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Abstract

In this report, we provide a comparative study of state-of-the-art in Orthogo-
nal Frequency Division Multiplexing (OFDM) techniques with orthonormal analy-
sis and synthesis basis. Two main categories, OFDM/QAM which adopts base-
band Quadrature Amplitude Modulation (QAM) and rectangular pulse shape, and
OFDM/OQAM which uses baseband offset QAM and various pulse shapes, are in-
tensively reviewed. OFDM/QAM can provide high data rate communication and
effectively remove intersymbol interference (ISI) by employing guard interval, which
costs a loss of spectral efficiency and increases power consumption. Meanwhile
it remains very sensitive to frequency offset which causes intercarrier interference
(ICI). In order to achieve better spectral efficiency and reducing combined ISI/ICI,
OFDM/OQAM using well designed pulses with proper Time Frequency Localiza-
tion (TFL) is of great interest. Various prototype functions, such as rectangular,
half cosine, Isotropic Orthogonal Transfer Algorithm (IOTA) function and Extended
Gaussian Functions (EGF) are discussed and simulation results are provided to il-
lustrate the TFL properties by the ambiguity function and the interference function.





Contents

1 Introduction 1

2 OFDM/QAM and Cyclic Prefix 2
2.1 Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Guard Interval and Cyclic Prefix . . . . . . . . . . . . . . . . . . . . . . . 5

3 OFDM/OQAM and Pulse Shaping 6
3.1 Principle of OFDM/OQAM . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Pulse Shaping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2.1 Rectangular Function . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2.2 Half Cosine Function . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2.3 Gaussian Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2.4 Isotropic Orthogonal Transform Algorithm (IOTA) Function . . . . 12
3.2.5 Extended Gaussian Function (EGF) . . . . . . . . . . . . . . . . . . 14

3.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Orthogonality and Time Frequency Localization (TFL) 15
4.1 Time Frequency Localization . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1.1 Instantaneous Correlation Function . . . . . . . . . . . . . . . . . . 15
4.1.2 Ambiguity Function . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.1.3 Interference Function . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2 Heisenberg Parameter ξ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5 Numerical Results 18
5.1 OFDM/QAM and Cyclic Prefix . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2 Pulse Shaping OFDM/OQAM . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.2.1 Half Cosine Function . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.2.2 IOTA function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.2.3 Gaussian Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.2.4 Extended Gaussian Function . . . . . . . . . . . . . . . . . . . . . . 24

5.3 Time Frequency Localization . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.4 Heisenberg Parameter ξ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6 Conclusions 26
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.2 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Appendix 29
A Proof of Orthogonalization Operator Oa . . . . . . . . . . . . . . . . . . . 29
B EGF Coefficients Calculation . . . . . . . . . . . . . . . . . . . . . . . . . 30





Classic OFDM Systems and Pulse Shaping OFDM/OQAM Systems 1

1 Introduction

OFDM, orthogonal frequency division multiplexing, is an efficient technology for wireless
communications. It is widely used in many of the current and coming wireless and wireline
standards, e.g., VDSL, DAB, DVB-T, WLAN (IEEE 802.11a/g), WiMAX (IEEE 802.16),
3G LTE and others as well as the 4G wireless standard, since next generation wireless
systems will be fully or partially OFDM-based.

The classic OFDM employing baseband quadrature amplitude modulation and rectan-
gular pulse shape, denoted OFDM/QAM, is most commonly used in today’s applications
which refers to OFDM. In an ideal channel where no frequency offset is induced, in-
tercarrier interference (ICI) can be fully removed by orthogonality between sub-carriers.
Intersymbol interference (ISI), which is caused by multipath propagation, can also be elim-
inated by adding a guard interval (i.e., a cyclic prefix after OFDM modulation1) which is
longer than the maximum time dispersion. On the other hand, such guard interval (cyclic
prefix) costs a loss of spectral efficiency and increases power consumption.

In order to achieve better spectral efficiency and meanwhile reducing combined ISI/ICI,
another OFDM scheme using offset QAM for each sub-carrier, denoted OFDM/OQAM,
is of increasing importance as it has already illustrated profound advantage [1, 2, 3] over
OFDM/QAM in time and frequency dispersive channels. Contrary to OFDM/QAM which
modulates each sub-carrier with a complex-valued symbol, OFDM/OQAM modulation
carriers a real-valued symbol in each sub-carrier and consequently allows time-frequency
well localized pulse shape under denser system TFL requirement. The well designed IOTA
pulse has already been introduced in the TIA’s Digital Radio Technical Standards [6] and
been considered in WRAN(IEEE 802.22) [7].

By adopting various pulse shaping prototype functions [1]-[5] with good 2 time fre-
quency localization (TFL) property, OFDM/OQAM can efficiently reduce both ISI and
ICI without employing any guard interval. This enables a very efficient packing of time-
frequency symbols maximizing e.g. the throughput or the interference robustness in the
communication link.

Our aim in this report, motivated by [8], is to provide a comparative study of state-of-
the-art in OFDM techniques with orthonormal analysis and synthesis basis which consists
of the time-frequency translated versions of the prototype function. Section 2 gives an
overview of principles and architecture of the classical OFDM/QAM scheme and provide a
basis for further discussion. OFDM/OQAM scheme with pulse shaping as well as several
prototype functions like rectangular, half-cosine, Gaussian, IOTA and EGF are present
in Section 3. In Section 4, the ambiguity function and interference function for TFL
analysis are applied to provide different prototype functions. Some simulation results are
presented in Section 5 and conclusions and extensions for OFDM are presented in Section
6.

1see Sec. 2 for detailed explanation.
2The criteria of good will be discussed later in Sec. 3
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Figure 1: Block diagram of OFDM/QAM system (equivalent lowpass).

2 OFDM/QAM and Cyclic Prefix

The main idea behind OFDM is to partition the frequency selective fading channel (time
dispersion Td is larger than symbol duration Ts) into a large number (say N) of parallel
sub-channels which are flat fading (Td << NTs) and thereafter transform a very high

data rate (
1

Ts

) transmission into a set of parallel transmissions with very low data rates

(
1

NTs
). With this structure the problem of high data rate transmission over frequency

selective channel has been transformed into a set of simple problems which do not require
complicated time domain equalization. Therefore OFDM plays an important role in
modern wireless communication where high data rate transmission is commonly required.

2.1 Principles

In OFDM/QAM systems, as shown in Fig. 1, the information bit stream (bit rate Rb =
1

Tb
) is first modulated in baseband using M -QAM modulation (with symbol duration

Ts = Tb log2 M) and then divided into N parallel symbol streams which are multiplied by a
pulse shape function gm,n(t). These N parallel signals are then summed and transmitted.
On the receiver side, the received signal is first passed through N parallel correlator
demodulators (multiplication, integration and sampling) and merged together via parallel-
to-serial converter followed by detector and decoder.

The transmitted signal can be written in the following analytic form

s(t) =

+∞∑

n=−∞

N−1∑

m=0

am,ngm,n(t) (1)

where am,n(n ∈ Z, m = 0, 1, ..., N − 1) denotes the baseband modulated information
symbol conveyed by the sub-carrier of index m during the symbol time of index n, and
gm,n(t) represents the pulse shape of index (m, n) in the synthesis basis which is derived
by the time-frequency translated version of the prototype function g(t) in the following
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way

gm,n(t) , ej2πmFtg(t − nT ), where m, n ∈ Z (2)

where j =
√
−1, F represents the inter-carrier frequency spacing and T is the OFDM

symbol duration. Therefore gm,n(t) forms an infinite set of pulses spaced at multiples of
T and frequency shifted by multiples of F . Consequently the density of OFDM system
lattice is

1

TF

In an OFDM/QAM system, the frequency spacing F is set to ν0 =
1

NTs
and the time

shift T is set to τ0. The prototype function g(t) is defined as follows

g(t) =

{ 1√
τ0

, 0 ≤ t < τ0

0, elsewhere
(3)

The orthogonality of the synthesis basis can be demonstrated from the inner product
between different elements

〈gm,n, gm′,n′〉 =

∫

R

g∗
m,n(t)gm′,n′(t)dt

=

∫

R

ej2π(m′−m)ν0tg∗(t − nτ0)g(t − n′τ0)dt

=
1√
τ0

∫ (n+1)τ0

nτ0

ej2π(m′−m)ν0tg(t − n′τ0)dt

= δm,m′δn,n′

(4)

where the last equality comes from the fact that τ0ν0 = 1 which is a requirement in
OFDM/QAM system, and δm,n is the Kronecker delta function defined by

δm,n =

{
1, m = n
0, otherwise

.
At the receiver side, the received signal r(t) can be written as

r(t) = h ∗ s(t) + n(t) =
+∞∑

n=−∞

N−1∑

m=0

hm,nam,ngm,n(t) + n(t) (5)

where h is the wireless channel impulse response and hm,n represents the channel real-
ization on each sub-channel which is assumed to be known by the receiver, n(t) is the
additive noise which is usually modeled as AWGN. Passing r(t) through N parallel corre-
lator demodulators with analysis basis which is identical3 with the synthesis basis defined

3not necessary, see OFDM with cyclic prefix in Sec. 2.3
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by (2), the output of the lth branch during time interval nτ0 ≤ t < (n + 1)τ0 is

ãn(l) = 〈gl,n, r〉 =

+∞∑

k=−∞

N−1∑

m=0

hm,kam,k 〈gl,n, gm,k〉 + 〈gl,n, n〉

=
+∞∑

k=−∞

N−1∑

m=0

hm,kam,kδl,mδn,k + nn(l)

=

N−1∑

m=0

hm,nam,nδl,m + nn(l)

= hl,nal,n + nn(l)

(6)

In the detector this output is multiplied by a factor
1

hl,n
(nothing but channel inversion)

and therefore the transmitted symbol is recovered after demodulation only with presence
of AWGN noise.

The spectral efficiency η in this OFDM system can be expressed as

η =
β

TF
=

log2 M

τ0ν0

= log2 M [bit/s/Hz] (7)

where β = log2 M is the number of bits per symbol by M-QAM modulation and
1

TF
=

1

τ0ν0

= 1

is the lattice density of OFDM/QAM system.

2.2 Implementation

If we sample the transmitted signal s(t) at rate 1/Ts during time interval nτ0 ≤ t <
(n + 1)τ0 and normalize it by

√
τ0, we obtain

sn(k) , s(nτ0 + kTs) =
N−1∑

m=0

am,ne
j2πmFkTs

=

N−1∑

m=0

am,ne
j2π mk

N

,
k = 0, 1, ..., N − 1
n ∈ Z

(8)

This sampled transmitted signal sn(k)(n ∈ Z, k = 0, 1, ..., N − 1) is the Inverse Dis-
crete Fourier Transform (IDFT)4 of the modulated baseband symbols am,n(n ∈ Z, m =
0, 1, ..., N − 1) during the same time interval. Therefore the OFDM modulator at the
transmitter side can be replaced by an IDFT block.

Equivalently, at the receiver side, we sample the received signal r(t) at the same
sampling rate 1/Ts, normalize it by factor

√
τ0, and rewrite (6) as follows

ãn(l) = 〈gl,n, r〉 =

∫ (n+1)τ0

nτ0

g∗
l,n(t)r(t)dt '

N−1∑

m=0

r(nτ0 + mTs)e
−j2π ml

N =
N−1∑

m=0

rn(m)e−j2π ml
N

4except for a scaling factor N
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The demodulated symbol ãn(l)(n ∈ Z, l = 0, 1, ..., N−1) is the Discrete Fourier Transform
(DFT) of the received signal rn(m)(n ∈ Z, m = 0, 1, ..., N − 1).

Let sn = [sn(0), sn(1), ..., sn(N − 1)]T , an = [a0,n, a1,n, ..., aN−1,n]T , rn = [rn(0), rn(1),
..., rn(N − 1)]T , then

sn = IDFT(an)
ãn = DFT(rn)

Consequently, the whole system of OFDM/QAM can be efficiently implemented by the
FFT/IFFT module and this makes OFDM/QAM an attractive option in high data rate
applications.

2.3 Guard Interval and Cyclic Prefix

When there is multipath propagation, consequent OFDM symbols overlap with each other
and hence cause serve ISI which degrades the performance of OFDM/QAM system by
introducing an error floor for the Bit Error Rate (BER). That is, the BER will converge
to a constant value with increasing SNR. A simple and straightforward approach, which
is standardized in OFDM applications, is to add a guard interval into the pulse shape
function g(t). When the duration of the guard interval Tg is longer than the time dispersion
Td, ISI can be totally removed. With a guard interval added, the prototype function for
synthesis basis is as follows

q(t) =

{ 1√
T0

, −Tg ≤ t < τ0

0, elsewhere
(9)

where T0 = Tg + τ0 is the OFDM symbol duration. Consequently the synthesis basis (2)
becomes

qm,n(t) = ej2πmν0tq(t − nT0) (10)

On the receiver side the analysis basis prototype function remains the same as defined
in (3) with time shift T0 and integration region nT0 ≤ t < nT0 + τ0. The orthogonality
condition (4) between synthesis basis and analysis basis therefore becomes

〈gm,n, qm′,n′〉 =
∫

R
ej2π(m′−m)ν0tg∗(t − nT0)q(t − n′T0)dt

= 1√
τ0

∫ nT0+τ0
nT0

ej2π(m′−m)ν0tq(t − n′T0)dt =

{ √
τ0
T0

, m = m′ and n = n′

0, otherwise

(11)

Now, assuming that the guard interval Tg = GTs, G ∈ N, if we sample the signal s(t)
at the same sampling rate 1/Ts during the time interval nT0 − Tg ≤ t < nT0 + τ0 and
normalize it by

√
T0

cn(k) , s(nT0 + kTs) =

N−1∑

m=0

am,ne
j2π mk

N ,
k = −G,−G + 1, ..., 0, ..., N − 1
n ∈ Z

(12)



6 Jinfeng Du, Svante Signell

S/
P P/
S

S/
P P/
S am,n Baseband

demodulator
bn

aN−1,n

Ts

Ts

Ts

a ,n

,na

0

1

a ,n

,na1

aN−1,n

0

Channelbn

Tb

am,n

Ts
Baseband
modulation IF

FT

(N−1)ns

ns (1)

(0)ns

~ ~

N

N

N

~

~

~

FF
T

(N−1)n

(1)

(0)n

n

r

r

r
Add
CP

ns

cn

CP
Drop nr

cncn
~

Figure 2: OFDM/QAM system with cyclic prefix.

Rewriting the above expression in vector format, we get

cn = [sn(−G), sn(1 − G), ..., sn(−1), sn(0), ..., sn(N − 1)]T

= [sn(N − G), sn(N − G + 1), ..., sn(N − 1)
︸ ︷︷ ︸

the LAST G elements ofsn

, sn(0), ..., sn(N − 1)
︸ ︷︷ ︸

sn

]T (13)

where the second equality comes from the periodic property of DFT function and the first
G elements are referred to as the Cyclic Prefix (CP). That is, to add a guard interval into
the pulse shape prototype function is equivalent to add a cyclic prefix into the transmitted
stream after OFDM modulation (IFFT). At the receiver side, the first G samples which
contain ISI are just ignored. The system diagram of OFDM/QAM with cyclic prefix is
shown in Fig. 2.

After adding cyclic prefix, the spectral efficiency η in (7) becomes

η =
β

TF
=

log2 M

(τ0 + Tg)ν0
= (1 − Tg

T0
) log2 M [bit/s/Hz] (14)

that is, the cyclic prefix costs a loss of spectral efficiency by Tg

T0

.

3 OFDM/OQAM and Pulse Shaping

In the previous section we assumed that the channel is ideal without any frequency offset.
Therefore ICI can be made negligible and meanwhile ISI can be successfully removed by
adding the cyclic prefix. The wireless channel, however, is far from ideal and a typical
channel contains time and frequency dispersion that cause both ISI and ICI due to the
lack of orthogonality between the perturbed synthesis basis functions and the analysis
basis functions. Furthermore, the cyclic prefix is not for free: It costs increased power
consumption and reduces spectral efficiency.

One way to solve this problem is to adopt a proper pulse shape prototype function
which is well localized in time and frequency domain so that the combined ISI/ICI can be
combated efficiently without utilizing any cyclic prefix. Unfortunately, in Gabor theory
the Balian-Low theorem [9] states that, orthogonal basis formed by (2) based on a time
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and frequency well localized (compact support) prototype function g(t) does not exist for
TF = 1. Therefore orthogonal basis and compactly supported pulses cannot be achieved
simultaneously for OFDM/QAM systems without guard interval (TF = τ0ν0 = 1). On
the other hand, orthogonality which ensures simple demodulation complexity, cannot be
given up as it plays an important role in the cost calculation of system applications.
This dilemma excludes pulse shaping OFDM/QAM from the candidate list and brings an
alternative scheme OFDM/OQAM into sight.

3.1 Principle of OFDM/OQAM

Instead of using complex baseband symbols in OFDM/QAM scheme, real valued symbols
modulated by offset QAM are transmitted on each sub-carrier with the synthesis basis
functions obtained by the time-frequency translated version of this prototype function in
the following way

gm,n(t) = ej(m+n)π/2ej2πmν0tg(t − nτ0), ν0τ0 = 1/2 (15)

To maintain the orthogonality among the synthesis and analysis basis, modified inner
product is defined as follows

〈x, y〉
R

= <
{∫

R

x∗(t)y(t)dt

}

where <{•} is the real part operator. That is, only the real part of the correlation function
is taken into consideration. Consequently, the inner product (cross correlation) between
gm,n(t) and gm′,n′(t) becomes

〈gm,n, gm′,n′〉
R

= <
{∫

R

ej(m′+n′−m−n)π/2ej2π(m′−m)ν0tg(t − n′τ0)g
∗(t − nτ0)dt

}

=<
{

ej π
2
(m′−m+n′−n+(m′−m)(n+n′)2ν0τ0)

∫

R

ej2π(m′−m)ν0xg(x +
n − n′

2
τ0)g

∗(x − n − n′

2
τ0)dx

}

=<
{

(j)m′−m+n′−n+(m′−m)(n+n′)

∫

R

e−j2π(m−m′)ν0xg(x +
n − n′

2
τ0)g

∗(x − n − n′

2
τ0)dx

}

=<
{

(j)m′−m+n′−n+(m′−m)(n+n′)Ag((n − n′)τ0, (m − m′)ν0)
}

(16)

where the second equality comes from variable substitution t = x + (n+n′)τ0
2

and the third
equality comes from the fact that ν0τ0 = 1

2
. Ag(τ, ν) is the well known (auto-)ambiguity

function (see also Sec. 4.1.2) which is defined as

Ag(τ, ν) =

∫

R

γg(τ, t)e
−j2πνtdt =

∫

R

e−j2πνtg(t + τ/2)g∗(t − τ/2)dt (17)

where the instantaneous5 auto-correlation function γg(τ, t) = g(t+ τ/2)g∗(t− τ/2) is even
conjugate6 along the t axis as long as g(t) is an even function. Therefore its Fourier

5“instantaneous” is used here to indicate that no expectation is taken compared to the common
correlation function.

6γg(τ, t) = γ∗

g
(τ,−t), see (37)
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Figure 3: OFDM/OQAM Lattice.

Transform Ag(τ, ν) is a real valued function and (16) can be rewritten as

〈gm,n, gm′,n′〉
R

=

{
±Ag((n − n′)τ0, (m − m′)ν0) , (m, n) = (m′, n′) mod 2

0 , (m, n) 6= (m′, n′) mod 2
(18)

By grouping the basis gm,n(t) which satisfies (m, n) = (m′, n′) mod 2 into the same subset,
the corresponding system lattice gm,n in the time-frequency plane can be decomposed into
four sub-lattices: EE={m even, n even}, EO={m even, n odd}, OE={m odd, n even}
and OO={m odd, n odd} [11], as shown in Fig. 3.

Whenever gm,n(t) and gm′,n′(t) belong to different sub-lattices, the orthogonality is
automatically maintained and is independent of the prototype function as long as this
function is even. While inside the same sub-lattice, the orthogonality only depends on the
ambiguity function Ag(τ, ν) and hence can be ensured by just finding an even prototype
function whose ambiguity function satisfies

Ag(2pτ0, 2qν0) =

{
1, when (p, q) = (0, 0)
0, when (p, q) 6= (0, 0)

where p, q ∈ Z (19)

At the receiver side

ãn(l) = 〈gl,n, r〉R
=

+∞∑

k=−∞

N−1∑

m=0

hm,kam,k 〈gl,n, gm,k〉R
+ 〈gl,n, n〉R

=

N−1∑

m=0

hm,nam,n 〈gl,n, gm,n〉R
+ nn(l)

= hl,nal,n + nn(l)

where hl,n is the amplitude of the channel realization which is assumed known by the
receiver.

Fig. 3 can also be used for comparison of spectral density between OFDM/QAM (τ0 =
ν0 = 1) and OFDM/OQAM (τ0ν0 = 1

2
) systems. Assuming in the OFDM/OQAM system
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ν0 = 1, τ0 = 1
2

for convenience, then the OFDM/QAM system transmits complex symbols
on these black solid lattice points (EE, EO) while the OFDM/OQAM system transmit the
real parts of complex symbols on these black solid lattice points and the imaginary parts
on these white hollow lattice points (OE, OO). Therefore the OFDM/OQAM system has
doubling symbol rate but half coding rate compared with the OFDM/QAM system, which
results in the same data rate per frequency usage and per time unit (spectral efficiency).

So far, two things have to be noted:

• On system level, OFDM/OQAM has twice the system lattice density (for gm,n,
1

τ0ν0

= 2) but half the coding rate (only transmit real-valued symbols) compared
to OFDM/QAM without cyclic prefix, therefore it has the same spectral efficiency

(η = 1/2 log2 M
τ0ν0

= log2 M [bit/s/Hz]), as OFDM without cyclic prefix, cf. (7).

• For prototype function design, OFDM/OQAM has less lattice density requirement
(Ag(τ, ν) = 0 ⇒ 1

2τ02ν0

= 1
2
) compared to OFDM/QAM ( 1

τ0ν0

= 1).

The above two features make it possible for OFDM/OQAM system to find a well-
localized prototype function while maintaining (bi-)orthogonality and therefore makes
pulse shaping OFDM/OQAM an attractive candidate for a time frequency dispersive
channel.

3.2 Pulse Shaping

The idea of pulse shaping OFDM/OQAM is to find an efficient transmitter and a cor-
responding receiver waveform for the current channel condition [3][13]. Specifically, a
good signal waveform should be compactly supported and well localized in time and in
frequency with the same time-frequency scale as the channel itself:

τ0

∆τ
=

ν0

∆ν

where ∆τ and ∆ν is the rms (root-mean-square) delay spread and frequency (Doppler)
spread7 of the wireless channel, respectively.

For example, in indoor situations the time dispersion is usually small, see Fig 4, a
vertically stretched time-frequency pulse is suitable and where the frequency dispersion is
small, a horizontally stretched pulse is suitable. This enables a very efficient packing [17]
of time-frequency symbols and hence maximizes e.g. the throughput or the interference
robustness in the communication link. In the following part of this section, several different
types of pulse shape functions are presented, namely the rectangular function, the half
cosine function, the Gaussian function, the IOTA function and the EFG.

3.2.1 Rectangular Function

The rectangular prototype function is a possible choice and can be a benchmark for
comparison. A time shift has to be applied to ensure the even function property, as

7for discrete channel model, the maximum delay and Doppler spread will be used instead.
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TFL of suitable pulse shapeChannel scattering function

ν0

τ0

∆ν

∆τ

Figure 4: Channel scattering function and corresponding pulse shape.

shown in (20).

g(t) =

{ 1√
τ0

, |t| ≤ τ0
2

0, elsewhere
(20)

By interchanging time and frequency axes, the dual of the rectangular function becomes
a natural extension, which is defined in the frequency domain as follows

G(f) =

{ 1√
ν0

, |f | ≤ ν0

2

0, elsewhere
(21)

with its inverse Fourier transform

g(t) =
sin(πν0t)

πt
√

ν0

This function is nothing but a sampling interpolation function. Its obvious advantage
over rectangular function is that there is no overlapping in the frequency domain and
therefore causes less interference. On the other hand, with a longer duration in the time
domain, the implementation and equalization complexity is considerable even after proper
truncation.

3.2.2 Half Cosine Function

A conventional prototype function in OFDM/OQAM system is the half cosine function
which is defined by

g(t) =

{ 1√
τ0

cos πt
2τ0

, |t| ≤ τ0

0, elsewhere
(22)

It has a compact support8 in the time domain and meanwhile a fast decay in the frequency
domain, as shown in Fig. 5, and therefore serves as a good prototype function.

8A function x(t) is said to be compact support if there exists a constant σ > 0 so that x(t) = 0 for all
|x| > σ.
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Figure 5: Half cosine function and its Fourier transform.

Similarly, its dual form is instead defined by its Fourier transform as

G(f) =

{
1√
ν0

cos πf
2ν0

, |f | ≤ ν0

0, elsewhere
(23)

This prototype function can be extended to any real even function whose Fourier transform
G(f) satisfies the following conditions:

{
|G(f)|2 + |G(f − ν0)|2 = 1/ν0 |f | ≤ ν0

G(f) = 0 otherwise
(24)

which corresponds to a half-Nyquist filter [1].

3.2.3 Gaussian Function

Gaussian function is very famous for that its Fourier transform has maintains the same
shape as itself except for an axis scaling factor. For a Gaussian function

gα(t) = (2α)1/4e−παt2 , α > 0 (25)

its Fourier transform is

Fgα(t) = (2α)1/4

∫ ∞

−∞
e−παt2e−j2πftdt = (2α)1/4

√
π

πα
e(−jπf)2/(πα)

= (2/α)1/4e−πf2/α = g1/α(f).

(26)
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Figure 6: Gaussian function with α = 1 and its Fourier transform.

Here the second equality comes from the fact that [10]
∫ ∞

−∞
e2bt−at2dt =

√
π

a
eb2/a (a > 0)

As the Gaussian prototype function is perfectly isotropic (invariant under rotation) and
has fast decay both in time and frequency domain, as shown in Fig. 6, it seems to be an
attractive candidate for pulse shaping prototype function. On the other hand, the basis
function generated by Gaussian prototype function is in no way orthogonal as gα(t) > 0
holds on the whole real axis. Therefore the Gaussian function is not considered here.

3.2.4 Isotropic Orthogonal Transform Algorithm (IOTA) Function

Orthogonality between basis functions is normally obtained by using either a time or
frequency limitation of the prototype function, for example, the rectangular function and
the half cosine function. A different approach, called Isotropic Orthogonal Transform
Algorithm (IOTA), is presented in [1, 11] and summarized bellow.

Define Oa as the orthogonalization operator on function x(t) according to the following
relation

Oax =
x(t)

√

a
∑∞

k=−∞ |x(t − ka)|2
, a > 0 (27)

The effect of the operator Oa is to orthogonalize the function x(t) along the frequency
axis, which can be seen directly on the ambiguity function

Ay(0,
m

a
) = 0, ∀m 6= 0 and Ay(0, 0) = 1 (28)
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where y(t) = Oax(t). That is, the resulting function y(t) and its frequency shifted versions
construct an orthonormal set of functions. The proof can be found in Appendix A.

Similarly, in order to orthogonalize x(t) along the time axis, one can turn to frequency
domain and apply this orthogonalization operator to X(f),which is the Fourier transform
of x(t). To carry out this operation on x(t), one has first to transfer it into frequency do-
main by Fourier transform F , then apply to the orthogonalization operation Oa, and then
go back to the time domain by inverse Fourier transform F−1. For y(t) = F−1OaFx(t),
we have

Ay(
n

a
, 0) = 0, ∀n 6= 0 and Ay(0, 0) = 1 (29)

Hence the resulting function and its time delayed forms are orthonormal.

Starting from the Gaussian function gα(t), by applying Oτ0 we get yα(t) = Oτ0gα(t)
and

Ay(0,
m

τ0
) = 0, ∀m 6= 0, and Ay(0, 0) = 1

which comes from (28) and shows that yα is orthogonal to its frequency shifted copies at

multiples of
m

τ0
. Then apply F−1OνF to yα(t), we get

zα,ν0,τ0(t) = F−1Oν0
Fyα(t) = F−1Oν0

FOτ0gα(t)
[11]
= Oτ0F−1Oν0

Fgα(t) (30)

and

Az(
n

ν0
,
m

τ0
) = Az(2nτ0, 2mν0) = 0, (m, n) 6= (0, 0) (31)

where the first equality comes from the fact that τ0ν0 = 1
2

and the second equality is the
straightforward result of time and frequency orthogonalization. Therefore, the require-
ment in (19) is automatically satisfied as normalization is embedded in the above process
of orthogonalization.

As yα = Oτ0gα is even, Fyα = F−1yα. Recall the Fourier transform invariant property
of Gaussian displayed in (26), and apply it to zα,ν0,τ0

Fzα,ν0,τ0 = FF−1Oν0
Fyα = Oν0

Fyα = Oν0
F−1yα

= Oν0
F−1Oτ0gα = Oν0

F−1Oτ0Fg1/α = z1/α,τ0 ,ν0

(32)

Let α = 1, τ0 = ν0 = 1√
2

and define ζ(t) = z1, 1√
2
, 1√

2

(t), then we have

Fζ = Fz1, 1√
2
, 1√

2

= z1, 1√
2
, 1√

2

= ζ (33)

Thus ζ is identical to its Fourier transform, as shown in Fig. 7, and has nearly isotropic
support over the whole time-frequency plane. This is the reason why it is named IOTA
function.
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Figure 7: IOTA function and its Fourier transform.

3.2.5 Extended Gaussian Function (EGF)

It is shown [11, 12] that the function zα,ν0,τ0 which is generated by the algorithmic approach
described in (30) has a closed-form analytical expression9

zα,ν0,τ0(t) =
1

2

[ ∞∑

k=0

dk,α,ν0

[

gα(t +
k

ν0
) + gα(t − k

ν0
)

]] ∞∑

l=0

dl,1/α,τ0 cos(2πl
t

τ0
) (34)

where τ0ν0 = 1
2
, 0.528ν2

0 ≤ α ≤ 7.568ν2
0 , gα is the Gaussian function, and the coefficients

dk,α,ν0
are real valued and can be computed via the rules described in [11, 12], c.f. Appen-

dix B. This family of functions are named as Extended Gaussian Function (EGF) as they
are derived from the Gaussian function. The IOTA function ζ is therefore a special case
of EGF and its properties such as orthogonality and good time frequency localization are
shared with these EGF functions.

In practice, as reported in [11], the infinite summation in EGF can be truncated to fifty
or even fewer terms while keeping excellent orthogonality and TFL. An approximation
of EGF with a few terms is also possible while the trade-off between localization and
orthogonality has to be sought.

3.3 Implementation

As shown in Sec. 2, the OFDM/QAM system can be efficiently implemented by FFT/IFFT
modules, whereas in an OFDM/OQAM system the envelope of the prototype function is

9A general expression with τ0ν0 = 1

2n
, n ∈ N is omitted since N > 1 is not interesting for practical

usage due to higher lattice density requirement.
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not constant and therefore needs filters to do pulse shaping. A direct implementation of
the OFDM/OQAM system with finite impulse response (FIR) filters on each sub-carrier
branch will be time consuming and cause a large delay. As the duration of the even pro-
totype function can be very long (e.g. IOTA and EGF is theoretically infinite), a large
delay has to be introduced to make the system causal (i.e., realizable10). Alternatively,
another approach which utilizes filter banks combined with FFT/IFFT blocks [12, 14]
provides a very efficient implementation and preserves the orthogonality of the prototype
functions.

4 Orthogonality and Time Frequency Localization (TFL)

Orthogonal basis is preferred in the design of digital communication systems as it simplifies
the reconstruction of the transmitted signal and provides a ISI/ICI-free scheme in AWGN
channel. On the other hand, as mentioned in Sec. 3, the wireless channel is doubly disper-
sive and therefore requires pulse shapes with good time frequency localization (TFL). A
prototype function with nearly compact support on the time-frequency plane will ensure
good ISI/ICI robustness but degrade the orthogonality, if the same time-frequency lattice
density ( 1

TF
) is required. The IOTA function, which is orthogonal and well localized,

actually comes from halving lattice density ( 1
TF

= 1
2τ02ν0

=
1

2
, also see equations (19) and

(31)). Therefore, a trade off between orthogonality and TFL must be sought according to
the channel realization so that maximum spectral density (or throughput) can be reached
at the targeted BER.

4.1 Time Frequency Localization

The time-frequency translated versions of the prototype function, as shown in equations
(2, 10, 15), form a lattice in the time-frequency plane. If the prototype function, which
is assumed to be centered around the origin, has nearly compact support over the time-
frequency plane, the transmitted signal composed by these basis functions will place a copy
of the prototype function on each lattice point in the time-frequency plane and therefore
illustrate from this intuitive image how the signal from different carriers and different
symbols get along with one other. The less power the prototype function spreads to
the neighboring lattice region, the better reconstruction of the transmitted signal can be
retrieved after demodulation.

Several functions, the instantaneous correlation function, the ambiguity function and
the interference function, are commonly used to demonstrate the TFL property and are
therefore discussed bellow.

4.1.1 Instantaneous Correlation Function

Two kinds of instantaneous correlation functions is usually used: the instantaneous cross-
correlation function and the instantaneous autocorrelation function. The instantaneous

10A system is realizable if and only if it is causal.
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cross-correlation function between synthesis prototype function g(t) and analysis proto-
type function q(t) is defined as

γg,q(τ, t) = g(t + τ/2)q∗(t − τ/2) (35)

and the instantaneous auto-correlation function is as follows

γg(τ, t) , γg,g(τ, t) = g(t + τ/2)g∗(t − τ/2) (36)

When g(t) is even, we get

γ∗
g(τ,−t) = g∗(−t + τ/2)g(−t − τ/2) = g∗(t − τ/2)g(t + τ/2) = γg(τ, t) (37)

which states that γg(τ, t) is even conjugate.

4.1.2 Ambiguity Function

Recall the definition of ambiguity function in (17),which is defined as the Fourier transform
of the instantaneous correlation function along the time axis t, the corresponding cross-
ambiguity function between g(t) and q(t) is

Ag,q(τ, ν) ,

∫

R

γg,q(τ, t)e
−j2πνtdt =

∫

R

g(t + τ/2)q∗(t − τ/2)e−j2πνtdt

= e−jπτν

∫

R

g(t + τ)q∗(t)e−j2πνtdt = e−jπτν < q(t)ej2πνt, g(t + τ) >

(38)

where the similar variable substitution is exploited as in (16). Similarly, the auto-
ambiguity function which is the same as in (17), can be regarded as a special case of
the cross-ambiguity function when g(t) = q(t)

Ag(τ, ν) ,

∫

R

γg(τ, t)e
−j2πνtdt = e−jπτν < g(t)ej2πνt, g(t + τ) > (39)

As long as the prototype function is normalized (i.e. unity energy), the maximum of the
auto-ambiguity function is

max
τ,ν

|Ag(τ, ν)| = Ag(0, 0) = 1

On the other hand, the maximum value of the cross-ambiguity function maxτ,ν |Ag,q(τ, ν)|
depends on the matching between g(t) and q(t) and hence is equal to or less than
unity. The ambiguity function can therefore be used as an indicator of the orthogo-
nality/similarity between the prototype function and its time and frequency translated
version (e.g. |Ag(τ, ν)| = 0 means orthogonal and |Ag(τ, ν)| = 1 means identical), or to
show to what an extent the synthesis basis is matched to the corresponding analysis basis
(the larger |Ag,q(τ, ν)| is, the better the demodulator works).

According to (16) and (18), also indicated in Fig. 3, only the basis functions that
belong to the same sub-lattice can remain after demodulation by the real inner product.
Take the channel time and frequency spread into account, the ambiguity function can
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be used to shown how this spread will affect the demodulation gain. Let’s only consider
the origin point in the TFL plane and its neighboring points in the same sub-lattice, i.e.
gm,n, m, n ∈ {−2, 0, 2}, with time spread τ and frequency spread ν added to channel
realization, the output of demodulator is

〈g(t), r′(t)〉
R

=

〈

g(t),
∑

m,n∈{−2,0,2}
hm,nam,ne

j π
2
(m+n)g(t − nτ0 + τ)ej2π(mν0−ν)t

〉

R

=
∑

m,n∈{−2,0,2}
hm,nam,n <

{

ej π
2
(m+n)

∫

R

g(t + τ − nτ0)g
∗(t)e−j2π(ν−mν0)tdt

}

=
∑

m,n∈{−2,0,2}
<

{
ej π

2
(m+n)ejπ(τ−nτ0)(ν−mν0)hm,nam,nAg(τ − nτ0, ν − mν0)

}

=
∑

m,n∈{−2,0,2}
<

{
ej π

2
(m+n)ejπ(τ−nτ0)(ν−mν0)

}
hm,nam,nAg(τ − nτ0, ν − mν0)

(40)

where the third equality comes from (39) and the last equality comes from the fact that
Ag(τ, ν) is real as for even prototype functions. Therefore, the maximum demodulation
gain is determined by the ambiguity function and affected by the channel time and fre-
quency dispersion. A three dimensional plot will be presented later to show this point
clearly.

Several important features of the ambiguity function need to be highlighted:

• It is a two dimensional (auto-)correlation function in the time-frequency plane.

• It is real valued in the case of an even prototype function, i.e. g(−t) = g(t).

• It illustrates the sensitivity to delay and frequency offset.

• It gives an intuitive demonstration of ICI/ISI robustness.

4.1.3 Interference Function

To obtain a more clear image of how much interference (power) has been induced to
other symbols on the time frequency lattice, a so called interference function has been
introduced

I(τ, ν) = 1 − |A(τ, ν)|2 (41)

where A(τ, ν) = Ag(τ, ν) in an OFDM/QAM system and A(τ, ν) = <[Ag(τ, ν)] in an
OFDM/OQAM system for the auto-ambiguity function case. In the case of cross-ambiguity
function, A(τ, ν) = Ag,q(τ, ν) has to be normalized so that I(τ, ν) = 0 when there is no
interference.
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4.2 Heisenberg Parameter ξ

Let x(t) be a function with Fourier transform X(f), and choose the Heisenberg parameter
[1, 11], which is derived from the Heisenberg Uncertainty Principle [9], to measure the
TFL property, which is given by

ξ =
1

4π∆t∆f
≤ 1 (42)

where ∆t is the mass moment of inertia of the prototype function in time and ∆f in
frequency, which shows how the energy (mass) of the prototype function spreads over
the time and frequency plane. The larger ∆t (∆f), the more spread there is concerning
the time (frequency) support of the prototype function. These two parameters can be
calculated via the following set of equations







∆t2 = 1
E

∫

R
(t − t̄)2|x(t)|2dt

∆f 2 = 1
E

∫

R
(f − f̄)2|X(f)|2df

t̄ = 1
E

∫

R
t|x(t)|2dt

f̄ = 1
E

∫

R
f |X(f)|2df

E =
∫

R
|x(t)|2dt =

∫

R
|X(f)|2df

(43)

where E is the energy of the prototype function, t̄ and f̄ are the center value (center of
gravity) of the time and frequency energy distribution and corresponding to the coordi-
nates of its lattice point in the time-frequency plane, i.e., for x(t) = gm,n(t), it is easy to
prove that t̄ = nτ0 and f̄ = mν0. Therefore, (t̄, f̄) indicates the center position in the
time-frequency plane of the prototype function and (∆t, ∆f) describes how large area it
occupies to accommodate most of its energy.

According to the Heisenberg uncertainty inequality, 0 ≤ ξ ≤ 1, where the upper
bound ξ = 1 is achieved by the Gaussian function and the lower band ξ = 0 is achieved
by the rectangular function whose ∆f is infinite. The larger ξ is, the better joint time-
frequency localization the prototype function has (or alternatively speaking, the less area
it occupies). Although the Gaussian function enjoys he minimum joint time-frequency
localization (highest TFL parameter), it is not orthogonal as stated before.

5 Numerical Results

Simulations regarding the orthogonality and TFL properties of different prototype func-
tions are carried out in Matlab. For each prototype function, its instantaneous correlation
function, ambiguity function, and the corresponding interference function are plotted as
three dimensional figures as well as two dimensional contour plots, which are shown in
the following. As the rectangular prototype function appears both in OFDM/QAM and
OFDM/OQAM systems, although the center and duration is not the same, its main prop-
erties regarding orthogonality and TFL are similar. Therefore we just demonstrate the
result of OFDM/QAM system, where the rectangular function is time shifted to ensure the
symmetry around origin for comparison with the prototype functions in OFDM/OQAM
system.
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5.1 OFDM/QAM and Cyclic Prefix

For OFDM/QAM with a rectangular prototype function, these simulation parameters are
set as bellow:

• Time and frequency shift: τ0 = 1, ν0 = 1

• Symbol duration: T0 = τ0 for no-CP and T0 = 1.25τ0 for CP case

• Observation window length: 12 time and frequency shifts, i.e., t ∈ [−6τ0, 6τ0] and
f ∈ [−6ν0, 6ν0]

• Samples per time and frequency shift: 32

• Cyclic prefix: No-CP and CP with Tg

T0

= 0.25
1.25

=
1

5

• Figures: axes normalized by τ0 and ν0 respectively

For OFDM/QAM without cyclic prefix, auto-correlation function (36), auto-ambiguity
function (39) are used to get these figures. For OFDM/QAM with cyclic prefix, (35) and
(38) are used instead. Plots for interference function are obtained via (41) with attention
paid to proper normalization for the cyclic prefix case.

Fig. 8 shows how the correlation function of rectangular prototype function looks like
and demonstrates the difference between OFDM/QAM systems with and without cyclic
prefix. The Sharp edge of the correlation function comes from the time limitation of the
rectangular function. Compared to no-CP case, cyclic prefix enlarges the coverage of the
correlation function and reduces the sensitivity to time spread. This “extra” coverage
can easily be found at the upper-right border and lower-left border of the contour plots
shown in Fig. 8(b).

Fig. 9 displays the ambiguity function which demonstrates how the mismatch in time
and frequency between the analysis basis and the corresponding synthesis basis will affect
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Figure 9: Ambiguity function of rectangular prototype.

the demodulation, or equivalently, how large the power leakage of the prototype function
is between neighboring lattice points after time and frequency dispersion being added by
the channel, where the role the cyclic prefix plays is clearly shown. In on-CP case shown
in Fig. 9(a), the demodulation gain will fall sharply even with a minor time or frequency
mismatch. After cyclic prefix is added, as shown in Fig. 9(b), the demodulation gain
will remain the same as long as the time mismatch is within the length of cyclic prefix
duration. This property is shown more clear by their contour plots.

In no-CP case shown by the contour plots in Fig. 10(a), as long as the time distance
between neighboring OFDM symbols larger than τ0 (i.e., larger than 1 in time axis nor-
malized by τ0), there is no interference between subsequent OFDM symbols. As there
is always power leakage between different sub-carriers in the same time interval, this
OFDM/QAM system has a very high sensitivity to frequency offset, which is well known.
This has not been intuitively shown until the ambiguity function is used to demonstrate
the TFL property. As the contour plots provide a clearer image of the quantity aspects,
it will be the main tool to display the comparison between different schemes.

The sensitivity of OFDM/QAM system to time and frequency spread and the effect
of cyclic prefix have been intuitively demonstrated by the interference function plotted
in Fig. 11 and Fig. 12. The width of the flat bottom of the interference function for
cyclic prefix corresponds to the length of the cyclic prefix added into the synthesis basis
functions.

5.2 Pulse Shaping OFDM/OQAM

Similar to OFDM/QAM system, the OFDM/OQAM with different prototype functions
has its simulation parameters set as following:

• Time and frequency shift: τ0 = ν0 = 1√
2

for simplicity

• Symbol duration: T0 = τ0
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Figure 11: Interference function of rectangular prototype.
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• Observation window length: 12 time and frequency shifts, i.e., t ∈ [−6τ0, 6τ0] and
f ∈ [−6ν0, 6ν0]

• Samples per time and frequency shift: 32

• Figures: axes normalized by τ0 and ν0 respectively

All the prototype functions mentioned in Sec. 3.2 are derived using these parameters.

5.2.1 Half Cosine Function

As half cosine prototype function and its dual form has the same orthogonality and TFL
property but has the time and frequency axes shifted, only the half cosine function in the
time domain, i.e. described in eq. (22), are treated here. It has a smaller power leakage
along the time axis than the frequency axis, as shown in Fig. 13. Its dual form will of
course have the opposite property as only the axes are interchanged.

5.2.2 IOTA function

The nearly isotropic property of the IOTA function is shown in Fig. 14. Compared with
rectangular and half cosine pulses, IOTA function has a larger and smoother top on the
mountain of ambiguity function (or equivalently bottom in the valley of the interference
function), and therefore has stronger time and frequency dispersion immunity. ∗ indicate
the position of the neighboring lattice points that belong to the same sub-lattice(cf. eq.
(19) and Fig. 3), where the ambiguity function has extremely low value (−170 dB), as
shown in Fig. 15. One thing to notice is that these lattice points with a distance of 2τ0 or
2ν0 from the origin ((0,±2) and (±2, 0)) will have larger power leakage than these points
whose distance is 2

√

τ 2
0 + ν2

0 (±2,±2). It is coincident with our intuition.
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Figure 13: Half cosine prototype (contour, step=0.2).
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Figure 14: IOTA prototype.



24 Jinfeng Du, Svante Signell

Delay τ

Fr
eq

ue
nc

y 
f

−40

−20

−40

−4
0

−40

−40

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

(a) Amplitude [dB] (b) Contour plot [dB]

Figure 15: Ambiguity function of IOTA prototype [dB], ∗ is −170 dB and × is 0 dB.
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Figure 16: Gaussian prototype with α = 1.

5.2.3 Gaussian Function

The Gaussian function is very well localized in time and frequency plane, as shown in
Fig. 16. It has a better localization than IOTA function but larger power leakage to
neighboring points due to the lack of orthogonality.

5.2.4 Extended Gaussian Function

Two examples of the EGF function are concerned here, α = 0.265 and α = 3.774, which
are the dual functions of each other, as shown in Fig. 17 and Fig. 18. With the IOTA
function in between, we get an impression how the EGF function will behave as α increases
from 0.265 to 3.774. When we have small α, the pulse tends to be more horizontally (along
time axis) stretched and with large α, it tends to be more vertically (along frequency axis)
stretched. As a result can we adjust the value of α to adopt most suitable pulse shapes,
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Figure 17: EGF prototype with α = 0.265.
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Figure 18: EGF prototype with α = 3.774.

as shown in Fig. 4, to the current channel realization.

5.3 Time Frequency Localization

Regarding equation (40), a three dimensional plot as well as a two dimensional contour
plot is presented by utilizing the IOTA prototype function. Here the data transmitted on
each basis function is ignored for simplicity. These pulses on lattice points with distance
2τ0 or 2ν0 have negative envelope due to the phase factor ej π

2
(m+n) which equals to −1

when either |m| or |n| equals to 2, but not both. 0 is achieved at the boundary of each
lattice grid and therefore no interference will be introduced by neighbors as long as the
normalized time or frequency dispersion is less than 2.
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Figure 19: Demodulation gain of OFDM/OQAM system.

5.4 Heisenberg Parameter ξ

To compare the localization property of different pulses and have a quantitive idea about
it, the Heisenberg parameter ξ for each pulse is calculated with two different set of para-
meters.

Parameters Rectangular* Half cosine IOTA Gauss EGF** (α = 3.774)
t, f ∈ [−6, 6] 0.3457 0.8949 0.9769 1.000 0.7010

t, f ∈ [−40, 40] 0.1016 0.8911 0.9769 1.000 0.6876

* For rectangular pulse, ∆f 2 =
∫

sin2(wf)df = ∞ and therefore ξ = 0 in theory.
** For EGF pulse, ξ(α) = ξ(1/α) and it will steadily increase to its maximum as α ap-
proaches 1 from either direction.
The Gauss pulse achieves the maximum of ξ and therefore has the best TFL property.
The IOTA pulse shows satisfied localization which is the maximum of ξ among these EGF
functions [11].

6 Conclusions

6.1 Conclusion

In this report, we provide a comparative study of state-of-the-art pulse shaping OFDM
techniques with orthonormal analysis and synthesis basis. Two main categories, OFDM/QAM
and OFDM/OQAM are intensively reviewed. Various prototype functions, such as rec-
tangular, half cosine, IOTA functions and EGF with diverse time frequency localization
(TFL) are discussed and TFL properties illustrated by ambiguity function and interfer-
ence function are provided by simulation results.

By adaptively exploiting different prototype functions with diverse TFL property, dy-
namic spectrum allocation can be achieved in a more natural way, since the transmitter
and receiver adapts dynamically to different channel conditions and interference environ-
ments so that higher reliability and spectral efficiency can be expected. Also simplified
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synchronization can be expected as less sensitivity to time and frequency offset. The
results of this research builds up a solid foundation and can be a good start for further
research targeting to revolutionize future wireless communication.

6.2 Further Work

The TFL property can be improved by giving up the orthogonality of the pulses. As
an orthogonal basis is not necessary for perfect reconstruction of the original signal, this
extra restriction will limit the field for searching for the optimal pulse shapes. By us-
ing bi-orthogonal basis instead of an orthogonal one, a so called Non-Orthogonal FDM
(NOFDM) [15] or Bi-orthogonal FDM (BFDM) [3, 16] is invented. Although the orthog-
onal basis functions are optimal in AWGN channels, in time and frequency dispersive
channels, the non-orthogonal basis functions, which should necessarily form an (incom-
plete) Riesz basis [15], turn out to be optimal for the reason that they tend to be more
robust against frequency-selective fading and having faster frequency domain decay.

Discarding the orthogonality restriction gives us new degrees of freedom: the synthesis
(transmit) pulses can be different from the analysis (receive) pulses, but bi-orthogonality
is kept. This allows design of much better pulse shapes. This new freedom, however, will
increase the sensitivity to AWGN, since we don’t have orthogonal basis functions any more
on the transmitter or the receiver sides. Such a trade off between AWGN behavior and
ISI/ICI performance always exists in NOFDM/BFDM systems and a general framework
which allows fine-tuning the balance between AWGN sensitivity and ISI/ICI robustness
is expected to adaptively adjust the pulse shapes according to the channel characteristics.

Another way to enhance the robustness of multicarrier modulation systems against
ISI/ICI is to resort to general lattice grids (called Lattice OFDM (LOFDM) in accordance
with [17]). With a well designed lattice, say the hexagonal lattice, one can pack the
symbols more dense with a given interference that is determined by the distance between
adjacent time-frequency points, which is initially fixed by the symbol period and the
carrier frequency separation when rectangular grids are used.

Applications of the optimal pulse shaping FDM in the context of MIMO systems,
which is of much importance and special interest, is still a very new research area with
almost no published contributions.
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Appendix

A Proof of Orthogonalization Operator Oa

Apply the Fourier transform operator F to (17) and set the time parameter τ = 0, we get

Ay(0, ν) = F {γy(0, t)} = F
{
|y(t)|2

}
. (44)

Construct an infinite summation regarding y(t) = Oax(t) that is given by (27), we get

a
∞∑

m=−∞
γy(0, t − ma) = a

∞∑

m=−∞
|y(t − ma)|2

=

∞∑

m=−∞

|x(t − ma)|2
√

∑∞
k=−∞ |x(t − ka − ma)|2

∑∞
l=−∞ |x(t − la − ma)|2

(45)

where

∞∑

k=−∞
|x(t − ka − ma)|2 =

∞∑

l=−∞
|x(t − la − ma)|2 =

∞∑

p=−∞
|x(t − pa)|2 (46)

whose value is only depending on the function x, time instance t and the positive factor
a, and therefore has nothing to do with the summation index (no matter whether m, or
k, l, etc. is used). This simplifies (45) and the summation now becomes

a
∞∑

m=−∞
γy(0, t − ma) =

∞∑

m=−∞

|x(t − ma)|2
∑∞

p=−∞ |x(t − pa)|2 =

∑∞
m=−∞ |x(t − ma)|2

∑∞
p=−∞ |x(t − pa)|2 = 1 (47)

By introducing the Dirac’s delta function δ(t) and the convolution operator ∗, (47) can
be rewritten as

a
∞∑

m=−∞
γy(0, t − ma) = a

∞∑

m=−∞
δ(t − ma) ∗ γy(0, t) = 1 (48)

Apply the Fourier transform on both sides and notice that [10]

F
{ ∞∑

m=−∞
δ(t − ma)

}

=
1

a

∞∑

m=−∞
δ(ν − m

a
), a > 0

F {1} = δ(ν)

F {x(t) ∗ y(t)} = X(ν)Y (ν)

(49)

we can get

∞∑

m=−∞
δ(ν − m

a
)Ay(0, ν) = δ(ν) (50)

which gives out straightforward Ay(0, 0) = 1 and Ay(0,
m
a
) = 0 ∀m 6= 0. Proved.
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B EGF Coefficients Calculation

According to [11], the coefficients dk,α,ν0
can be expressed as

dk,α,ν0
=

∞∑

l=0

ak,le
−απl

2ν2
0 , 0 ≤ k ≤ ∞

≈
jl∑

j=0

bk,je
− απ

2ν2
0

(2j+k)
, 0 ≤ k ≤ K

(51)

where jl = b(K − k)/2c and K is a positive integer which insure an accuracy of e
−παK

2ν2
0 for

the approximation due to truncation of the infinity summation.
A list of coefficients bk,j corresponding to K = 14, which leads to an accuracy of 10−19

for α = 1, is present in the following table.
bj,k j ( 0 to 7 )

k
0
to
14

1 3
4

105
64

675
256

76233
16384

457107
65536

12097169
1048576

13774755
4194304

−1 −15
8

−219
64

−6055
1024

−161925
16384

−2067909
131072

−26060847
1048576

3
4

19
16

1545
512

9765
2048

596277
65536

3679941
262144

−105421227
16777216

−5
8

−123
128

−2289
1024

−34871
8192

−969375
131072

−51182445
4194304

35
64

213
256

7797
4096

56163
16384

13861065
2097152

−139896345
8388608

− 63
128

− 763
1024

−13875
8192

−790815
262144

−23600537
4194304

231
512

1395
2048

202281
131072

1434705
524288

−142044345
16777216

− 429
1024

−20691
32768

−374325
262144

−5297445
2097152

6435
16384

38753
65536

1400487
1048576

−1458219
4194304

−12155
32768

−146289
262144

−2641197
2097152

46189
131072

277797
524288

20050485
16777216

− 88179
262144

−2120495
4194304

676039
2097152

4063017
8388608

−1300075
4194304

5014575
16777216

As for coefficients dk,1/α,τ0, the dual form of dk,α,ν0
, it is easy to calculate them just by

replacing the corresponding items and following the above procedure.
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