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Abstract—\We propose a method for designing loop-shaping  As a numerical example, we design a loop-shaping con-
controllers using Bode’s ideal transfer function. Bode's deal troller for a flexible transmission system. Controlling flee
transfer function is introduced using fractional calculus. The transmission systems with low damping ratio in the presence
ideal loop transfer function is approximated using the first £l load iation i difficult task and a fixed hiah
generation CRONE approximation, and then implemented by ol large load variation 1S 6? imcult tfask and a |x_e. 9
means of H..-optimization followed by closed-loop controller ~Performance controller designed for one load condition may
order reduction of the resulting controller. The design mehod  lead to instability for another load condition. The system
is confirmed to be powerful and robust by simulating on a we consider is well studied as a benchmark problem on
flexible transmission system. robust digital control in [10]. Since there are already sakve

good controllers [3], [11]-[14] for the considered systéhe
|. INTRODUCTION purpose here is not to obtain a better controller but to-llus
. , . }rate the method on a challenging well-known system. We

Fractional calculus based on generalized integral;” . .

%e&gn a highly robust controller for this benchmark prable

differential operators is known in mathematical analysi . . o
since the nineteenth century. In the last decades, there hagt can satisfymostof the design specifications [10]. The

: o : qontroller is interesting to consider since its constitti
been many fractional calculus applications also in contrg

: . o S rather straightforward and combines elements from both
engineering problems. The range of applications covells bo .
classical and modern control theory.

controller design and synthesis [1]-[3] and system modelin . . . ,
and identification [4]. Design of fractional-order contess . The paper is orgamzed as follgws. In Sgctlon I, Bers
using Bode’s ideal transfer function [5] is one of the ap-'deal. transfer functlpn and its basic prppemes are dpedn
plications [6]. Such controllers provide theoreticallyiimite Sectlon_llll de_als with the control-design method using the
gain margin. Most of these research studies result only iﬁw'Opt'm'z"’_‘t'on procedure and th‘? closed-loop con_troller
order reduction method. The numerical results regardiag th

fractional-order controllers [7]. Although several metlo flexible t L ¢ d th trol desi :
for finite-dimensional approximation of fractional openat exible fransmission system and the control design require
ments are given in Section IV. Finally, Section V gives a

are available in the literature [4], [8], the arising finite- | di . th it dth lusi
dimensional filters are of high-order. Therefore, they ase n general discussion on he resufts and the conclusion.

suitable for real-time implementation on control boardthwi

limited computational capabilities and small memory units
In this paper, we propose a systematic approach for design-First, we need to introduce the notion of fractional deriva-

ing low-order controllers using Bode’s ideal loop shape ofive and integration.

a given frequency interval and closed-loop controller cedu

tion [9]. Like classical loop-shaping methods, the progloseA. Fractional Derivative

control-design method uses specifications like phaseimarg The integral-differential operator, denoted by, is a
’ t

and cross-over frequency, and translates them into a refere ) . . o .
verired o notation for taking both fractional derivative and fractad
model consisting of an ideal open-loop system and then de-

signs the shaping filter using di..-optimization method. At Integral in a single expression

Il. BODE'S IDEAL TRANSFER FUNCTION

last, the method uses a closed-loop controller order réstuct d>/dt®, a >0,
to obtain a low-order realizable controller. The advantafye DY =1 1, a=0,
this control-design method is that using a simple systemati ]Z(dT)_O‘, a < 0.

approach and with a small number of tuning parameters,

we get a low-order highly robust controller. Unfortunately There are several different definitions for fractional dative

in some cases there are complex design specifications tf@@d integral [15]. One of the most commonly used definitions

cannot be met using Bode’s ideal transfer function. Also thi§ the Caputo definition

class of admissible plants is restricted to stable system. TR L T TR

oD f(t) 2{ Tlm—a) Jo (t—r)etizm =0
T f(t), a=mecN.

m = |al,
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Fig. 1. The feedback interconnection of the controlé(s) and the plant
G(s).
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It has been shown that a system with transfer funcigs®)
is asymptotically stable if the following condition is sted ool

0.0 ‘ 16,0 15.0 20.0
|Zpole(F(sY))| > an/2,

Time (s)

for0 < a < 2, where p0|é-) denotes the poles of the transfer':ig' 2. Time_ response characteristics of the closed-logpesyT(s) for
. we = 1 and different-.

function andZ/ represents the angel of a complex number

[16]. For « = 1, this criteria becomes equivalent to the well
known stability criteria of “all poles should be located et some~ € R, wherew, is the gain cross-over frequency,

left-half of the complex-plane (LHP)". o that is, |L(jw.)| = 1. The parametery determines both
There are several methods for approximating a stabjga slope of the magnitude curve on a log-log scale and

fractional transfer function with a rational integer-oréiler. 1,4 phase margin of the system, and may assume integer as
One of the most famous methods is the CRONE approximge|| non-integer values. In fact, the transfer functibfs)

: . ; o is
tion [15] which we are going to use in this paper. a fractional-order transfer function for non-integere R.
B. CRONE Approximation for Fractional Filters The amplitude curve is a straight line of constant slope

—20~vdB/dec, and the phase curve is a horizontal line at
d—'yw/2rad. The Nyquist curve consists, simply, of a straight
gpe through the origin. Let us now consider the unit feedbac
system with Bode’s ideal transfer functidi(s) inserted in
the forward path. This choice af(s) gives a closed-loop
system with the desirable property of being insensitive to
gain changes (Gain Margia oo0). The variations of the gain
change the cross-over frequency but the phase margin of
the system remains(1 — v/2)rad, independent of the gain.

1 - N1y 5/Wan Next, we study the step-response of the closed-loop system
L(s) = o L(s) = Co 1+ s/wpn’ consist of the fractional order transfer functids) given
n=1 g in (1) with unitary feedback

In this subsection, we introduce thfirst generation
CRONE approximation for fractional filters. This metho
helps us to approximate a stable fractional order transf
function with a rational integer-order filter in a given fre-
guency band.

Assume that we want to approximalgs) = 1/s“ for
somea > 0 with an integer-order filter of degre® in the
frequency intervalw;, wy]. The CRONE method results in

where
T(s) = L(s)/(L+ L(s)) = 1/(1 + (s/we)").

Thus, the step-response would be

Wp1 = wl\/ﬁa Wazn = wpn§7 Wp,n+1 = Wznll,

and

_ a/N (1-a)/N o _ o - W] - [ (wet)]”
= (wp/w , = (wp/w , Co=(1/w)"™. =14 ____“ L _q_ AV Wer) 1
€= (nfe)®”™ = nfea) =, Gy = (1) o= {2 >
If we want the approximation errgd.(jw) — L(jw)| to be "
less than some real numbEr> 0 in the frequency range of which results in

interestw;, wy,], the order of approximatiofy should satisfy y(00) = Tim y(t) =1, y(0%) = lim y(t) = 0.

t—o00 t—0+
N log(wp, /wi) ) . L
|\ E L 1] Fig. 2 shows the overshodt/,, peak-timeT, rise-timeT.,
10(1+a+27oc) H _ti _ 1 -
. _ and settling-timeT; of the step-response of the fractional
for 1 <a <2 [15]. A good property of the this approxima- order transfer functiorf’(s) for w. = 1 and different.
tion method is thatl(s) is always stable. Using these results and Fig. 2, it is relatively easy to find

C. Ideal Transfer Function suitable valuess, and~ based on design specifications.

Consider the feedback interconnection of the controller I1l. CONTROL DESIGNMETHOD

é(e(ssi) r?noi tfgi dpt::gl? ;(jr?] Iﬂﬁzlrg' [é] Br?;:’sljn hésstset(l;d;/noirclje The control-design method consists of two separate parts:
9 P ’ 99 (3d loop-shaping usind{.-optimization, and (ii) closed-loop

shape of the open-loop transfer functiGii (s) of the form controller order reduction. We discuss these two partsén th
L(s) = (we/s)” (1) subsequent subsections.



A. Control Design: Loop-Shaping Usinl,-Optimization and o
In the design procedure using Bode’s ideal transfer func- C = 0 .

. . ) X i 0 Cg

tion loop shaping, first, we must find the optimal loop-

gain L(s) based on the design specifications and fix botn the above state-space realization, the matrjces3, C|

~ and w, in (1). This can be done using the results ofand the matricefAy, By, Cy| are respectively the realization

Subsection II-C (Fig. 2). The next step is to approximats thimatrices of the plant transfer function and the controller

fractional order transfer function with a rational integeder  transfer function

transfer functionZ(s) using the CRONE method introduced

. . . . A A|B A Ak Bk

in Subsection 1I-B. Finally, we should make the loop-gain G(s) = cTo |’ K(s) = .10 |

GK(s) as close as possible to this approximatibfs) in - - )

the frequency range of interedb;,wy]. This part of the NOW, we can compute reachabnlty and observab_mty Grami-

design procedure can be done using a weigHieg-norm ans P and @ using the following Lyapunov equations

minimization AP+ PAT+ BB =0, ATQ+QA+CTC =0. (4)
arg?(ig IWo(s)[GE () = L(5)]Wi(5)lloc, (@) and extract the weighted reachability and observability

where the search domain should be on the set of stab eramlans for the controllei (s) using

controllers K (s). This optimization problem is easy to p — [ Onpscn Tngxng ]15[ Opyxcn Ty sy }T, (5)
solve [17]. The weight functiondV,(s) and W;(s) are

selected based on the frequency range of intdtestoy,]. Q=1 Onoxn Tnpxne | Q[ Onpxn Tnpxne | 5 (6)
This frequency range is usually dictated by the cross-over

frequencyw. and the open-loop characteristics of the plant/N€€ 7 IS the order of the controlle(s) and n is

to-be-controlled. Furthermore, if the open-loop plant riod the order of the plant. Based on these weighted Gramians,

varies under different working conditions, we may rewriteoNe can balance the coordinates of the controller and use

R the singular perturbation method to find the reduced-order
the H,.-opt t 2 .
© optimization in (2) as controller [18]. The order of the reduced-controlleris

]T

W, (s)[G1K (s) — L(s)]Wi(s) obtained by incrementally increasinguntil the design spec-
i : ifications are fulfilled. If the open-loop plant model varies
arg min . (3) fficati fulfilled. If the open-loop pl del vari
K(s) N under different working conditions, we can use this corol
Wo(s)[Gn K (s) — L(s)]Wi(s) reduction method on the hardest plant-to-be-controllet wi
where the transfer function&,(s) for ¢ = 1,...,n rep- the design specifications. In this controller reductionhodt

resent the plant-to-be-controlled under different wogkin we can choose to use a different set of inputs and outputs for
conditions. It should be noted that, df. € [w;,ws], both the closed-loop system based on the design specifications.
the controller and the open-loop plant are stable, and the
minimization error in (2) is small enough, then the closed-
loop system should be stable witti(s). This is true because First, we need to introduce the flexible transmission sys-
GK (s) is close toL(s), and using the properties of Bode’stem. The discrete-time model of flexible transmission syste
ideal transfer function and the CRONE approximation, weinder different load conditions is given in [10] but in this
know that the Nyquist diagram 0&,(5), and therefore, the paper, we use the continuous-time model introduced in [19].
Nyquist diagram ofGK (s) does not encircle-1.

IV. NUMERICAL EXAMPLE

A. Flexible Transmission System

B. Control Design: Controller Reduction Method Fig. 3 shows the schematic diagram of the flexible trans-
The controllerK (s), introduced in Subsection IlI-A is a mission system. This system consists of three pulleys con-
high-order controller and it is not suitable for real-timme-i nected to each other by two elastic belts. The first pulley is
plementation with low memory usage and low computationalriven by a DC motor whose position is controlled by local
power. In this section, we use the model-order-reductidieedback. Since the dynamics of the electrical actuator is
method introduced in [9] to a get a low-order controller withmuch faster than that of the mechanical parts of the systems,
satisfactory closed-loop performance. this part can be neglected in modeling and analysis of the
Consider the closed-loop interconnection of the systesystem. The objective is to control the position of the third
and the controller in Fig. 1 with the closed-loop state-gpagulley which may be loaded by small disks. The system is
representation characterized by two low-damped vibration modes, subject
to large variations in the presence of different loads. Big.
gives the magnitude Bode diagram of the system under
three different loadings: no-load, half-load, and fulktb
The transfer function for these three different cases can be
where found in (7)-(9) based on modeling done in [18y . (s),
Gnur(s), andGry(s) stand for the transfer functions of the
flexible transmission system under no-load, half-load, and
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Fig. 3. The Schematic of the flexible transmission system.

full-load conditions, respectively. According to [19]gtigoal

is to obtain a low-order controller that achieves the follogv

specifications:

S:: Rise time of less thai.0 sec for all loads,

S,: Overshoot of less thah0% for all loads, Fig. 4. Magnitude Bode diagram of the system for three difiedoads:

Ss: Disturbance attenuation in low frequency band from full-load (dash), half-load (solid), no-load (dot).
to 0.47rad/s for all loads; i.e., small output sensitivity
function S, (s) for the frequency rang, 0.47] where
the output sensitivity functionS,(s) is the transfer
function between the output disturbaneé&) and the
plant outputy(t),

S4: A maximum value of less thadB of the output
sensitivity function for all loads,

S5: A maximum value of less thamn0dB of the transfer
function T,,,(s) between the output disturbanceét)

w rad/s

Now, we can use CRONE method to find the approxima-
tion L(s). We do this approximation wittv = 15.

As the next step of the control-design procedure, we
should set up anH..-optimization for loop-shaping. In
our modeling of the flexible transmission system, we have
three different transfer functions, thus the controllesige
problem becomes

and the controller outpui(t), GnLK(s) — L(s)
Ss: Perfect rejection of constant disturbances (using irtegr arg min GurK(s)— L(s) | W(s)|| . (10)
action), SN GroK(s) - L(s)

oo

S7: Rejection of the step-output disturbance filtered by
1/A(s) within 1.2 sec (for90% rejection of the mea- We can simplify the two different weight functiorid’;(s)
sured peak value) for all loads where for each loa@ndW,(s) in (3) into one weight functio®’ (s), because the
A(s) is the denominator of the transfer function of theunderlying systems are single-input single-output dymaini

corresponding load, systems. Using a simple weight function
Sg: Delay margin of at leasioms. 100 s
W(S) = )
B. Control Design: Loop-Shaping Usinf.-Optimization wp (L4 s/w)(1+4 s/wn)

As the first step, we have to pick good and w. for the resulting controllets(s) is of degree 30. Furthermore,
Bode’s ideal transfer function to get good results from thghis controller does not have an integrator, and therefore,
design procedure. Based on the results of Subsection tlees not reject the step disturbances perfectly. To ovegcom
C, it can be seen through Fig. 2 that= 1.15 results in this problem, we multiply the designed controll&¥(s) by
M, = 4.87% andw, = 2.22rad/s gives a rise-time about a simple lag-filter
0.74s. From Fig. 4, we know that there can be a resonance A s+ w;
peak in the system at approximatélyrad/s, and we should K(s) = Kiag(s)K(s) = ( ) K(s).
choosew, larger than3srad/s. We fixw, = 1 x 103rad/s. 5
On the other hand, the lower we choasg the better step The lag-filter K;,4(s) helps the controller to satisfygSand
reference tracking and low frequency disturbance rejectidt does not change the loop-gain in the frequency range of
the closed-loop system will have. But if we make too interest[w;,w,] much. The controlleds (s) is of degree 31
small, the controller becomes very high-order (because afhich may not be easy to implement. In the next subsection,
the high approximation degree of the fractional order Bedewe use the method given in Subsection I11-B to find reduced-
ideal transfer function). We pick; = 1 x 10~ 2rad/s. order controller.




Fig. 5. The closed-loop step-response of the flexible trésson system
under three different load condition with the designed iler K (s) (S;
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Fig. 7.

Transfer functioril’. (jw) versus frequency for three different
plants with the designed controlléf (s) (Ss).

and ).
TABLE |
100 ‘ DESIGN SPECIFICATION OF THE PROPOSED CONTREDESIGN METHOD.
S [ISNE ()]0 = 2.39dB
5 o No Load [ Half Load | Full Load
© ‘ ‘ ‘ T (<= 1.25) 0.99 s 0.96 s 0.86 s
10 107 107 10° 10* My(<= 10%) 9.2% 9.9% 8.1%
_ ‘ Y SN (s)]loo (<= 6.0dB) | 5.09dB | 590dB | 552dB
5 o ITHL(s)||co(<= 10.0dB) | 0.00dB | 0.00dB | 0.00 dB
T 0 _ - L L . Delay Margin(>= 70ms) 629 ms 604 ms 576 ms
1020 10 10 10 10 T 29s 47s 7.1s
5 [|SEE(s) i = 4.64dB
9 Of
RS o 16°( G 10t system with the reduced controller under three differeatilo
Frequency (rad/s . . ipe .
conditions. Clearly, the design specificationsa&hd S are
Fig. 6. Output sensitivity functiorS, (jw) versus frequency for three satisfied for all loading situations. Fig. 9 and Fig. 10 shbev t

output sensitivity functionS,(jw) and the transfer function
T..(jw) versus frequency with the reduced controller for
different load conditions which shows that the reducedeord
Fig. 5 shows the step responses of the closed-loop systeguntroller satisfies the design criteria, S, and $ too.
with K (s) as the controller. As it can be seen, the stepThe integral action must be preserved, since the singular
response satisfies the design specificationarl $S. Fig. 6 perturbation method preserve the static gain; &€,,(0)| =
and Fig. 7 show the output sensitivity functiéh(jw) and  |K(0)|. Therefore, the reduced-order controll&.(s) also
the transfer functiofl’,., (jw) versus frequency. Both of these has integral action and fulfillsgSThe detailed result of the
transfer functions satisfy the design criterig, Sy, and $ numerical example is given in Table I. The only specification
under different load conditions. that cannot be satisfied is;,Shecause this specification
C. Control Design: Controller Order Reduction cann_o_t be_ translated to B(_)d_e’s ideal trgnsfer functiopsThi
specification cannot be satisfied even with the approximatio

_In this subsection, we use the method given in Subsegf Bode’s ideal transfer functiod(s) in (1) for any~ and
tion 11I-B to find reduced-order controller. Since we want,, sq this is an inherent limitation of the method.

to satisfy the controller design criteria-Sg after the the
. T .
model reduction, we chooser d wu |* as the input for

the closed-loop system an@ly u ]T as the output of In this paper, we have presented an strategy for design-
the closed-loop system (because each pair of these inpirg low-order robust controllers using Bode’s ideal tramsf
output transfer functions corresponds to at least one of thienction loop shaping. The proposed method is based on
control design specifications). It is worth mentioning that the H..-minimization between the desired transfer function,
chooseGry(s) for the controller order reduction, becauseproduced by an approximation of fractional-order open-
it is the hardest plant-to-be-controlled with the desigacsp loop transfer function in the frequency range of interest,
ifications S-Ss. The reduced-order controllék,. takes the and the transfer function of the loop-gain with the robust
form (11), when we choose the order= 5. As mentioned controller. The design procedure is systematic and simple.
earlier in Subsection 1lI-B, the order = 5 is obtained The tuning parameters, for this control-design method, are
by incrementally increasing until the specifications are (i) v (phase-margin) and. (cross-over frequency) which
fulfilled. Fig. 8 shows the step-responses of the close@-locan be determined from design specifications on rise-time,

different plants with the designed controll&f(s) (S and S).

V. DISCUSSIONS ANDCONCLUSIONS
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Fig. 8. The closed-loop step-response of the flexible trasson system
under three different load condition with the reduced adfgr K..(s) (S
and ).
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Fig. 9. Output sensitivity functionS,(jw) versus frequency for three
different plants with the reduced controlléf, (s) (Sz and S).

[10]

percentage-overshoot, and settling-time, «ij) and w,; that
are dictated byw. and open-loop characteristics of the
plant-to-be-controlled, (iii)V (approximation degree in the
CRONE method) which is characterized mainly by/w;,
and (iv) W (s) (weighting filter for H.-minimization) which
is a simple filter only based oy, w;. This control-design
method uses classical loop-shaping specifications likegsha [1°]
margin and the cross-over frequency, translates them intoy;
reference model consisting of an ideal open-loop system and
then designs the shaping filter using &h.-optimization

. 15]
method. Finally, we use a closed-loop controller order re{m]
duction to get a low-order realizable controller.

[11]
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