

λp+1

.

.

.
.
.
.

G′

p(q, θ1)up(t)
√

λp

Gp+1(q, θ3)G′

p(q, θ2)up(t)
√

λp+1

0
G′

p+1
(q, θp+1)

√

λp+1

p
∑

i=1

Gi(q, θi)ui(t)

































where prime denotes differentiation with respect to the
respective parameter vector. The asymptotic covariance
matrix of the parameter estimates is then given by

Cov







θ̂1
...

θ̂p+1






∼ Pθ

where Pθ = 1
N

[

E{Ψ(t)Ψ(t)T }
]

−1
. See, e.g., Ljung (1999)

for details.

Now consider the case when all subsystems are identical
and have the same structure. Then

Gi(q, θ
0
i )G

′

j(q, θ
0
j ) = G′

i(q, θ
0
i )Gj(q, θ

0
j )

for i, j = 1, . . . , (p+ 1). If all ui(t) and uj(t) are indepen-
dent for i 6= j, we have

P−1
θ =NE{Ψ(t)Ψ(t)T } =



















A1 +B1 0 . . . 0 B1

0 A2 +B2 0 B2

...
. . .

...
0 0 Ap +Bp Bp

B1 B2 . . . Bp

p
∑

i=1

Bi



















,

where the covariance matrices Ai and Bi, are defined as

Ai =
N

λi

E{[G′

i(q, θi)ui(t)][G
′

i(q, θi)ui(t)]
T },

Bi =
N

λp+1
E{[Gp+1(q, θp+1)G

′

i(q, θi)ui(t)]

× [Gp+1(q, θp+1)G
′

i(q, θi)ui(t)]
T }.

Next, we will consider the case when only y1(t) and yp+1(t)
are measured, i.e., λi = ∞ for i = 2, . . . , p. Then

lim
λi→∞

Ai = 0 ∀i = 2, . . . , p

and

P−1
θ =



















A1 +B1 0 . . . 0 B1

0 B2 0 B2

...
. . .

...
0 0 Bp Bp

B1 B2 . . . Bp

p
∑

i=1

Bi



















.

We need to invert this matrix in order to find the parame-
ter covariance matrix. The matrix can be block diagonal-
ized by the following transformation matrix

T =















I I . . . I −I
0 I . . . 0 0
...

. . .
...

... I 0
0 0 . . . 0 I















,

where I denotes an identity matrix of suitable size. We
then have the following block diagonal matrix

P̄−1
θ = TP−1

θ T T =



















A1 0 . . . 0 0
0 B2 0 B2

...
. . .

...
0 0 Bp Bp

0 B2 . . . Bp

p
∑

i=1

Bi



















.
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It is possible to verify that the inverse of the lower right
block is















B2 0 B2

. . .
...

0 Bp Bp

B2 . . . Bp

p
∑

i=1

Bi















−1

=

















B−1
1 +B−1

2 B−1
1 · · · B−1

1 −B−1
1

B−1
1 B−1

1 +B−1
3

. . .
... −B−1

1
...

. . .
. . .

...
B−1

1 B−1
1 B−1

1 +B−1
p −B−1

1

−B−1
1 −B−1

1 · · · −B−1
1 B−1

1

















.

Now Pθ = T T P̄θT , which gives

Pθ =





















A−1
1 A−1

1 · · · A−1
1 −A−1

1

A−1
1 C +B−1

2 C · · · C −C
... C C +B−1

3

. . .
...

...
...

. . .
. . . C −C

A−1
1 C · · · C C +B−1

p −C

−A−1
1 −C · · · −C −C C





















.

where C = A−1
1 +B−1

1 . We have now proved the following
proposition.

Proposition 1. Assume that the true subsystems are all
identical and that we use the identical sub-model struc-
tures. Furthermore, assume that we only measure y1(t)
and yp+1(t). Let

Ai =
N

λi

E{[G′

i(q, θi)ui(t)][G
′

i(q, θi)ui(t)]
T },

Bi =
N

λp+1
E{[Gp+1(q, θp+1)G

′

i(q, θi)ui(t)]×

[Gp+1(q, θp+1)G
′

i(q, θi)ui(t)]
T }.

The the asymptotic covariance matrix of the parameter
estimates equal

Cov θ̂1 ∼ A−1
1 ,

Cov θ̂i ∼ A−1
1 +B−1

1 +B−1
i , i = 2, . . . , p

Cov θ̂p+1 ∼ A−1
1 +B−1

1 .

The key results when all the subsystems are iden-
tical and only y1(t) and yp+1(t) are measured are:

• Since A−1
1 is the asymptotic covariance matrix of

θ̂1 when only y1(t) is measured, the quality of the
estimate of θ1 is not improved by also measuring
yp+1(t).

• The asymptotic variance for θ̂p+1 is always worse than

for θ̂1 since B−1
1 is a positive definite matrix.

• The asymptotic variance for θ̂i, i = 2, . . . , p is always

worse than both the one for θ̂1 and the one for θ̂p+1

since B−1
i is a positive definite matrix.

• The estimates of θ̂1, θ̂i, i = 2, . . . , p and θ̂p+1 all

contains terms of A−1
1 . Hence if the quality of the

measurement of y1(t) is bad, i.e., λ1 is large, then we

always get bad estimates of θ̂i, i = 2, . . . , p and θ̂p+1

irrespective of how good our measurement of yp+1(t)
is and irrespective of how much input power that is
used in ui(t) for i = 2, . . . , p.

• If it is known beforehand that all the systems are
identical, this information should be incorporated in
the model structure. If this information is used in the
PEM parameter estimate, the asymptotic covariance
matrix Pθ can be calculated using

Ψ(t) =

(

G′

1(q, θ1)u1(t)

λ1
, . . . ,

G′

1(q, θ1)up(t)

λp

,
2G′

1(q, θ1)G1(q, θ1)
∑p

i=1 ui(t)

λp+1

)

in Pθ = 1
N
E{Ψ(t)Ψ(t)T }−1. This gives

Cov θ̂1 ∼

(

A1 + 4

p
∑

i=1

Bi

)

−1

which always is smaller than A−1
1 which is the asymp-

totic covariance matrix if the structural information
is not used.

• The asymptotic covariances Ai and Bi are directly
proportional to the power in the input signal ui(t). If
we assume that we have some constraint on the total
power that we can use to excite the system, and our
aim is to estimate θ1 or θp+1 , all input power should
be used in u1(t).

If we on the other hand want to estimate θi for i =
2, . . . , p the input signal should be divided between
u1(t) and ui(t). How the power should be distributed
is decided by the relations between A1, B1 and Bi. If
we use independent white noise signals one could for
example formulate the following optimization prob-
lem to find the signal powers σ2

1 and σ2
i for u1(t) and

ui(t) respectively

min
σ2
1
,σ2

i

tr

(

A−1
1

σ2
1

+
B−1

1

σ2
1

+
B−1

i

σ2
i

)

s. t. σ2
1 + σ2

i = Stot

where Stot is the maximum input power and A1, B1

and Bi are calculated with white noise inputs with
unit variance.
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4. NUMERICAL EXAMPLE

In this section some of the theoretical results are verified
by MATLAB simulations. We use the model structure (1)
with first order FIR transfer function (2) and assume that
the true system has the same structure. The following
parameter values are used

b01 = b02 = b03 = −0.6,

λ1 = λ2 = λ3 = 1,

i.e., we have the case (5), were all systems are equal and
all signals are measured.

This system is simulated for 500 samples and the param-
eters are estimated by solving the optimization problem
(3). The optimization problem is solved numerically in
MATLAB with the command fminunc. Since we only are
interested in the variance and not the convergence of the
algorithm we initialize the solver with the true parameters.

1000 Monte Carlo simulations are performed and the pa-
rameter mean and variance over the Monte Carlo sim-
ulations are calculated. The result is shown in Table 1
together with the theoretical values calculated from (5).

Table 1. Theoretical and simulated mean and
variance for the three parameters.

Theoretical Simulated

mean N Var mean N Var

b̂1 -0.60 0.71 -0.60 0.71

b̂2 -0.60 0.71 -0.60 0.72

b̂3 -0.60 0.87 -0.60 0.88

The simulated values are very close to the theoretical
values.

5. CONCLUSIONS

The objective of this contribution has been to present
some fundamental asymptotic variance analysis results for
identification of parallel serial systems. The main result
concerns the case when the true sub systems are identical,
but is also relevant for systems where the true sub-transfer
functions are close to each other. Future work involves
optimal input design for parallel serial systems when only
the output yp+1(t) is measured. It is not obvious how
to excite all systems at the same time while guaranteing
identifiability of the parallel subsystems.
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