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Abstract

Networked embedded control systems are present almost everywhere. A recent trend
is to introduce radio communication in these systems to increase mobility and flex-
ibility. Network nodes, such as the sensors, are often simple devices with limited
computing and transmission power and low storage capacity, so an important prob-
lem concerns how to optimize the use of resources to provide sustained overall sys-
tem performance. The approach to this problem taken in the thesis is to analyze
and design the communication and control application layers in an integrated man-
ner. We focus in particular on cross-layer design techniques for closed-loop control
over non-ideal communication channels, motivated by future control systems with
very low-rate and highly quantized sensor communication over noisy links. Several
fundamental problems in the design of source–channel coding and optimal control
for these systems are discussed.

The thesis consists of three parts. The first and main part is devoted to the joint
design of the coding and control for linear plants, whose state feedback is trans-
mitted over a finite-rate noisy channel. The system performance is measured by a
finite-horizon linear quadratic cost. We discuss equivalence and separation proper-
ties of the system, and conclude that although certainty equivalence does not hold
in general it can still be utilized, under certain conditions, to simplify the overall
design by separating the estimation and the control problems. An iterative opti-
mization algorithm for training the encoder–controller pairs, taking channel errors
into account in the quantizer design, is proposed. Monte Carlo simulations demon-
strate promising improvements in performance compared to traditional approaches.

In the second part of the thesis, we study the rate allocation problem for state
feedback control of a linear plant over a noisy channel. Optimizing a time-varying
communication rate, subject to a maximum average-rate constraint, can be viewed
as a method to overcome the limited bandwidth and energy resources and to achieve
better overall performance. The basic idea is to allow the sensor and the controller
to communicate with a higher data rate when it is required. One general obstacle of
optimal rate allocation is that it often leads to a non-convex and non-linear problem.
We deal with this challenge by using high-rate theory and Lagrange duality. It is
shown that the proposed method gives a good performance compared to some other
rate allocation schemes.

In the third part, encoder–controller design for Gaussian channels is addressed.
Optimizing for the Gaussian channel increases the controller complexity substan-
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iv Abstract

tially because the channel output alphabet is now infinite. We show that an efficient
controller can be implemented using Hadamard techniques. Thereafter, we propose
a practical controller that makes use of both soft and hard channel outputs.

Keywords: sensor networks, linear quadratic cost, stochastic control, joint
source–channel coding, joint coding and control, rate allocation, soft source de-
coding.
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Chapter 1

Introduction

1.1 Background

Networked embedded control systems are present almost everywhere. Appli-
cation areas include industrial automation, aerospace and medical systems,
as well as consumer electronics such as home electronics and mobile phones.

The systems are often connected through either wired (e.g., wired local area net-
works) or wireless (e.g., bluetooth) communication technologies. A consequence of
the rapidly growing number of connected components (nodes) is the increasing de-
mand for efficient sharing of resources. Integrating technological advancements in
sensing, communication, computation and control has brought up many engineer-
ing challenges, such as finding efficient ways of processing available information at
each distributed node, as well as exchanging useful information among the nodes.

Traditional communication theory has been mainly focused on optimal strate-
gies for transmitting information, while traditional control theory provides method-
ologies for designing controllers to interact with the environment. Until recently,
the research work in these two disciplines has largely been carried out separately.
A traditional control system is based on an underlying assumption of perfect com-
munication links between the plant and the controller, e.g., [Aok67, Ber76]. The
controller is assumed to have perfect access to the sensor observations, and the
decision of the controller is available directly at the input of the actuator. Under
these ideal assumptions, there is no limitation on how much data it is possible to
transmit at each time instant, and there are neither delays nor transmission errors
in the links between the plant and the controller. Advanced mathematical tools are
developed to govern the interplay among the plant, sensor, and controller under
these ideal assumptions.

A recent trend is to perform control using wireless sensor networks, which takes
advantage of the mobility and the flexibility offered by wireless solutions, e.g.,
[LG04, PKA04, SLT04, DLGH05, WPJ+07]. In such networks, the sensor obser-
vations are typically quantized and transmitted over noisy links. Challenges, such
as data delays and data drops, are encountered. Concerning control over non-ideal
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2 Introduction

communication links, relatively little work has been performed so far. To develop
methods and tools for the analysis and synthesis of feedback control over imperfect
communication links is therefore of great importance.

The constraints imposed by the imperfect communication links are complex.
As discussed above, quantization and transmission errors are examples of crucial
obstacles. The quantization deteriorates the signals transmitted between the plant
and the controller. This can potentially degrade the overall system performance
substantially. Although quantization in feedback control systems was studied since
the dawn of control engineering, the results have mainly been restricted to treating
quantization errors as additive white noise. Moreover, in almost all applications,
simple quantizers, such as uniform quantizers, are employed because of practical
reasons. However, for applications with extremely low data rate requirements and
high communication costs, it is natural to study closer-to-optimal solutions.

Transmission errors are unavoidable in communications over unreliable media,
for example in wireless networks. Therefore, robustness to transmission errors is one
of the fundamental requirements of all modern communication systems. Concerning
control applications, relatively little has been done to take into account imperfect
communications in the overall system design. However, due to the delay sensitivity,
it is not suitable to use long block codes to reduce the uncertainties, as commonly
done in traditional communication systems. When facing the constraint on the
codeword length, a joint design which combines the source compression and the
channel protection is expected to achieve satisfactory performance. One of the main
objectives of this thesis is to study the joint design of coding and control for an
efficient use of the limited communication resources.

1.2 Motivating Examples

Before presenting the specific control problem studied in this thesis, let us first con-
sider two examples of sensor networks in control applications: (i) motion control of
non-contact objects in Example 1.2.1, and (ii) environmental control of greenhouses
in Example 1.2.2.

Example 1.2.1. Motion Control of Non-Contact Objectives
In industrial production, there are situations when fragile materials need to be

transported by using non-contact methods. Figure 1.1 illustrates an example, in-
spired by [BBCea00], where a planar object is transported by a number of air jets.
To eliminate the potential disturbances, such as external forces, the air jets can
provide alternative air beams of varied angles and forces. The position of the object
is monitored by spatially distributed sensor nodes. As long as the system is working
under the normal condition, that is to say, there is no disturbance detected, the same
set of air beams are applied on the object. On the other hand, once a disturbance is
detected, a new set of air beams will be selected, based on the sensor measurements.
The control objective is often to achieve a satisfactory performance on average, over
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Figure 1.1: An example of a sensor network in motion control of a non-contact
object in industrial manufacturing.

a finite time horizon. The questions, such as how to deploy the sensor network and
how to utilize the sensor measurements, will be part of the controller design.

Example 1.2.2. Environmental Control of Greenhouses
The following example, inspired by [Jon01], illustrates the future use of control

over sensor networks in agricultural applications. The new generation of green-
houses will support automatic environmental regulations. Figure 1.2 depicts such a
greenhouse, which exploits a feedback control system to maintain a perfect growing
environment for plants. More precisely, the “perfect” environment is specified by a
number of primary variables, such as temperature, humidity, light, CO2 levels etc.
The control task is to keep the primary variables within certain ranges provided by
the grower. Typically, these values are altered continuously by complicated biological
and chemical processes, both inside and outside the greenhouse. As an example, the
solar radiation directly and indirectly affects all the primary variables. The vari-
ables are monitored by the sensor nodes deployed over a large area. As soon as any
value exceeds the predefined limit, the actuators, such as heaters, fans, illumination
and irrigation equipments, will act automatically to regulate the environment into
favorable conditions.

Above, we have given two specific examples of using sensor networks in con-
trol applications. To have a general picture of the problems particularly studied
in this thesis, let us consider the wireless networked control system depicted in
Figure 1.3. The system consists of a number of sensor nodes that are connected
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Figure 1.2: An example of a sensor network in environmental control of greenhouse
vegetable production.

through a shared wireless medium to a central control node. The sensors are spa-
tially distributed over a large area and they measure the state of a control object,
which is affected by local disturbances. The control commands for keeping the states
around the equilibrium working points are executed through either a common ac-
tuator as shown in Figure 1.3, or distributed actuators. The described system is
quite representative for many emerging applications, with control using wireless sen-
sor networks, as can be found in industrial automation, environmental monitoring,
surveillance etc.

An important application of the work in this thesis is that wireless networked
control systems in future can operate at inaccessible places. They could be deployed
in remote locations, such as underwater, outer space; or deployed in extremely
harsh environments, such as close to explosive or radioactive sources, or imbedded
in the walls of skyscrapers, or even imbedded in human bodies. The monitoring and
control tasks are performed by a large set of sensor nodes, even tens of thousands
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Controller

Actuator

sensorsensor

sensor

sensorsensor

Figure 1.3: A control system utilizes data from wireless sensor network. The results
of this thesis can be applied to optimize the use of the wireless medium.

[ZL08], over a widely spread area (in proportion to the sensor size). After the
deployment, it may not be possible to maintain or recharge the network and its
nodes manually for reasons such as the large number of nodes or the physical
location of the network. A major challenge is to design a sustainable network which
is highly energy efficient, since the life time of such a network is determined by
battery-powered devices [GW02]. In many applications, the sensor nodes will be
simple, inexpensive and small, which means that the computing power and the
storage capacity are highly limited. To utilize the limited communication resources
efficiently, it is especially interesting to study the case where the transmission from
each sensor is limited to to a few possible symbols and each symbol consists of a few
bits. Such simple transmission schemes are motivated in particular from the point
of view of energy efficiency and delay requirements. Constraining the resolution per
transmission allows for low-energy transmission, and avoiding coding over multiple
channel uses results in low latency. This requires new types of protocols which work
directly on the bit-level and perform joint low-delay coding (compression and/or
quantization and error control) and control.

Motivated by the above-mentioned challenges this thesis studies serval funda-
mental problems in the area of control with highly limited information over im-
perfect communication channels. In particular, a stochastic control problem is for-
mulated where the sensor measurements are conveyed to the controller through a



6 Introduction

low-rate noisy channel. The optimization of the joint encoder–controller and the
optimization of rate allocation over time are the two main topics studied in this
thesis. Before proceeding, in the remaining part of this chapter we give a short
introduction to related research topics in stochastic control and coding over noisy
channels.

1.3 Stochastic Control

Stochastic control theory deals with the analysis and synthesis of controllers for
dynamic systems subject to stochastic disturbances. Solutions to stochastic con-
trol problems rely heavily on dynamic programming. A brief introduction to the
concept and techniques of dynamic programming is given in Section 1.3.1. Besides
dynamic programming, we will see later that estimation theory also plays an impor-
tant role in stochastic control. We will then in Section 1.3.2 present the certainty
equivalence property, which describes the separation of state estimation and control.
There exists a rich body of introductory literature in stochastic control theory, e.g.,
[Aok67, Åst70, Ath71, Ber95, BS96, Söd02].

1.3.1 Dynamic Programming

It is well-known that a decision which is optimal for the current time instant in most
cases is not necessarily the best one for the future evolution. Dynamic programming
captures this fact and provides decisions based on a combined cost of the current
state and the expected future states.

A general stochastic control problem is formulated below. The state space model
of the plant is given by

xt+1 = Ft(xt, ut, vt),

yt = Gt(xt, et),

where Ft is the system function and Gt is the measurement function at time t.
The variables xt, ut, yt represent the state, the control and the measurement,
respectively. Finally, vt and et denote the process noise and the measurement noise.
The subscript t is a time index.

The design goal is to find the optimal control sequence, which minimizes an
objective function E {Jtot}, with Jtot given by

Jtot =
T∑

t=0

Jt(xt, yt, ut).

Here, T denotes a finite time horizon and Jt denotes a function measuring the
instantaneous system performance. Finally, E {·} is the expectation operator.

Let us first review some results [Åst70, Söd02] that are useful for the studied
optimization problem. For brevity, the time index t will be ignored for the moment.
When having the complete state information, i.e., both x and y are available, the
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following result has been proved: assuming the function J(x, y, u) has a unique min-
imum as a function of the control input, at u⋆(x, y) (throughout the thesis starred
entities, ⋆, denote optima), the minimization and the expectation are commutative,
i.e.,

min
u(x,y)

E {J(x, y, u)} = E {J(x, y, u⋆(x, y))} = E
{

min
u
J(x, y, u)

}

.

On the other hand, when only y is available, i.e., the incomplete state information
scenario, one can show that

min
u(y)

E {J(x, y, u)} = E {J(x, y, u⋆(y))} = Ey

{

min
u

E {J(x, y, u)| y}
}

,

where E {J(x, y, u)| y} is assumed having a unique minimum at u⋆(y). Obviously,
the complete state information scenario can be considered as a special case of the
incomplete state information scenario.

Dynamic programming is based on the principle of optimality. The intuitive
idea is that a truncation of the optimal control sequence, {u⋆t , . . . , u⋆T }, is also the
optimal policy for the truncated problem whose cost is a summation from time t to
T . Let the boldface notation xts describe a sequence, i.e., xts={xs, . . . , xt}, s, t∈Z+,
s≤ t, with Z

+ denoting the set of non-negative integers. Based on the principle of
optimality, the optimal ut is the one that minimizes a sum of the future costs:

u⋆t = arg min
ut

E

{
T∑

s=t

Js(xs, ys, us)
∣
∣
∣yt0

}

,

where yt0 represents all past measurements. Introduce the optimal “cost-to-go” func-
tion at time t, such as

γ⋆t , min
uT
t

E

{
T∑

s=t

Js(xs, ys, us)
∣
∣
∣yt0

}

,

which is associated to the optimal control sequence {u⋆t , . . . , u⋆T}. The optimal con-
trol function u⋆t at time t can then be derived by solving

γ⋆t = min
ut

E
{
Jt(xt, yt, ut) + γ⋆t+1

∣
∣yt0
}
.

1.3.2 Certainty Equivalence

A certainty equivalence (CE) controller [The57, BST74, TBS75, WW81] is obtained
by replacing the full state observation xt in the optimal deterministic solution,
where process noise is absent and the perfect state observations are available, with
a state estimate, more specifically,

uOpDt = gdett (xt), (1.1)

uCEt = gdett (x̂t), (1.2)
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where gdett (·) denotes the optimal deterministic solution and

x̂t , E
{
xt|yt0,ut−1

0

}
,

is the conditional mean estimate based on all past measurements and control inputs.
In the case that ut is completely determined by yt0, we also write x̂t= E {xt|yt0}.
The equation (1.2) exposes a clear separation between the estimation and the con-
trol, since the estimate x̂t is computed separately and then applied to derive the
control input.

Sometimes, a CE controller is also the optimal control policy, which is often
termed certainty equivalence property. However, a CE controller is in general only
a suboptimum solution, with a few exceptions. The most well-known exception is
the linear quadratic Gaussian (LQG) control problem [Aok67, Ath71, Ber76], a
classical example with a linear plant, a quadratic cost, and Gaussian distributed
uncertainties, i.e., initial-state, process noise, and measurement noise. Furthermore,
a so-called classical information pattern is required, which means that all past
measurements are known to the controller. For this example, the separation in (1.2)
applies and the optimal control is a linear function of the conditional mean estimate,

u⋆t = ℓtE
{
xt|yt0,ut−1

0

}
= ℓtx̂t,

where the linear feedback control law ℓt is specified by the system parameters. Some
applications of the LQG controller can be found in e.g., [KL99, PBC+07, Loo09].

Finally, we introduce the separation property, by which x̂t is a sufficient statistic
[Aok67] to derive an optimal control, such as

u⋆t = gsept (x̂t).

Separation property is a weak notion of the CE property, since the optimal control
gsept (·) is not necessary the optimal deterministic solution gdett (·).

1.4 Elements of Source and Channel Coding

Recall the example in Figure 1.3. The signal path from a sensor to the controller
can be modeled as a point-to-point communication link. In Figure 1.4, a block
diagram of the elementary building blocks in a traditional communication system
is given, where the source coding and channel coding units are presented briefly in
Section 1.4.1 and Section 1.4.2.

1.4.1 Source Coding

Source coding deals with the compression of source data by removing the redun-
dancy in the data sequence. Based on whether or not the original data sequence
can be reconstructed, source coding techniques are divided into two categories. The
first, referred to as lossless coding, commonly associated with discrete sources, re-
quires the data processing to be reversible. For example, consider a discrete random
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Figure 1.4: The functional diagram of a digital communication system.

variable x with alphabet X . The entropy of x, which is a measure of uncertainty,
is defined as

H(x) = −
∑

X

P(x) log2 P(x),

with P(x) denoting the probability mass function. By using base 2 logarithm, the
entropy H(x) is measured in bits. For a discrete stationary random process {xn},
xn∈X , the average length of a uniquely decodable code is bounded by the entropy
rate [CT91] of the source, which is defined by

H∞ = lim
m→∞

1
m
H(x1, x2, . . . , xm),

when the limit exists; and the joint entropy H(x1, x2, . . . , xm) is defined by

H(x1, . . . , xm) = −
∑

x1∈X

· · ·
∑

xm∈X

P(x1, . . . , xm) logP(x1, . . . , xm),

with P(x1, . . . , xm) denoting a joint distribution.
In lossy coding, commonly associated with analog sources, the reversibility is

not required. Assume now the source {xn}, xn∈R, is a stochastic process of analog
data. A block source encoder maps a sequence of source sample, xm1 ∈ R

m, into
an integer index i∈L= {0, . . . , 2R − 1}, usually in its binary representation, with
R denoting the rate. In order to discuss the quality of a source code, a distortion
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x i d

f D

Encoder Decoder

Figure 1.5: A source coding diagram, where x is the random source symbol, i is the
integer index, and d is an estimate of x.

between the source sequence xm1 and the reconstructed sequence dm1 , J(xm1 ,d
m
1 ),

should be specified. The distortion function J varies from application to application.
In general, the main features of a proper distortion function are non-negativity,
physical meaningfulness and ease of calculation. The conflicting relation between a
given distortion and a minimum rate is stated in a rate distortion function, see e.g.,
[Gal68, CT91, Kle04], which is one of the fundamentals in lossy source coding.

Lossy source coding and quantization are two closely related terms. Quantization
describes a process of approximating a large set of values into a smaller set of
discrete symbols. Scalar quantizers operate on scalar data (m = 1), and vector
quantizers operate on multidimensional vectors (m > 1). Figure 1.5 depicts the
source coding over an error-free channel. Here, x is a scalar analog source sample.
The encoder function f(·) performs the mapping of a source sample to an integer
index: i = f(x). The integer set L = {0, 1, . . . , 2R−1}, with R denoting the rate,
contains all possible indices. (Throughout the thesis the transmitted and received
indices share the same integer set L, if nothing else is stated.) The encoding cell
S(k), for the index value k, contains all source symbols assigned the index value k:

S(k) , {x : f(x) = k} , k ∈ L,

i.e., x ∈ S(k) ⇔ i= k. The task of a decoding function D(·) is to reconstruct an
estimate d of the source symbol x, based on the index i, i.e., d=D(i). We define
the reconstruction d(k), which is associated with index value i = k through

i = k ⇒ d = D(k) = d(k).

The set of all reconstructions is termed a codebook.
A source-optimized quantizer provides a set of reconstructions and their cor-

responding encoding cells based on the statistics of the source. The optimality is
typically measured by minimizing a distortion J (or a cost), e.g., the mean squared
error (MSE) distortion for a scalar source x with the pdf p(x):

J(x, d) =
2R−1∑

k=0

∫

S(k)

(x− d(k))2p(x)dx.



1.4. Elements of Source and Channel Coding 11

1.4.2 Channel Coding

When quantized symbols are transmitted over a noisy channel, transmission errors
are unavoidable. Channel coding deals with protecting information bits against
channel errors by carefully adding redundant bits. Channel capacity is an upper
bound of the achievable rate above which error-free transmission is not possible.
For example, consider a discrete memoryless channel which can be described by a
conditional probability function P(j| i), where i ∈ LI and j ∈ LJ are the channel
input and output, respectively. The channel capacity for this class of channels is

C = max
P(i)
I(i; j)

= max
P(i)







∑

i∈LI

∑

j∈LJ

P(j| i)P(i) log
P(j| i)

∑

i∈LI

P(j| i)P(i)







,

where I(i; j) denotes the mutual information between the input i and the output
j. Intuitively, mutual information describes the information about i shared by j.
The references [Wic95, MS98, RU02] provide useful introductions to the subject of
channel coding.

1.4.3 Source–Channel Separation Theorem

The source–channel separation theorem states that under certain conditions com-
bining separately designed source and channel codes still achieve the optimal per-
formance for transmission over noisy channels (e.g., [Sha48, Sha59, CT91]). For
lossless coding, it particularly states that there exists a source–channel code which
can be used to transmit a stationary and ergodic source with arbitrary low proba-
bility of error if the entropy rate is lower than the channel capacity. Conversely, the
source can not be transmitted reliably, i.e., the probability of error is bounded away
from zero, if the source entropy rate exceeds the channel capacity. First, because
the source satisfies the asymptotic equipartition property [CT91], it is possible to
reconstruct the source symbol with arbitrary low probability of error when it is
compressed to a rate arbitrarily close to the entropy rate (per source symbol).
Thereafter, by using channel codes of very long block lengths, the probability of
error in the transmission approaches to zero, since it is most likely that the chan-
nel output is jointly typical [CT91] with the channel input. We see that when the
separation theorem applies, reliable transmission is possible even though the source
code has not taken into account the channel statistics, and the channel code is
designed without the consideration of the source statistics. More results for a wide
range of classes of sources and channels can be found in e.g., [CT91, VV95].

There are obvious advantages to separate the source coding and channel cod-
ing problems. The separation theorem has laid ground for many practical designs.
However, it is worth noting that the source–channel coding theorem relies on the
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assumption of infinitely long block codes. For applications with strict delay con-
straints, a joint design of source–channel codes appears to outperform a separate
design in many cases. The control problem formulated in this thesis is such an
example.

The remaining part of this section is devoted to two specific channel coding
related topics: (i) non-redundant channel coding in Section 1.4.4, and (ii) channel
optimized quantization in Section 1.4.5.

1.4.4 Non-redundant Channel Coding

The main objective of channel coding is to combat channel errors by means of
adding redundant bits. Apparently, the more properly added redundant bits, the
more reliable the transmission will be. Non-redundant coding is the special case with
no extra bits added, where the objective is to label the codewords carefully, referred
to as the index assignment (IA). The index assignment deals with the combinatorial
optimization problem of assigning non-redundant codewords to integer indices. In
Figure 1.6 we illustrate the signal path from the input of the source encoder to the
output of the channel decoder, where IA is used. A binary symmetric channel is
considered in the example, where b(i) and b(j) denote the binary transmitted and
received codewords, associated with the transmitted and received integer indices,
i.e., i and j. Finally, d(k) is the real-valued reconstruction associated with the index
value k. Index assignment has been shown to be important for transmission over
noisy channels. It is well recognized that a carelessly designed IA will reduce the
system performance seriously. The varied ability to combat the channel errors is
attributed to the different conditional transition probabilities among the binary
codewords. More results on this topic can be found in e.g., [RS76, ZG90, Kna93,
SH94, KA96].

Below, we discussed one special method, the so-called simulated annealing (SA),
which is often used in practice to optimize IA. Index assignment is a combinato-
rial optimization problem, which belongs to the family of non-convex optimization
problems. An exhaustive search for a global optimum is often exceedingly com-
putationally expensive. A fairly good local optimum can, however, be approached
with lower complexity by using an optimization algorithm termed simulated an-
nealing. Simulated annealing, originated in metallurgy, is a controlled heating and
cooling technique. It is used to freeze the material into a minimum energy struc-
ture that the defects in the material can be reduced. By observing the similarities
between this metallurgic process and the optimization problem with multiple local
optima, [KGV83] has developed an efficient algorithm to solve non-convex optimiza-
tion problems. Details about the simulated annealing used in the index assignment
problems can be read in e.g., [EHSW87, SH87, Far90]. Here we give a brief de-
scription of the simulated annealing procedure by using a binary example. Let b(k)
be the binary representation of the integer value k, e.g., b(k) is the natural binary
code. We define a state Π as a permutation vector that specifies the mapping from
the index l (as well as the reconstruction d(l)) to the binary codeword b(k) through
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Figure 1.6: A diagram of data transmission over a binary symmetric channel. As an
example, the index i= 0 is mapped to the binary codeword 01, and the codeword
11 is received due to the error imposed by the channel. The decoded index is j=2.

k=Π(l). The goal of the optimization is to find the best state Π⋆ which minimizes
a certain objective function. In the beginning of the process, an initial-state and
an initial temperature are selected. At each iteration a new state is obtained by
randomly changing two entries in the previous state. The new state replaces the
previous state if a lower cost is obtained; otherwise, the replacement takes place
with a probability determined by the temperature, which decreases along with the
rounds of the iteration. At a high temperature, the probability to accept a new IA is
high, while when the temperature decreases, it is more and more unlikely to accept
a new IA. The iteration terminates if one of the following conditions is fulfilled:

1. The cost drop exceeds a predefined number.
2. The temperature is below certain predefined freezing temperature.
3. There are too many unsuccessful trials.

The quality of the results is of course closely related to the number of iterations.

1.4.5 Channel Optimized Scalar Quantization

In traditional source–channel separate design, the source code does not take into
account the channel properties. Near-optimal performance can still be achieved if
the codeword length goes to infinity. On the other hand, for short codewords, it
is well recognized that a quantizer design should take the channel properties into
consideration [FV87, Far90, FV91, Sko97, Lin98]. When the channel P(j| i) and
the source pdf p(x) are perfectly known, a design method referred to as channel
optimized quantization (COQ) [FV87, Far90, FV91, Sko97, Lin98] can be used. The
terminology “quantizer” is used here since the joint source–channel coder performs a
mapping from an infinite set of continuous values to a finite set of discrete symbols.
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Figure 1.7: Quantization over a noisy channel with a finite number of possible
outputs, where x and d are the source symbol and its reconstruction, and i and j
are the transmitted and received indices.

In Figure 1.7 quantization over a noisy channel is depicted. The encoder function
f(·) maps the source sample x to an integer index i∈L= {0, . . . , 2R − 1}, with R
denoting the transmission rate. The encoding cell associated with the index value
k is defined as S(k) , {x : f(x) = k}. Comparing with Figure 1.5, the encoded
index i is now fed into a channel described by the transition probability function
P(j| i), with j∈L denoting the received index. The channel output j is then used
by the decoder to produce the estimate d, j= l⇒ d= d(l), where d(l) denotes the
reconstruction associated with the index value l.

In short, a channel optimized quantization should find the optimal encoding
cells and the reconstructions that together minimize a certain distortion function,
e.g., the MSE distortion below,

E
{

(x− d)2
}

=
2R−1∑

k=0

∫

S(k)

p(x)





2R−1∑

l=0

P(j = l| i = k)(x− d(l))2



dx.

Unfortunately this type of quantizer is difficult to design in practice. Up to now, the
solution is mostly obtained by using a method similar to the so-called Lloyd–Max
algorithm, e.g., [Kie82, GG92]. The basic idea is to alternate between optimizing
the encoder and decoder: to find the optimal decoder mapping for the fixed encoder
mapping, and then to find the optimal encoder mapping for the fixed decoder map-
ping, back and forth. This iterative method can usually provide a locally optimal
solution. As an example, we show the necessary conditions of a solution to the
above-mentioned minimum mean squared error (MMSE) quantizer (e.g., [GG92]).
For a fixed encoder, the best reconstruction d⋆(l) in terms of MMSE is

d⋆(l) = E {x| j = l} =

2R−1∑

k=0

P(j = l| i = k)
∫

S(k)

xp(x)dx

2R−1∑

k=0

P(j = l| i = k)
∫

S(k)

p(x)dx

.
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Figure 1.8: Quantization over a noisy channel with an infinite number of possible
outputs. The source symbol and its reconstruction are x and d. The channel input
and the real-valued output are i and r.

Furthermore, the optimal encoding cells for fixed reconstructions are

S⋆(l) =

{

x :
2R−1∑

k=0

P(j = k| i = l)(x− d(k))2

≤
2R−1∑

k=0

P(j = k| i = m)(x− d(k))2, ∀m ∈ L
}

, l ∈ L.

For further detail of the design of scalar and vector quantizers for noisy channels,
the interested reader is referred to [FM84, FV87, Far90, FV91, GG92, Sko97].

1.4.6 Hadamard-Based Soft Decoding

Hadamard-based soft decoding techniques were developed for channels whose out-
put r ∈ R

R, with R denoting the transmission rate, is a real-valued vector. The
Hadamard transform has been shown to be very useful in the implementation of
estimator-based decoders. Here, a brief review of some useful results on Hadamard-
based soft decoding is provided. For further detail on this topic the reader is referred
to e.g., [KA96, Sko99a, Sko99b].

A Hadamard matrix, Hn, is a 2n × 2n square matrix with binary elements of
{−1, 1}, defined as

Hn = H1 ⊗Hn−1, Hn =

[

1 1

1 −1

]

,

where ⊗ denotes the Kronecker product. For brevity, the suffix n, used to specify
the matrix dimension, is dropped in the subsequent analysis. The lth column of
the Hadamard matrix H , denoted by h(l), is related to the integer value l and its
natural binary representation, b(l)=[ b[1](l) b[2](l) . . . b[R](l) ], as

h(l) =

[

1

b[R](l)

]

⊗
[

1

b[R−1](l)

]

⊗ · · · ⊗
[

1

b[1](l)

]

.

Here, b[k](l), k∈{1, 2, . . . , R} denotes the kth bit of the binary codeword b(l).
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Consider a communication system in Figure 1.8 where f(·) and D(·) denote the
encoding and decoding functions, respectively. A source sample x is transmitted to
the receiver side through a noisy channel, described by a conditional density func-
tion p(r|i), where i∈LI and r∈RR are the channel input and output, respectively.
Note that the channel input alphabet is in this case different from the channel
output alphabet. It is well-known that the minimum mean squared error decoder
based on the received value r, is the conditional mean estimate,

D(r) = E {x| r} =
∑

l

P( i = l| r)E {x| i = l} .

Here, the decoder D(r), in terms of the Hadamard representation, can be expressed
as a product of two matrices, as

D(r) = T̄ ĥ(r). (1.3)

First, the matrix T̄ is obtained by solving the following matrix equation

[

E {x| i=0} E {x| i=1} . . . E {x| i=2n − 1}
]

= T̄H,

where H is the Hadamard matrix, and E {x| i= l}, l∈{0, . . . , 2n − 1} is the condi-
tional centroid given the channel input i. Second, the vector ĥ(r) can be computed
according to

ĥ(r) =
Rhh · p̂(r)
m′h · p̂(r)

, (1.4)

where (·)′ denotes the transpose. The terms Rhh and mh above are defined as

Rhh ,

2n−1∑

l=0

P(i = l) h(l)h(l)′,

mh ,

2n−1∑

l=0

P(i = l) h(l).

Recall that h(l) denotes the lth column of the Hadamard matrix H . Consider
again (1.4). It is interesting to note that Rhh andmh are independent of the channel
output r, while

p̂(r) , E

{

h
∣
∣
∣r,P(i) =

1
2n

}

,

the a posteriori expectation given evenly distributed channel input, is a function of
r. Finally, it is worth mentioning that (1.3) reveals a clear separation of the channel
decoding and the source decoding. In particular, T̄ can be viewed as performing
the source decoding, while ĥ(r) operates as the channel decoding.
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1.4.7 Optimal Bit Allocation

Classical bit allocation problems in communications are formulated for multiple
sources, commonly in speech and video applications, to achieve a better performance
for a fix total number of bits for date transmission or data storage, e.g., [Seg76,
GG92, BV04]. Let us show the basic concept by using a simple example where
the sources {x1, x2, . . . , xn} are random variables with zero-mean and variances
{σ2

1 , σ
2
2 , . . . , σ

2
n}. The task is to distribute a total of Rtot bits to the sources such

that an overall objective function E {Jtot(Rn1 )} with Jtot(Rn1 ) given by

Jtot(Rn1 ) =
n∑

k=1

Jk(Rk),

is optimized. The cost Jk, associated with the source xk, is a function of Rk, the
number of bits allocated to xk. The optimization problem is typically expressed in
the following form,

min
Rn1

E {Jtot(Rn1 )} ,

s. t.
n∑

k=1

Rk ≤ Rtot, Rk ∈ Z
+, k = 1, . . . , n.

(1.5)

Without imposing the requirement that Rk is a positive and integer number, the
optimization problem (1.5) is usually solved by using Lagrange duality [BV04]. The
basic idea is to introduce a so-called Lagrange multiplier θ, and then find a solution
{R1, R2, . . . , Rn, θ} that minimizes the Lagrangian η

η(Rn1 , θ) = E {Jtot(Rn1 )} + θ

(
n∑

k=1

Rk −Rtot
)

.

In general the result is given by solving the system of equations

∂

∂R1
η(Rn1 , θ) = 0,

...

∂

∂Rn
η(Rn1 , θ) = 0,

n∑

k=1

Rk = Rtot.

The major challenge of this approach lies often in the derivation of the objective
function in terms of the rates Rn1 . In many cases we have to resort to approximations
and simplifications to formulate a useful objective function. In addition, how to
evaluate the quality of the solution is another challenging research topic which can
be read in many textbooks (e.g., [BV04]) for an introductory study.
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1.5 Control with Quantized Feedback

In this section, a brief introduction to the emerging research area of control with
feedback over communication channels is given, by discussing a number of influential
publications in this field. Before moving to an introductory survey, commonly used
nomenclature is first presented.

Regarding the encoder, decoder, and controller, the term static refers to a time-
invariant function, and dynamic refers to a time-varying function. A static quantizer
is memoryless [FX06], while for a dynamic quantizer, the memory access pattern
varies from finite memory to infinite memory. The importance of information pat-
terns in the analysis of system behavior and design of control policies has been well
recognized, e.g., [Wit71, Ho80]. The concept of the information pattern is intro-
duced to specify what information is available at each unit in a connected system.
Several authors have in their work, e.g., [Tat00], shown that the information pattern
is instrumental to the achievable performance for quantized control systems.

The effect of quantized feedback on the overall performance of a control system is
not a new topic in the literature. Traditionally, quantization errors have mainly been
modeled as additive white noise [Wid61, GG92, WKL96], uncorrelated with the
signal being quantized. The advantage of this model is that many tools and methods
from traditional stochastic control theory can be readily applied. The model is valid
at high rate, but fails to work at low rate. [Cur72] is one of the first works which
studied coarsely quantized measurements. The author treated the quantized signal
as non-linear partial observations and used non-linear estimation theory to solve
the estimation problem. In the beginning of the 1990’s, research interest in the
stability analysis of quantized control systems was triggered by [Del90]. In that
paper the author showed that, even for the simplest dynamic system (linear, scalar
and noiseless), it is not possible to stabilize an unstable plant asymptotically with a
static controller of a finite data rate. The author has also pointed out that treating
quantization errors as white noise is no longer useful when the quantizer resolution
is coarse, especially for unstable plants. The work of Delchamps has encouraged
a rigorous study of the impact of quantization effects on control systems. Since
then, controller design for data rate limited systems has continuously attracted
researchers from different disciplines, e.g., applied mathematics, automatic control,
communication and computer science. A wide range of interesting problems have
been formulated.

The study of asymptotic behaviors of a dynamic system has theoretical im-
portance. In the scope of automatic control, interesting features are for example
asymptotic observability, which describes the asymptotic property of the state es-
timate; and asymptotic stability which describes the asymptotic behavior of the
controlled state signals, e.g., [Tat00]. Since asymptotic stability cannot be achieved
by using a static (memoryless) quantizer, practical stability [WB97] is formulated,
where the state trajectories are only required to be bounded within a certain region.

Information theory has been the mathematical foundation for the designs of
all modern communication systems. It provides fundamental limits of reliable data
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compression and data transmission. Ongoing research has shown that several fun-
damental concepts in information theory, such as channel capacity and rate dis-
tortion theory, are in their traditional forms not useful for closed-loop control sys-
tems [Sah00, Tat00, Sah04, TM04b, TSM04]. The reasons are multiple. First, it
is a common fact that control applications are much more time critical than con-
ventional communication applications. Second, in communication applications the
performance of the current transmission has usually no impact on what information
to transmit in the future, while the objective of a feedback control is to affect the
future states.

In the remaining part of this section, we give a short introduction to several
important research problems in control over finite-rate noisy channels. First in Sec-
tion 1.5.1 we address the so-called minimum rate control problem, which is closely
related to stability properties of closed-loop systems. In Section 1.5.2, an intro-
duction to research on static (memoryless) quantizers is provided. From the im-
plementation point of view, static quantizers are an important class of quantizers.
The study of their asymptotic behavior involves advanced mathematics. Even for a
time-varying uniform quantizer which is easy to build, it is not transparent to un-
derstand. Finally, a number of important works on control over noisy channels are
introduced, where we can see that channel errors have brought many new challenges
to the encoder and controller design.

1.5.1 Minimum Rate and Stability

Since the main objective of control is to cope with uncertainty, the majority of
control problems deal with various stability issues. Regarding control with quantized
feedback, a fundamental problem that has triggered considerably attention during
the last decades is to find the smallest feedback data rate necessary to stabilize
an unstable dynamic system asymptotically. In the sequel, we refer to this rate as
the minimum rate [WB99, Bai02, HOV02, NE03, YB04, TM04b]. An important
overview of the influential publications on feedback control under rate constraints
can be found in [NFZE07].

Regarding error-free communication links, the solutions to the minimum-rate
problems have mostly exploited a “volume” based analysis. The intuitive idea is
that a growth of the signal space for the state signal (often addressed as the uncer-
tainty “volume”), due to unstable poles, should be counteracted by the “volume”
reduction along the coding/quantization. One fundamental result of the limited
rate is that, in order to attain asymptotic stability, a quantizer must be dynamic
and has infinite reconstruction levels [Del90]. However, asymptotic stability can
refer to different things, e.g., a bounded asymptotic worst-case state norm [Tat00]
or a bounded asymptotic average state norm [NE02]. The asymptotic worst-case
state norm provides conservative solutions and the analysis is more or less straight-
forward, while the asymptotic average state norm has appealed to information
theoretic advances, such as different entropy power [NE03].

The minimum rate of a discrete time linear scalar plant (xt+1 =axt+ut, where a
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describes the linear dynamics) was investigated in e.g., [Tat00]. For an unstable dis-
crete system the minimum data rate is R> log2 |a|. The corresponding result for a
continuous time linear plant is R>a log2 e [Bai02]. A generalization to multidimen-
sional systems is pursued in e.g., [Tat00, HOV02, NE02]. A common way to tackle
a multidimensional system is to transform the system matrix A (the counterpart of
a in the multidimensional case) into its Jordan canonical form. Under the assump-
tion that the system can be decoupled into several independent one-dimensional
systems, the tools developed for scalar systems can be applied. A lower bound of
the minimum rate for multidimensional systems is given by R>

∑

k log2 |λuk |, where
λuk denotes the kth unstable eigenvalue of the system matrix A. A realistic data
rate should take on non-negative integer values. In [LL05a, LL05b], the authors
have proposed a practical coding scheme that uses integer rates. In their approach,
a transformation to the Jordan canonical form is not required. Instead, at each
time t, the quantization is pursued only along the most critical direction. Regard-
ing systems perturbed by stochastic disturbances, under certain assumptions on the
process noise, a lower bound of minimum rate has been derived in [NE03], based on
differential entropy power. Related recent work can be found in [GN08] where the
authors have shown the mean squared internal stability for systems of unbounded
noise, random initialization and arbitrarily initialized encoder–controller states.

There are a variety of stabilizable controllers which are based on the zoom-
ing technique [BL00, Lib02a, Lib02b, Lib03, BL06, LN07]. The basic principle be-
hind these solutions is that when the trajectory is close to an equilibrium point
a zooming-in operation will increase the quantizer resolution, while when the tra-
jectory is far from the equilibrium point a zooming-out operation will reduce the
quantizer resolution. It is worth mentioning that a memoryless dynamic quantizer
has infinite quantization levels asymptotically. Adaptive quantizers based on the
zooming idea can also be read in [NE03, EWRF07].

Extensions to non-linear systems can be found in [Lib02b, Lib03, Bai04, LE04,
NEMM04, Per04, LH05]. For example in [Lib02b], the author has applied the zoom-
ing strategy to a non-linear time-invariant system with an unknown initial-state.
The author has studied two quantized systems. In the first system, the quantizer is
located at the observation link, while in the second system, the quantizer is located
at the actuation link. The conditions for the global asymptotic stability are derived
for the both cases.

1.5.2 Static Quantizer

From the implementation point of view, it is useful to study static quantizers.
Recent research has shown an increasing interest in the fundamental properties
of this class of quantizers. For example, attention has been given to issues such
as useful performance measures for a static quantizer [FZ05a], and the impact of
the strict memory restriction on the long-term behavior [FZ05a, PB07]. Although
recent research in this field has been mainly addressed to the simplest system model
(linear, scalar and noiseless), a lot of notable results have been reported, e.g., [Del88,
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Figure 1.9: Examples of piecewise affine maps for quantized control systems. The
dashed arrows illustrate the system evolutions from x0 to x2. (a) A piecewise affine
mapping of a logarithmic quantizer. (b) A piecewise affine mapping of a chaotic
quantizer.

Del89, Del90, PGB02, FZ03, PPBJ04, FZ05a, PB05, Del06, PB07, PB08]. They
together have established a variety of theoretical fundamentals that lead to practical
quantized feedback control systems.

In the remaining part of this section, a couple of important properties of static
(memoryless) quantizers are introduced. First of all, let q(·) denote a static quan-
tization mapping, and F (·) a static feedback control. Thus, we can describe the
system evolution as

xt+1 = axt + ut = axt + F (q(xt)) = Γ(xt),

where xt+1 depends only on xt, since ut is completely determined by xt. As a matter
of fact, the system evolution can be described by a piecewise affine mapping Γ(·),
as illustrated in Figure 1.9. In the figure, the current state xt is presented on the
x-axis, and the state one-step-ahead Γ(xt) is presented on the y-axis. In particular,
the mapping illustrates the two most important properties of a static quantizer.
The first property is the attractivity [FZ05a], referring to as the attraction from a
(large) initial region to a (small) target region. The second property is the practical
stability, related to the ability of keeping the trajectories within a target region. As
stated previously, for quantizers with finite reconstruction levels, the asymptotic
stability is not achievable. Instead, the practical stability is an applicable stability
measure.
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A good control strategy should both give satisfactory steady state and transient
properties. In [FZ03, FZ05a] the authors have shown that there is, however, a con-
flicting relation between the steady state and the transient behavior for quantized
systems. The authors were particularly interested in the quantitative analysis and
comparison among different quantizers. They have suggested the contraction rate
for the steady-state performance and the expected time for the transient behavior.
Generally speaking, a large contraction rate is a desired feature, since it means a
smaller target region for a given initial region. At the same time, the expected time
is strived to be small, which indicates an efficient control and a quick entrance to the
target region. Unfortunately, there is a trade-off between the contraction rate and
the expected time. The authors have evaluated this conflicting relation for uniform
quantizers, logarithmic quantizers and chaotic quantizers. Other works regarding
controlled invariance can be found in e.g., [PB07, PB08] and the references therein.
Here, we mention a special property of the logarithmic quantizer. Shown by e.g.,
[EM99, EM01], a logarithmic quantizer is special in the way that when the num-
ber of the reconstruction level is a prior entity, the logarithmic quantizer is shown
to be the most efficient quantization scheme, in the sense of quadratic Lyapunov
stability [Kha96]. Lyapunov stability is a stability measurement commonly used in
non-linear control. The intuitive idea behind this measure can be simply explained
as, a stabilizable control will make the state follow a path along which the “en-
ergy” is continuously decreasing. The work of [EM01] is further developed in e.g.,
[EF02, FX05, FX07].

For many researchers, the quantizer design has been part of the stabilization
problems. Unlike them, in [PGB02, PPBJ04, PB05, PB07] the authors have con-
sidered the quantizer as a given building block and investigated its capabilities. In
particular, they worked with the construction of attractive and invariant sets for
stabilizing unstable plants using uniform quantizers. Due to the simplicity in the
implementation, the uniform quantizer is the most widely used quantization scheme
in practice. Besides uniform quantizers and logarithmic quantizers, a special class
of quantizers called chaotic quantizers have also received increasing attention, e.g.,
[FZ03, FZ05a]. The chaotic behavior is exploited to mitigate the conflicting rela-
tions between attractivity and invariance, done by combining two feedback policies.
The attraction from the initial region to the target region is accomplished by one
of the control strategies, which takes the advantage of the chaotic behavior of the
affine mapping. All the trajectories will eventually enter the target region. When
the trajectory is within the target region, it switches to the second controller,whose
task is to keep the trajectories within the target region ever after, cf., Figure 1.9b.

1.5.3 Control over Noisy Channels

In many of the aforementioned works, the communication channel is essentially
error-free, and the only limitation imposed by the channel is the data rate. In the
last decade, the extension to control over noisy channels has brought many new
challenges which invoked a great deal of research interests. Some influential works
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include [SJV04, Sim04, TM04a, MS05, Xu05, MT06a, MT06b, MS06a, MS06b,
NB06, SM06, Ten06, MS07, MFDN07, TM09]. Regarding stabilizing unstable plants
over noisy channels, some of the early contributions have been e.g., [Sah04, Sim04,
Xu05, MS06a]. In those works, the solutions are typically based on a kind of control–
channel separation principle. The basic concept is to design the stabilizing control
assuming the channel is error-free, and then, require the control command to be
reliably transmitted over the noisy channel. Particularly for unstable systems, where
delay becomes a critical issue, the validity of the classical Shannon capacity on
problems of stabilizing through noisy channels is challenged. In [Sah04], the author
has shown that the Shannon capacity is not a proper entity for characterizing
feedback systems, instead, the novel concept of anytime capacity is introduced to
show the necessary rate to achieve anytime reliability over noisy channels. This new
concept is related to Gallager’s error exponent [Gal68]. However, unlike in Gallager’s
problem, the decoder has to produce new estimates for each new received channel
output, and cannot wait until it has received a long codeword. Further results on
the anytime capacity can be found in e.g., [Sim04, DS06, SM06]. Recent results on
the characterization of the capacity of channels with feedback can be read in e.g.,
[MS07, YKT07, TM09].

In early work where the communication channel is error-free, less attention was
paid to the encoder design. Quantizers are often considered as fixed system com-
ponents, e.g., [BL00, NE03], and simple quantizers are used, for example static
quantizers as discussed in Section 1.5.2. However, in the presence of channel er-
rors where the encoder does not have perfect knowledge about what message the
controller will receiver, the encoder design becomes important. How to design the
encoder for noisy channels can be found in e.g., [BMT01, TSM04, MT06a, Tat08].
In [TSM04], sequential rate–distortion theory is developed to handle the delay and
causality restrictions typically encountered in control systems. The author has em-
phasized the difference between statistical dependence in traditional information
theory and causality in the control context. The quantity of directed mutual infor-
mation [Mas90] is pointed out to be instrumental in dealing with sequential rate
distortion problems. In the same paper, the sequential rate–distortion functions for
Gauss-Markov processes are computed. In [SV03] state estimation over a binary
symmetric channel is studied, where the encoder–decoder adopts the zooming idea
to capture the state trajectory and bound estimation errors. More precisely, the
quantizer is uniform and its range is adaptively adjusted according to the state
evolution. In [MT06a] some results on real-time (finite decoder memory) encoder–
decoders for tracking the outputs of a Markov process are presented. In [Tat08], the
author has introduced the concept of joint sufficient of the encoder and decoder to
deal with the uncertainty in communications.

Up till now, most work on control with limited information has been devoted to
analyzing stability properties, while optimal designs for general criteria are much
less explored in the literature. However, the problem of optimal stochastic control
over communication channels is addressed in e.g., [BM95, Tat00, MS02, MS04a,
MS04b, TM04b, NFZE07, CF08]. In [BM95], the considered system is stable and the
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measurement noise is absent. An innovation coding scheme is proposed to convey
the information about the process noise to the controller periodically. Since the
time between two transmissions is increased when longer codewords are used, there
is a trade-off between the resolution and delay. In [Tat00], the research on the
separation principle and CE controllers has been carried forward. An analysis of
systems with different information patterns is pursued. The authors have separated
the total distortion into two parts. The first is obtained by assuming that a full
state knowledge is available and the second comes from the use of a sequential
quantizer, referring to as the procedure of successively quantizing the outputs of
a dynamic system. Unlike [BM95], where the state measurement is quantized and
transmitted over the noisy channel, in [MS04a] the control input is quantized and
transmitted over a rate-limited channel. In that work, the existence of the optimal
controller and its properties are explicitly studied.

1.6 Contributions and Outline

In the previous section, a brief overview of recent advances in control using quan-
tized feedback was given. We noticed that the existing work has been mainly devoted
to various stability analyses. Moreover, static quantizers, such as uniform quantizers
and logarithmic quantizers, are commonly considered in the literature, since they
are easy to implement in practice. However, for applications with extremely low
data rates and high communication costs, it would be reasonable to study optimal
encoder–controllers. This is an important problem in networked control systems in
which a large number of sensor nodes need to limit their individual access to the
communication medium. However, in many situations, there is a challenging con-
flict between the amount of transmitted data and the response time. In particular
for emerging control applications, not necessarily constrained by today’s communi-
cation protocols, limits imposed on available signaling bandwidth from communica-
tion channels can severely restrict the closed-loop performance and even destabilize
the system. To develop methods and tools for the analysis and synthesis of feedback
control over imperfect communication links is therefore of great importance.

The common theme of the thesis is the design and analysis of encoder–controllers
for control over low-rate noisy channels, motivated by wireless networked control
systems. In particular, we focus on the performance of a single plant (node) in
the network under resource constraints. In the case that there is no congestion
problems, each plant can of course be treated individually. The remaining part of
this thesis is organized as follows. The first part, Chapters 2–4, is devoted to the
optimization of encoder–controller mappings over finite-input finite-output noisy
channels. We focus explicitly on iterative design of encoder–controller pairs. The
result is a practical synthesis technique for joint optimization of the quantization,
error protection and control over a low-rate noisy channel. More specifically, in
Chapter 2, we describe the general model of the closed-loop control system with
quantized feedback, using a state space model. A stochastic optimization problem
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with a quadratic linear cost is formulated. In Chapter 3, a training method is de-
veloped to optimize encoder–controller mappings iteratively. Considerations on the
complexity of the proposed training process can be found in Chapter 4. In the same
chapter, the problem of control over longer horizons is studied by comparing a num-
ber of coding–control strategies. The second part, Chapter 5, studies the problem
of allocating the instantaneous rates over time, for systems described in Chapter 2.
The rate allocation is important since it offers an alternative way to overcome the
highly limited communication resources and to achieve a better overall control per-
formance. In the third part, Chapter 6, we extend the result in Chapter 3 to design
encoder-controllers for channels with infinite-outputs. Finally, in Chapter 7, some
topics for future research are suggested. Below, the contributions are described in
more detail for each chapter.

Chapter 2

In this chapter, a general model of a closed-loop control system for a single plant
is described which embodies process noise, measurement noise and a noisy channel
with finite input and output alphabets. To cope with the imperfect communication
between the transmitter and the receiver, an encoder unit is enclosed in the system
to protect information messages against channel distortions. Because of the poten-
tial transmission errors, side-information to the encoder is introduced which can
inform the encoder about the channel outputs. By varying the information pattern
at each component, the model can represent a wide range of practical scenarios.

As mentioned previously, this thesis deals with several aspects of the design of
encoder–controllers in a networked control system, where the communication be-
tween the sensor and the actuator is modeled as a finite-rate noisy channel. Unlike
the works on minimum data rate control, our main concern is an optimal average
performance over a finite horizon, given a fixed data rate. Therefore, a stochastic
optimization problem with a quadratic linear cost is formulated. The optimization
problem can be viewed as an extension of the classical LQG problem, where we
study the impact of a low-rate noisy channel on overall system performance. How-
ever, so far, there is hardly any result on the minimum data rate for this general
system, since when both measurement noise and channel errors are present, the
characterization of such a rate is extremely difficult.

Chapter 3

In this chapter, we study a closed-loop control system with feedback transmitted
over a finite-rate noisy channel. With the objective to minimize the expected linear
quadratic cost over a finite horizon, we propose a joint design of the sensor mea-
surement quantization, channel error protection, and optimal controller actuation.
This encoder–controller optimization problem is known to be hard in general, an it-
erative design procedure can be derived inspired by traditional quantizer designs in
which the controller is optimized for a fixed encoder, then the encoder is optimized
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for a fixed controller etc. Several properties of such a scheme are presented. For a
fixed encoder, expressions for the optimal controller is derived for various amount
of side-information available in the encoder about the symbols received at the con-
troller. It is shown that the certainty equivalence controller is optimal when the
encoder is optimal and has full side-information. For a fixed controller, expressions
for the optimal encoder is given and implications are discussed for the special cases
when process, sensor, or channel noise is not present. Numerical experiments are
carried out to demonstrate the performance obtained by employing the proposed
iterative design procedure and to compare it with other relevant schemes.

It is worth to point out that our approach treats transmission uncertainties
differently from many aforementioned works by not employing the coding–control
separation concept. A design approach based on the separation of coding and con-
trol, e.g., [SM06, Sav06] relies significantly on the information theoretical results of
coding schemes which can ensure reliable communication over noisy channels. How-
ever, how to find such coding schemes is still an open question, which is the main
obstacle to the implementation of the separation-based controllers in practice. In
this thesis, we consider practically implementable encoder–controllers. As a matter
of fact, we design for situations where the communication between the sensors and
controller is highly expensive that information is conveyed by only a few bits. At
low data rates, it is especially beneficial to employ a joint coding–control design
that the codeword accomplishes source coding, protection against channel error and
control simultaneously.

The present chapter is partly published in the papers [BSJ06a, BSJ06b, BSJ07a,
BSJ07b, BSJ08, BSJ09].

Chapter 4

In this chapter, several practical considerations on the implementation of the train-
ing algorithm proposed in Chapter 3 are addressed. A major part of this chapter
is studying the complexity of the encoder which is revealed to be critical to the
implementation of the training algorithm. In general, the proposed training algo-
rithm is complicated to implement. Certainly, overcoming the complexity barrier
is one of the major challenges from a practical point of view. In the first part, two
special encoder properties, namely sufficient statistics and regularity, are described.
These two properties appear to be very useful in the implementation of the train-
ing algorithm. Thereafter, a closed-form approximation of the expected future cost
is proposed, which can be used in assessing the regularity of the encoder. In the
second part, we deal with the complexity problem of longer horizon by an empirical
study of several systems that exploit complexity reduced approximations.

This chapter is partly based on the papers [BSJ08, BSJ09].
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Chapter 5

In this chapter we study the problem of optimizing the rate allocation over time,
which is an alternative method to improve the efficiency of the overall control
performance, given highly limited communication resources. Owing to the non-
stationarity of the state observations, it is natural to expect considerable gains
by employing a non-uniform allocation of transmission rates over time. Hence, an
even distribution of bits to all sensor measurements is often not efficient for con-
trol systems. The optimal rate allocation aims at an efficient way of exploiting the
limited communication resources to achieve a better overall performance. How to
achieve the optimal rate allocation in control systems is a challenging task. One
of the main obstacle to optimize the instantaneous rate is the lack of tractable
distortion functions, which we need to use as objective functions for the rate opti-
mization problem. Furthermore, such an optimization problem is often non-convex
and non-linear, which implies that it is difficult to compute the optimal solution in
practice.

Our main contribution is a novel method for rate allocation for state feedback
control of a linear system over a noisy channel. By resorting to an approximation
based on high-rate quantization theory, we are able to derive a computationally
feasible scheme that seeks to minimize the overall distortion over a finite time
horizon. The resulting rate allocation is not necessarily evenly distributed. Practical
considerations concerning the integer-rate constraint and the accuracy of the high-
rate approximation are discussed and illustrated through numerical examples.

This chapter is partly published in the papers [BSFJ09a, BSFJ09b, BSFJ09c,
BSFJ09d].

Chapter 6

This chapter studies the generalization to infinite-output channels. It is not diffi-
cult to realize that the system complexity is substantially increased if the channel
output has an infinite alphabet. In practice, the extension from a finite alphabet to
an infinite alphabet affects not only the training stage, but also the implementation
of the trained encoder–controller pair. It no longer holds that the trained encoder–
controller can be implemented as a simple look-up table. To get more insight into
the optimal controller, we first introduce a Hadamard-based soft controller which
fully exploits the information in the channel outputs. However, because of the com-
putational and memory demands it is difficult to implement such a controller in
practice. Alternatively, we can apply the results from Chapter 3 to employ a con-
troller using only quantized channel outputs. Of course, if the channel is heavily
noisy the degradation in system performance could be serious by only using quan-
tized channel outputs. Given the challenges discussed above, we propose a combined
encoder–controller which exploits both the hard and soft channel outputs.
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Chapter 7

The concluding chapter summarizes the thesis. Examples for future work are sug-
gested, where a broad range of research topics are presented.

1.7 Notation

Throughout the thesis, the following notations are used.

a : The linear dynamics of a scalar dynamic system.

bt : In general, denotes binary codeword at time t.

ct : In general, denotes centroid at time t.

dH(·, ·) : The Hamming distance of two binary codewords.

dt : Decoded symbol at time t.

Dt(·) : Decoding mapping at time t.

et : Measurement noise at time t.

E {·} : Mathematical expectation.

E {·|·} : Conditional expectation.

Et(·) : Channel mapping at time t.

ft(·) : Encoding mapping at time t.

gt(·) : Control mapping at time t.

H : Hadamard matrix.

it : Index-valued channel input at time t.

jt : Index-valued channel output at time t (“hard” channel output).

J(·) : Objective function.

ln{·} : The natural logarithm.

L : In general, denotes a finite set of integer indices.

ℓt : Optimal linear feedback control law at time t.

M : In general, denotes memory in the sense of the context.

N (m̄, σ2) : Gaussian distribution function with mean m̄ and variance σ2.

N : The set of natural numbers, {1, 2, 3, . . .}.
O : The Ordo operator.

Pt : The weighting matrix in the linear quadratic objective function,

associated to control input ut.

p(·) : Probability density function.

p(·|·) : Conditional probability density function.

P(·) : Probability.
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P(·|·) : Conditional probability.

rt : Real-valued channel output at time t (“soft” channel output).

Rt : Rate at time t.

R : The set of real numbers.

S : In general, denotes an encoding cell.

T : Time horizon.

Tr{·} : The trace of a matrix.

ut : Control variable at time t.

vt : Process noise at time t.

Vt : The weighting matrix in the linear quadratic objective function,

associated to state xt.

wt : Channel noise at time t.

xt : State variable at time t.

yt : Measurement variable at time t.

zt : Side-information at time t.

Zt(·) : Side-information mapping at time t.

Z : The set of integer numbers.

Z
+ : The set of non-negative integer numbers, including 0.

γ : Cost-to-go.

ǫ : The crossover probability of a binary symmetric channel.

ρ : The weighting parameter in a scalar control objective.

σ2 : In general, denotes signal variance.

∆ : In general, denotes difference in the sense of the context.

(·)⋆ : In general, indicates optimality in the sense of the context.

(·)′ : The transpose of a matrix.

(·)! : The factorial of a non-negative integer.

(·)† : The Moore-Penrose pseudoinverse of a matrix.

, : Equality by definition.

⊗ : Kronecker product.

∗ : Convolution.

Below are some common rules for indexing, if not stated otherwise.

1. The variables t and s are reserved to the time indices. The variables k, l, m, n
are also commonly used to denote an index, but not necessary a time index.
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2. The boldface notation xts, s, t∈Z+, s ≤ t, is taken to describe the time series
{xs, xs+1, . . . , xt}. Especially, xt, t < 0, is not defined, and {xts : t < s} is an
empty set.

3. The notation x[k], k∈N, is taken to specify the kth element of x.
4. The notation x[k], k ∈N, is taken to specify the iteration result of the kth

round.

1.8 Acronyms

Acronyms will be defined at their first occurrence in the thesis. For convenience,
these acronyms are listed below.

BSC Binary symmetric channel.

BGC Binary Gaussian channel.

CE Certainty equivalence.

DMC Discrete memoryless channel.

i.i.d. Independent identically-distributed.

IA Index assignment.

LQ Linear quadratic.

LQG Linear quadratic Gaussian.

MMSE Minimum mean squared error.

MSE Mean squared error.

pdf Probability density function.

pmf Probability mass function.

RA Rate Allocation.

SI Side-information.



Chapter 2

Coding and Control for Discrete Memoryless

Channels

2.1 Introduction

This chapter describes the closed-loop control system studied in Chapters 3–5,
where a linear plant is controlled using quantized feedback over a memory-
less noisy channel. The channel has finite-input and finite-output alphabets.

The main objective is to find the optimal coding–control strategy which solves a
stochastic optimization problem with a quadratic linear cost.

It is widely-recognized in stochastic control that for most systems the optimal
performance is achievable only when the coding and control are designed jointly.
A closed-form solution to the optimal control is in general difficult to characterize.
However, for traditional control systems without any channel imperfections, there
are cases where the separation principle applies and the closed-form solution is
known, e.g., the LQG problem described in Chapter 1. In this thesis, we focus on
the impact of an imperfect channel on the encoder–controller design. We restrict our
discussion to the linear plant and quadratic objective functions that the closed-form
solution to optimal stochastic control for ideal channels under Gaussian assumptions
(initial-state and noises pdf’s), is well-known.

The remaining part of this chapter is organized as follows. In Section 2.2 we de-
fine the control system with encoder, controller, and communication channel. There-
after, Section 2.3 is devoted to a discussion of properties of the side-information
from the controller to the encoder. The problem statement which concerns a linear
quadratic (LQ) objective over a finite horizon is formulated in Section 2.4. Finally,
the operation of the encoder–controller is illustrated in Section 2.5, as well as the
concept of optimizing the encoder–controller mappings by training.

31
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Figure 2.1: A general model of a system with feedback control over a discrete
memoryless channel. The dashed line indicates potential side-information signaling
from the controller to the encoder. At time t, the oldest measurement the encoder
can use is yte , te= t−Me, whereMe specifies the total number of past measurements
the encoder can use.

2.2 System Model

In the most general form, we consider the control system with a communication
channel depicted in Figure 2.1. The sensor observation is encoded and transmitted
to the controller over an unreliable communication channel, and the control com-
mand is derived based on the received data. Information available at each building
block in the closed-loop system is specified by the so-called information pattern
[Tat00]. It is well recognized that the information pattern is important in charac-
terizing the achievable system performance. Let us set to describe each building
block by specifying the information pattern.

The multi-variable linear plant is governed by the following equations:

xt+1 = Axt +But + vt,

yt = Cxt + et,
(2.1)

where xt ∈Rn, ut ∈Rm, yt ∈Rp, are the state, the control, and the measurement,
respectively. The matrices A∈Rn×n, B∈Rn×m, C∈Rp×n, are known; where (A,C)
is state observable and (A,B) is state controllable. The variable vt ∈Rn denotes
the process noise, and et∈Rp denotes the measurement noise. The noise signals are
i.i.d. and mutually independent. They are also independent of the system initial-
state x0. We assume that the initial-state and the noise processes are zero-mean,
and their probability density functions are known.

We consider an encoder that causally utilizes the encoder information. By the
encoder information, we mean the set of variables whose values are known to the
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encoder. The encoder is then a mapping from the set of the encoder information
to a discrete set of symbols. We take each symbol to be represented by an integer
index. At time t, the index is it∈LI ={0, . . . , LI−1}, LI ∈N. We are interested in
the class of encoder mappings described by the function

it = ft
(
ytte , z

t−1
0

)
, te = t−Me, Me ∈ {0, . . . , t}. (2.2)

Here,Me specifies how many of the past measurements can be used by the encoder.
For example, Me= 0, is the special case where only the most recent measurement
is available, while when Me= t, the encoder can use the full sequence yt0.

Given the sequence of the past side-information, zt−1
0 , and measurements, ytte ,

the encoder produces an index it, and the transmitted index is then received as
jt ∈ LJ = {0, . . . , LJ − 1}, where LJ ≥ LI . The side-information zt represents
available feedback to the encoder about the value of the symbol jt received at the
controller. In this thesis, we define the side-information (SI) at the encoder to be
produced as

zt = Zt(jt) ∈ LZ = {0, . . . , LZ − 1}, LZ ∈ N, 1 ≤ LZ ≤ LJ , (2.3)

where Zt : LJ 7→ LZ is deterministic and memoryless. The side-information is
further discussed in Section 2.3.

Non-ideal communication channels have a variety of negative impacts on the
overall performance of control systems. We restrict our attention to two types of
channel imperfections: the limited channel rate and the potential bit errors. Let
the encoder output index, it, be transmitted over a discrete memoryless channel
(DMC), with input and output alphabets LI and LJ , respectively. One use of the
channel is defined as

jt = Et(it), (2.4)

where Et :LI 7→ LJ is a memoryless random mapping. Since we assume LJ ≥ LI ,
the output alphabet is potentially larger than the input alphabet. Conditioned on
the transmitted symbol it, the mapping to jt is independent of other parameters in
the system, e.g., the process and measurement noise. The fact that the channel is
bandlimited is captured by the finite size of the input-alphabet LI . We define the
rate of the transmission (in bits per channel use) as R=log2 LI . Our transmission
model encompasses all the common memoryless models; for example, the binary
symmetric channel (BSC) and the binary erasure channel (BEC) [CT91].

At the receiver side, we consider a controller that causally utilizes all the avail-
able controller information jt0, to produce the control command

ut = gt(jt0) ∈ R
m. (2.5)

According to (2.5), when the entire sequence jt0 is available at the controller, all
controls ut0 are completely specified. Therefore, the controller gt(jt0,u

t−1
0 ) belongs

to the class of controllers (2.5).
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Here we mention a special type of controller that consists of a separate decoder
and a controller. The decoder is the deterministic mapping

dt = Dt(jt0),

and the separate controller is defined by the mapping

ut = gt(dt0),

given the past decoded symbols dt0. Note that, since ut is fully determined by dt0,
the controller gt(dt0,u

t−1
0 ) also belongs to the class of controllers (2.5).

Throughout the thesis, we use “encoder” and “controller” in quite general terms
(“the corresponding boxes in Figure 2.1”), as well as specific terms (“the mappings
ft and gt at time t”). When there is a need to be specific, we will adopt the following
notation and terminology. Let the notation fT−1

0 ={ft}T−1
0 mean the entire sequence

of encoder mappings, from time 0 to T−1. We will call fT−1
0 the “encoder” of the

system (since the sequence specifies the operation of the encoder for all relevant
time-instants), and we will say that ft is the “encoder mapping at time t” or “the
component of fT−1

0 at time t” when there is a need to specify a specific time-instant
and the corresponding mapping. For subsequences of the full sequence of encoder
mappings, we will use similar notation, and say, e.g., “the encoder components
f ts”. This notation will also be used for the controller, its individual mappings or
components, and subsequences, namely, gT−1

0 , gt and gts, respectively.
In the remaining part of this section, two examples, the hydraulic network

and the binary symmetric channel, are used to illustrate the utility of the linear
plant (2.1) and the discrete memoryless channel (2.4).

Example 2.2.1. Example of a Plant: Hydraulic Network
This example is used to show how a physical process can be modeled using the

linear state space model (2.1). Figure 2.2 depicts a large-scale hydraulic network
which can be found in many industrial and domestic applications. The network
consists of a number of connected nodes. Each node in the network is modeled as a
single tank, and the reader is referred to e.g., [ÅL92, Joh00] for further discussion
of higher dimensional tank processes. In each single tank system, the water level h
is controlled by regulating the voltage ϑ to the pump, based on sensor measurements.
According to Bernoulli’s law [Joh00], the system equation is

dh
dt

= − αA
√

2gh+
kϑ

A ,
(2.6)

where A and α are the cross-sections of the tank and the outlet hole, respectively.
Meanwhile, g is the gravitational acceleration constant and k is a proportional con-
stant relating the flow to the voltage. By sampling with a sampling interval ∆T , the
differential equation (2.6) can be written as a difference equation,

ht+1 = ht −
α∆T
A

√

2ght +
k∆T
A ϑt.

(2.7)
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Figure 2.2: A schematic diagram of a networked control system with multiple plants,
where each plant can be modeled as a a single tank process. The sensor measurement
of the water level is transmitted to the controller by wireless communication.

Next, we linearize (2.7) around the steady state (hss, ϑss), which are related to
(ht, ϑt) as

ht = hss + ∆ht
ϑt = ϑss + ∆ϑt.

Rewriting (2.7) in terms of hss and ϑss, gives

hss+∆ht+1 =hss+∆ht−
α∆T
A

√

2ghss

(

1 +
∆ht
hss

)1/2

+
k∆T
A (ϑss+∆ϑt).

The linearization of (2.7) becomes

∆ht+1 =
(

1− α∆T
A

√
g

2hss

)

∆ht +
k∆T
A ∆ϑt +O(∆h2

t ),

because of the following observations. First, at the steady state, it follows that
dh/dt=0, and ϑss is related to hss as

ϑss =
α

k

√

2ghss.

Second, we use the Taylor expansion
(

1 +
∆ht
hss

)1/2

= 1 +
1
2

∆ht
hss

+O(∆h2
t ),

where O(∆h2
t ) denotes the higher order non-linear terms. By denoting xt = ∆ht

and ut=∆ϑt, the single tank process can be described by a scalar version of (2.1),
with

A = 1− α∆T
A

√
g

2hss
, B =

k∆T
A , C = 1. (2.8)
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Figure 2.3: A binary symmetric channel, where ǫ is the crossover probability.

Note that, A in (2.8) is often less than 1, which indicates that the plant has stable
open-loop dynamics. We have thus shown that the tank system can be modeled as
the linear process (2.1) where vt could be the modeling error, and et could be the
sensor measurement error.

Example 2.2.2. Binary Symmetric Channel
A class of discrete memoryless channels, which is one of the most widely stud-

ied channel models in coding theory and information theory, is the so-called binary
symmetric channel. A binary symmetric channel has binary input and binary out-
put, and it can be simply described by a crossover probability, ǫ=P(0| 1)=P(1| 0),
see Figure 2.3. Let b and b̂ denote the transmitted and received binary codeword of
length R, associated to the transmitted index i and received index j, respectively.
Independent transmission for each binary bit leads to the following conditional prob-
ability function P(b̂ |b), in terms of the crossover probability ǫ,

P(b̂ |b ) = (1− ǫ)R− dH(b̂, b)ǫdH(b̂, b),

where dH(b̂, b) is the Hamming distance between the binary codewords b and b̂, i.e.,
the number of bits by which they differ. Clearly, the binary symmetric channel can
be represented by the channel model (2.4).

2.3 Encoder Side-Information

Since the transmission rate R is limited, the main motivation for using memory-
based encoder–controllers is to increase the resolution of quantized observations.
For memory-based schemes, the system performance relies heavily on the encoder’s
knowledge about the controller state and the controller’s belief in the encoder state.
In the presence of a noisy channel, care has to be taken in specifying how to syn-
chronize the states of the encoder and controller.
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Channel errors can give rise to a serious synchronization problem for memory-
based encoder–controller pairs. In the case of error-free communications, that is,
it0 = jt0, there is no uncertainty in the information the controller receives. Hence, the
encoder and the controller have identical information about the previous events.
Such a synchronization between the encoder and the controller is violated when
the channel contains transmission errors. The encoder is not able to make a perfect
prediction in advance about the index jt that the controller will receive. More
importantly, the controller has lost the ability to deduce the exact transmitted
indices it0 by examining the received jt0.

We use the term encoder side-information to specify the explicit feedback from
the controller to the encoder about the channel outputs jt−1

0 . Consequently, no SI
is the extreme case when there is no feedback information at all about jt, and full
SI denotes the situation that the encoder knows exactly the previously received
symbols jt−1

0 . The latter is the case when the channel is error-free, so that jt = it,
or when there is an error-free SI channel of the same rate from the output of the
forward channel to the encoder.

According to our definition of the SI mapping zt = Zt(jt) in (2.3), we have
zt = jt and LZ = LJ , when full SI is available; while zt = 0 and LZ = 1, when
there is no SI at the encoder. Between the extremes, there are a variety of cases
with incomplete SI, for which 1<LZ<LJ . Note that in Figure 2.1 we illustrate the
mapping from jt to zt as an explicit SI channel, even though this information can be
obtained by other means. For example, full SI can be obtained if the encoder knows
the previous control commands, ut−1

0 , and the controller is an invertible mapping,
since then jt−1

0 can be deduced from ut−1
0 . In general, when the SI is transmitted

back to the encoder via a separate noisy channel, assuming the SI mapping to be
deterministic may be optimistic; results based on this assumption then serve as
bounds on the achievable performance. However, as we also include the possibility
of very low-rate SI feedback (e.g. LZ=2), noiseless transmission may be motivated
by the application of heavy error protection in the SI link.

Via the SI link the encoder will be informed about the potential transmission
errors. It is interesting to note that conventional automatic repeat request (ARQ)
protocols can also be considered as a special case of our model. However, if no re-
transmission will take place, the controller must be designed to maintain robustness
to transmission errors, as the scenarios studied in this thesis.

2.4 Problem Statement

In this section we formulate the optimization problem studied in Chapter 3. Gener-
ally speaking, the optimality of a system depends on the design criterion. Our goal
is to solve an optimal encoding–control problem and thereby to find the suitable en-
coder and controller mappings. The adopted performance measure is the following
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LQ cost with a finite horizon T >0,

Jtot =
T∑

t=1

Jt =
T∑

t=1

x′tVtxt + u′t−1Pt−1ut−1, (2.9)

where Jt is taken to denote the instantaneous cost. The matrices Vt and Pt are sym-
metric and positive definite. The design objective is to find the encoder–controller
mappings which minimize the expected value of the cost Jtot, namely,

E {Jtot} = E

{
T∑

t=1

x′tVtxt + u′t−1Pt−1ut−1

}

. (2.10)

The LQ cost (2.10) is well established in the scope of stochastic control [Aok67].
There is often a practical relevance in this objective function since the quadratic
terms x′txt and u′tut are related to the energy of the state and the control. The
matrices Vt and Pt specify the importance factor of the control input with respect
to the state. The cost can be interpreted as minimizing the state variance at all
time instances, with a power constraint on the control input.

For ease of reference, we define Problem 2.4.1 below as the main optimization
problem of the chapter.

Problem 2.4.1. Consider the system in Figure 2.1. Given the linear plant (2.1)
and the memoryless channel (2.4), find the encoder (2.2) and controller (2.5) that
minimize the LQ cost (2.10).

We use the notation {f⋆t (ytte , z
t−1
0 )}T−1

t=0 and {g⋆t (jt0)}T−1
t=0 for the optimal1 map-

pings that solve Problem 2.4.1. Of course, Problem 2.4.1 can be viewed as an
extension of the traditional LQ problem, where now the optimal encoder–controller
minimizes a cost function influenced by the initial-state, process noise, measurement
noise, and the noisy channel.

2.5 Encoder–Controller Operation and Iterative Design

The encoder–controller pair presented in Section 2.2 are functions with memory.
They map a continuous range of real values (sensor measurements) into a small
set of discrete symbols (control inputs). The small set of symbols is referred to as
a codebook, whose entities are control actions labeled with memory-based index
sequences. In Figure 2.4, we illustrate the encoder and controller operation at t=0
(for simplicity), where m = p = 2. The encoder maps a measurement y0 ∈R2 into
an index i0. For example, the measurement y0 marked with a square is fed into the
encoder, and the corresponding output is i0 = 3. The index i0 = 3 is then fed into
the channel. After passing the channel, the controller receives j0 =4, which is used

1Note that the solution is not necessarily unique.
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Figure 2.4: The operation of the encoder–controller mappings f0 and g0 for y0∈R2.
For example, the measurement y0, marked by a square, is mapped to i0 =f0(y0)=3.
The controller receives j0 =4 and produces the control input u0 =g0(4).
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Figure 2.5: The operation of the encoder–controller mappings f2
0 and g2

0 for yt∈R,
i.e, Me= 0. In particular, f0(y0), g0(j0), f1(y1, j0), g1(j1

0), f2(y2, j1
0) and g2(j2

0) for
j2
0 =(2, 3, 2) are depicted. For example, y0 within the interval marked by the dashed

lines is mapped by the encoder to i0 = 2. Then, for all j0 = 2, the control input
u0 = g0(j0) is marked by a cross. Likewise, given j0 = 2, y1 within the interval
marked by the dashed lines is mapped to i1 = 2; and given j0 = 2 and j1 = 3, the
control command u1 = g1(j1

0) is marked with another cross. Finally, given j0 = 2,
j1 = 3, y2 within the interval marked by the dashed lines is mapped to i2 = 2; and
given j0 =2, j1 =3 and j2 =2, the control command u2 =g2(j2

0) is marked with the
third cross.
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to produce the control input marked with another square. Note that at t > 0, the
encoder will also use the sequence of past SI, and the controller mapping utilizes
the full sequence jt0. A simple illustration of the operations of f2

0 and g2
0 is given in

Figure 2.5. In the example, we assume that Me=0, yt∈R, and full SI is available
at the encoder. By the encoder mapping f0(y0), all y0 in the interval marked by
the dashed lines are mapped to i0 = 2. Then, for all j0 = 2, the control command
u0 =g0(j0) is marked with a cross. Similarly, given j0 =2, all y1 within the interval
marked of the dashed lines are mapped to i1 = 2; and given j0 = 2 and j1 = 3, the
control command u1 = g1(j1

0) is marked with another cross. Finally, given j0 = 2
and j1 = 3, the measurement y2 within the interval marked of the dashed lines
will mapped to i2 = 2; and given j0 = 2, j1 = 3 and j2 = 2, the control command
u2 =g2(j2

0) is marked with the third cross.
In general, finding an exact solution to Problem 2.4.1 is a hard problem, because

the optimization problem is non-linear and non-convex. Therefore, we propose a
method to optimize the encoder–controller pair iteratively, with the goal of finding
locally optimal solutions. Roughly speaking, the problem of specifying an encoder
mapping is equivalent to characterizing a partition of the measurement space, as
illustrated in Figure 2.4 and Figure 2.5. At the controller side, the problem of
specifying a controller is to find the values of the admissible controls as a finite set
of points in R

m. At time t, there are at most Lt+1
J different control inputs, because

of the size of the channel output alphabet LJ and the number of transmissions so
far, i.e., t+1.

To implement the training-based approach, we define two stages. In the first
stage, referred to as the training stage, computations are pursued in a simulated
environment to derive an optimized encoder–control pair. While in the second stage,
referred to as the operation stage, the trained encoder–controller pair, in form of a
look-up table is applied to real data. Illustrated in Figure 2.6 is an example of the
operation stage with the trained codebook at the encoder and controller. The train-
ing stage is thoroughly studied in Chapters 3–4, leading to an iterative optimization
algorithm. The idea of the iterative training is inspired by traditional quantizer de-
sign [Far90, GG92], where the encoder is updated by fixing the controller, and the
controller is updated by fixing the encoder, back and forth. The iteration terminates
when a certain convergence is reached. Unfortunately, this method can not guar-
antee convergence to a global optimum, but by influencing the initial conditions of
the design it is possible to search for good locally optimal designs.

2.6 Summary

In this chapter, we first introduced the general system model for control of a linear
plant over a finite-rate noisy channel. The model embodies process noise, measure-
ment noise and a noisy channel with finite input and finite output alphabets. By
varying the information pattern at each component, this model can describe a wide
range of practical scenarios. Second, the overall design problem is formulated to
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Figure 2.6: The encoder, the channel and the controller. There is a trained codebook
at the encoder and the controller based on received symbols jt0.

minimize a quadratic cost by optimizing the encoder–controller mappings. Finally,
how the encoder–controller pair operate is described by illustrative examples. In
the next chapter, criteria for updating the encoder and controller mappings are
developed.



Chapter 3

Iterative Design

3.1 Introduction

In this chapter, we propose a joint design of the sensor measurement quan-
tization, channel error protection, and optimal controller actuation, with the
objective to minimize the expected linear quadratic cost over a finite horizon.

As argued in Chapter 2, this encoder–controller optimization problem is known
to be hard in general, and an iterative design procedure can be derived inspired
by traditional quantizer designs in which the controller is optimized for a fixed
encoder, then the encoder is optimized for a fixed controller etc. Unlike in most
previous work on minimum data rate control, our main concern is optimal average
performance over a finite horizon, given a fixed transmission rate. We derive and
analyze optimality criteria that we employ to suggest an iterative design algorithm.
The performance of the optimized system is then investigated through numerical
simulations.

As a significant step in motivating our optimality criteria, we comment on the va-
lidity of decoder–controller separation in iterative encoder–controller design. Similar
discussions have previously appeared in, for example, [TM04b, TSM04, NFZE07].
However, these works focused on existence of optimal systems, while we need a sep-
aration criterion that can be used at each step in our design algorithm. As will be
discussed below, this leads to some subtle but important differences in the validity of
the corresponding results. We also emphasize that in contrast to [TSM04, NFZE07]
we consider control over a noisy channel, and in contrast to [MS04b] we allow for
general initial-state and noise distributions1. In addition, we introduce a general
model, not present in previous work, that captures the potential presence of partial
SI at the encoder regarding the received symbols at the controller. The details of
the system model can be found in Chapter 2.

The remaining part of this section is organized as follows. First, the problem of
finding the optimal control policy for a fixed encoder is addressed in Section 3.2. In

1That is, not necessarily Gaussian; meaning that sufficient statistics at the encoder can in
general not be computed based on a Kalman filter, even in the presence of perfect encoder SI.

43
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Section 3.3, we consider the problem of optimizing one single encoder component,
assuming that the controller and other encoder mappings are fixed. The encoding
problem for certain special cases of the general settings from Section 2.2 is discussed
in more detail to illustrate the impact of the process noise, measurement noise
and transmission errors. The overall training algorithm is presented in Section 3.4.
Numerical simulations are performed in Section 3.5 to demonstrate the performance
of the training method. Finally, a brief summary of the chapter can be found in
Section 3.6.

Throughout this chapter, we denote the conditional mean estimator of the state
xs, based on the history of the received indices jt0, as

x̆s|t , E
{
xs| jt0

}
, s ≤ t,

to distinguish from the previously mentioned conditional mean estimator x̂s|t =
E {xs|yt0}. With an ideal communication channel between the sensor and controller,
the state measurements are directly available at the controller, and the controller
can compute the estimate x̂s|t. However, when there is a non-ideal channel between
the sensor and controller, the controller has only access to the received data jt0 to
estimate xt, which gives x̆s|t. For brevity, we will use x̆t as a short notation for
x̆t|t=E {xt| jt0}. Then, let x̃t be the estimation error in estimating the state at time
t, as

x̃t = xt − x̆t = xt −E
{
xt| jt0

}
.

3.2 Optimal Controller for Fixed Encoder

This section presents the main results on the problem of characterizing optimal con-
trollers. In particular, we investigate the optimal controller mapping gt, assuming
the encoder fT−1

0 is fixed. We begin with a study of the general case in Section 3.2.1,
leading to an optimal control equation which is hard to solve. Thereafter, in Sec-
tion 3.2.2, we investigate the full SI scenario by introducing a modified system using
an “open-loop encoder”. The optimal control equation is solved for this type of sys-
tem. Finally, in Section 3.2.3, we discuss how to use the results in Section 3.2.2 in
designing the system for the general case of partial SI.

3.2.1 General Case

The problem of finding the optimal control assuming the encoder is fixed fits well
into the setting of stochastic optimal control, e.g., [Aok67]. We apply dynamic
programming to derive the optimal control policy recursively. In this case, the
observations available at the controller are the integer indices jt0. Resembling a
classical result in LQ control, we present the following proposition.

Proposition 3.2.1. Consider a fixed encoder fT−1
0 . Given the plant (2.1) and

the memoryless channel (2.4), a controller mapping (2.5) that minimizes the LQ
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Figure 3.1: An equivalent implementation of the system when a special class of
encoders ft
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)
is employed.

cost (2.10) fulfills the following recursive relation

u⋆t−1 = arg min
ut−1

γt,

γt = λt + E
{
γ⋆t+1

∣
∣ jt−1

0

}
,

λt , E {(Axt−1 +But−1 + vt−1)′Vt(Axt−1 +But−1 + vt−1)

+u′t−1Pt−1ut−1

∣
∣ jt−1

0

}
,

(3.1)

for t= 1, . . . , T , where the cost-to-go γt is initialized at t= T +1 with the optimal
cost-to-go γ⋆T+1 =0.

The proof of Proposition 3.2.1 is given in Appendix 3.A.
Unfortunately, it is in general not possible to solve (3.1) efficiently. One main

obstruction lies in how the term E
{
γ⋆t+1|jt−1

0

}
is affected by past controls. This

term is difficult to analyze, since the received indices jt−1
0 are themselves functions

of past controls via encoding and transmission. Hence, obtaining an explicit solu-
tion to (3.1) is typically not feasible. In the following two subsections we will first
investigate the case of full SI and demonstrate that this assumption significantly
simplifies the problem. Then we will discuss how to apply the conclusions derived
assuming full SI in the general case.

3.2.2 Full Side-Information

An explicit solution to the optimal control problem (3.1) can essentially be obtained
only in a few special cases. In this section we look at the special case when the
encoder has full SI, zt=jt. In this case we are able to provide a characterization of
the optimal system.
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Figure 3.2: A closed-loop control system that employs an open-loop encoder.

Assume that full SI is available at the encoder, zt=jt. The encoder mapping at
t is given as ft(ytte , j

t−1
0 ). Now, let us look at the system in Figure 3.1, where the

function ht(ut−1
0 ) is the mapping that gives

ȳt = yt − ht(ut−1
0 ) = yt −

t−1∑

s=0

CAt−1−sBus.

Note that ȳt is the part of yt remaining after removing the effect of all previous
control commands, so ȳt depends only on x0, vt−1

0 and et,

ȳt = CAtx0 +

t−1∑

s=0

CAt−1−svs + et.

That is, ȳt is the equivalent open-loop measurement. Furthermore, in Figure 3.1 the
mapping nt : LtJ 7→ R

p is defined as

nt(j
t−1
0 ) ,

t−1∑

s=0

CAt−1−sBgs(j
s
0),

where the output is used to reproduce the measurement yt. Observe that the only
parameters needed to specify ht are the matrices A, B and C, while nt requires
knowing the controller mappings gt−1

0 . That is, if the controller is changed, the
mapping nt also changes. Since the operation carried out by ht and nt cancel out,
it is obvious that the system in Figure 3.1 gives exactly the same value for the
cost (2.9) as the one shown in Figure 2.1, provided the same encoder fT−1

0 and
controller gT−1

0 are used.
Now consider the mapping from the open-loop measurement ȳt and the SI jt−1

0 to
the index it, as enclosed within the dashed line in Figure 3.1. We call this the open-
loop encoder mapping. Motivated by Figure 3.1, we define the system in Figure 3.2,
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assuming the same controller but a completely general mapping f̄t(ȳtte , j
t−1
0 ) (that

is, one not necessarily related to ft and nt as in Figure 3.1). We call the system in
Figure 3.2 the open-loop encoder system. For a given open-loop encoder system as
in Figure 3.2, with the open-loop encoder f̄T−1

0 and controller gT−1
0 specified, one

can construct a system with the original structure of Figure 2.1 which has exactly
the same performance. The corresponding system in Figure 2.1 utilizes the same
controller gT−1

0 , together with an encoder whose components are determined by
f̄T−1
0 and gT−1

0 as

ft(y
t
te , j
t−1
0 )

=f̄t

(

yte−
te−1∑

s=0

CAte−1−sBgs(j
s
0), . . . , yt−

t−1∑

s=0

CAt−1−sBgs(j
s
0), jt−1

0

)

, t=0, . . . , T−1.

(3.2)
Note that, {j−1

0 } is an empty set, as explained in Chapter 1. For the open-loop
encoder system, we formulate the following problem.

Problem 3.2.2. Consider an open-loop encoder system as illustrated in Figure 3.2.
Given the linear plant (2.1) and the memoryless channel (2.4), find the open-loop
encoder and controller mappings {f̄⋆t (ȳtte , j

t−1
0 )}T−1

t=0 and {g⋆t (jt0)}T−1
t=0 , that minimize

the LQ cost (2.10).

It is worthwhile here to emphasize our line-of-thought: Neither of the systems in
Figures 3.1–3.2 fits our original model in Figure 2.1, in particular since in Figure 2.1
there is no connection from the controls to the encoder (via the mapping ht).
Hence it is not obvious why formulating Problem 3.2.2 is relevant. In the following
propositions we will however demonstrate how the optimal control problem can be
solved for the open-loop encoder system in Figure 3.2, while we are not able to solve
it in the case of the original system in Figure 2.1. We therefore emphasize here that
the purpose of introducing the open-loop encoder system in Figure 3.2 is to have
access to a “virtual help-system” in the sense that we will optimize the design for
this system and argue that the solution is useful also in the original system.

Open-loop systems similar to the one shown in Figure 3.2 were considered also
in [TSM04, NFZE07] (for noiseless channels). However, there is a very important,
albeit quite subtle, difference in that the equivalent systems in [TSM04, NFZE07]
need to use the controller mapping inside the encoder to “open the loop.” This is
in contrast to our open-loop encoder system in Figure 3.2 where the encoder is a
completely arbitrary mapping, and where the loop is opened by subtracting the
controls via ht. This is crucial for the approach in this chapter, since in each step of
the iterative design the controller is fixed while updating the encoder, and vice versa.
In particular, a controller that perfectly fits the encoder is not known when updating
the encoder. Hence, as will be demonstrated, our open-loop encoder system is useful
in iterative design, while this is not the case with previously proposed equivalent
systems. To our knowledge, this issue has not been settled in previous work.
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Now, given the plant, the memoryless channel and the design criterion, the so-
lutions to the original Problem 2.4.1 and the corresponding Problem 3.2.2 for the
open-loop encoder system are closely related, as revealed by the following proposi-
tion.

Proposition 3.2.3.

1. Consider a solution {f⋆t (ytte , j
t−1
0 ), g⋆t }T−1

t=0 to Problem 2.4.1. The same con-
troller g⋆ T−1

0 and the open-loop encoder specified by {f⋆t (ytte , j
t−1
0 ), g⋆t }T−1

t=0 ac-
cording to,

f̄t(ȳ
t
te , j
t−1
0 )

=f⋆t

(

ȳte+

te−1∑

s=0

CAte−1−sBg⋆s(j
s
0),. . ., ȳt+

t−1∑

s=0

CAt−1−sBg⋆s(j
s
0), jt−1

0

)

, t=0,. . ., T−1,

(3.3)
jointly solve Problem 3.2.2.

2. Consider a solution {f̄⋆t (ȳtte , j
t−1
0 ), g⋆t }T−1

t=0 to Problem 3.2.2. The same con-
troller g⋆ T−1

0 and the encoder {ft(ytte , jt−1
0 )}T−1

t=0 which are specified by the
encoder–controller {f̄⋆t (ȳtte , j

t−1
0 ), g⋆t }T−1

t=0 according to

ft(y
t
te , j
t−1
0 )

=f̄⋆t

(

yte−
te−1∑

s=0

CAte−1−sBg⋆s(j
s
0),. . ., yt−

t−1∑

s=0

CAt−1−sBg⋆s(j
s
0), jt−1

0

)

, t=0,. . ., T−1,

(3.4)
jointly solve Problem 2.4.1.

Proof. The proof is based on straightforward observations.

1. If the open-loop encoder {f̄t(ȳtte , jt−1
0 )}T−1

t=0 derived according to (3.3), and
g⋆ T−1

0 do not jointly solve Problem 3.2.2, another solution to Problem 3.2.2
provides a cost lower than the one given by {f̄t(ȳtte , jt−1

0 ), g⋆t }T−1
t=0 . If this is the

case, using the encoder specified by the solution to Problem 3.2.2 according
to (3.2), jointly with the controller of the same solution, must lead to a lower
cost than the one resulting from {f⋆t (ytte , j

t−1
0 ), g⋆t }T−1

t=0 . This contradicts the
statement that {f⋆t (ytte , j

t−1
0 ), g⋆t }T−1

t=0 is a solution to Problem 2.4.1. Hence,
the statement in Proposition 3.2.3 must be true.

2. The proof is similar to part 1.

Proposition 3.2.3 indicates that a solution to Problem 3.2.2 specifies a solution
to Problem 2.4.1, and vice versa. As we will discuss below, when using the iterative
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design approach, Problem 3.2.2 is in general easier to solve than Problem 2.4.1.
Hence, in the special case of full SI we will focus on finding a solution to Prob-
lem 3.2.2, and derive a corresponding solution to Problem 2.4.1 according to (3.4).
Again, we note that Problem 3.2.2 is not an equivalent problem (as the system in
Figure 2.1 cannot be transformed into the system in Figure 3.2). However, we will
argue that striving to solve Problem 3.2.2 will result in encoder–controller pairs that
can be converted to fit the original scenario in Figure 2.1. Recall that the iterative
design approach alternates between specifying an encoder for a fixed controller and
updating the controller for a fixed encoder. In the remaining part of this subsec-
tion, we will therefore study the optimal control problem for the open-loop encoder
system in Figure 3.2, assuming a fixed and general open-loop encoder f̄T−1

0 (this
encoder may be completely unrelated to any encoder fT−1

0 in the original system).
Consider now a fixed sequence of open-loop encoder mappings f̄T−1

0 in the open-
loop encoder system (that is, f̄t is fixed and does not change when the controller
mappings change). Note that for any such fixed mappings, the transmitted indices
it0 do not depend on the controls ut−1

0 , since the open-loop measurements ȳtte does
not depend on ut−1

0 and since i0 = f̄0(ȳ0), i1 = f̄1(ȳ1
te , j0), i2 = f̄2(ȳ2

te , j0, j1), etc.,
and jt depends only on it and potential channel errors. By virtue of this fact, we
will be able to solve (3.1), as revealed by Proposition 3.2.4.

Proposition 3.2.4. Consider the open-loop encoder system in Figure 3.2, assum-
ing a fixed open-loop encoder f̄T−1

0 = {f̄t(ȳtte , jt−1
0 )}T−1

t=0 . Given the plant (2.1) and
the memoryless channel (2.4), the controller ut = gt(j

t
0) that minimizes the LQ

cost (2.10) is given by
ut = ℓtx̆t, (3.5)

where x̆t=E {xt| jt0}. The linear control law ℓt is recursively computed as

ℓt = −(Pt +B′(Vt+1 + IT−t−1)B)†B′(Vt+1 + IT−t−1)A,

IT−t−1 , A′(Vt + IT−t−2)A− πT−t−1,

πT−t−1 , A′(Vt + IT−t−2)B(Pt−1 +B′(Vt + IT−t−2)B)†

×B′(Vt + IT−t−2)A,

(3.6)

where It is initialized with I1 =A′VTA − A′VTB(PT−1 + B′VTB)†B′VTA, and (·)†
denotes the Moore-Penrose pseudoinverse. The resulting optimal cost-to-go γ⋆t+1 is

γ⋆t+1 = E
{
x′tIT−txt +̟T−t| jt0

}
,

IT−t = A′(Vt+1 + IT−t−1)A− πT−t,
πT−t = A′(Vt+1 + IT−t−1)B(Pt +B′(Vt+1 + IT−t−1)B)†

×B′(Vt+1 + IT−t−1)A,

̟T−t = ̟T−t−1 + Tr {(Vt+1 + IT−t−1)Qt}+ E
{
x̃′tπT−tx̃t| jt0

}
.

(3.7)

The proof of Proposition 3.2.4 is given in Appendix 3.B.
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The results (3.5) and (3.6) illustrate that given a fixed open-loop encoder f̄T−1
0 ,

it is possible to characterize the optimal control policy (3.1) explicitly. Observe that
the optimal control policy (3.5) is decomposed into a separate estimator/decoder
and a controller. Hence, the separation property holds [Aok67]. Additionally, one
can show that the derived optimal controller (3.5) is a certainty equivalence (CE)
controller. As explained in Chapter 1, the CE controller in general does not provide
optimum performance. In our case, we are able to show that the resulting CE con-
troller in (3.5) is optimal for the open-loop encoder system in Figure 3.2, assuming
a fixed open-loop encoder. However, since the open-loop encoder system is not an
instance of the original system in Figure 2.1, we cannot claim that the CE controller
structure is optimal given a fixed encoder fT−1

0 in the original system.
The CE controller is optimal if the second moment of the estimation error

x̃t does not depend on past controls [BST74]. This is obviously the case in the
open-loop system since the dependence on ut is removed before encoding. (This
is not needed in the classical linear quadratic Gaussian (LQG) problem, where
the CE controller is optimal because the estimation error is Gaussian distributed
with a fixed variance.) As mentioned, similar approaches are also exploited in, e.g.,
[TSM04, NFZE07], assuming fully observed plants and noiseless transmission. The
problem gets more involved when measurement noise and transmission errors are
present. And, again, the corresponding open-loop system in [NFZE07] requires the
encoder to have instantaneous access to the controller mapping, while our result
is directly applicable to iterative encoder–controller design (as described in Sec-
tion 3.4).

Given a fixed encoder fT−1
0 , used in the original system in Figure 2.1, the CE

controller is not necessarily the corresponding optimal control strategy. Still, in the
jointly optimal pair {f⋆ T−1

0 ,g⋆ T−1
0 } that solves Problem 2.4.1, the controller g⋆ T−1

0

is a CE controller, as concluded in the following proposition.

Proposition 3.2.5. If {f⋆t
(
ytte , j

t−1
0

)
, g⋆t }T−1

t=0 solves Problem 2.4.1, the controller
g⋆ T−1

0 is the CE controller given by (3.5)–(3.6) for fT−1
0 = f⋆ T−1

0 .

Proof. Given the linear plant (2.1), the memoryless channel (2.4) and the LQ
cost (2.10), one can find a solution {f̄⋆t (ytte , j

t−1
0 ), g⋆t }T−1

t=0 to Problem 3.2.2. According
to Proposition 3.2.3, the following encoder

f⋆t (ytte , j
t−1
0 )

=f̄⋆t

(

yte−
te−1∑

s=0

CAte−1−sBg⋆s(j
s
0),. . ., yt−

t−1∑

s=0

CAt−1−sBg⋆s(j
s
0), jt−1

0

)

, t=0,. . ., T−1,

and the controller g⋆ T−1
0 jointly specify a solution to Problem 2.4.1. As shown by

Proposition 3.2.4, g⋆ T−1
0 given by (3.5)–(3.6), is a CE controller in the open-loop

encoder system. Observe that given ȳtte and jt−1
0 , the encoders f̄⋆t (ȳtte , j

t−1
0 ) and

f⋆t (ytte , j
t−1
0 ) produce exactly the same it. Therefore, x̆t and consequently the CE

controller are identical for both systems in Problem 2.4.1 and Problem 3.2.2.
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Again, Proposition 3.2.5 states that the optimal controller corresponding to
the optimal encoder f⋆ T−1

0 is the CE controller. While, in the general case, the
optimal controller corresponding to any encoder fT−1

0 does not necessarily satisfy
the separation principle. This is in contrast to the open-loop encoder system, where
the optimal controller for any given open-loop encoder is a CE controller. Thus, in
designing for the “virtual help-system” defined by the open-loop encoder system,
we can use a CE controller in each step of the design. Then, since we know that the
controller in the optimal pair for the original system can be separated, we employ
the design we get for the open-loop system in the original system, via translation.
Proposition 3.2.5 motivates this last step.

3.2.3 Partial Side-Information

When only partial SI (LZ < LJ) is available at the encoder in the case of the
original system in Figure 2.1, there is no result corresponding to Proposition 3.2.5
that motivates using the open-loop encoder system with a CE controller as a basis
for the design. In the optimal encoder–controller pair for the original system, the
controller may not be separated without loss in the case of partial SI. Since we are
not able to solve (3.1) in the general case, we resort to using the CE controller as
a sub-optimal alternative to solving (3.1). That is, in the case of partial SI at the
encoder, we propose an iterative design for the original system in Figure 2.1 based
on constraining the controller to be a CE controller. For completeness, and for later
reference, we state the corresponding expressions as follows: Consider the original
system Figure 2.1, assuming a fixed encoder fT−1

0 . By the “CE controller” for this
system, we mean the corresponding mapping (3.5),

ut = ℓtx̆t,

where x̆t=E {xt|jt0}, and where the linear control law ℓt is computed as

ℓt = −(Pt +B′(Vt+1 + IT−t−1)B)†B′(Vt+1 + IT−t−1)A,

IT−t−1 = A′(Vt + IT−t−2)A− πT−t−1,

πT−t−1 = A′(Vt + IT−t−2)B(Pt−1 +B′(Vt + IT−t−2)B)†B′(Vt + IT−t−2)A,

where It is initialized as I1 =A′VTA−A′VTB(PT−1 +B′VTB)†B′VTA.

3.3 Optimal Encoder for Fixed Controller

In this section, we address the problem of optimizing the encoder component ft, for
a fixed controller gT−1

0 and fixed encoder components f t−1
0 and fT−1

t+1 . The optimal
encoder mapping needs to take the impact of the predicted future state evolutions
into account. The following results are a straightforward consequence of the system
assumptions and the design criterion.
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Proposition 3.3.1. Consider a fixed controller gT−1
0 and fixed encoder components

f t−1
0 , fT−1

t+1 . Given the linear plant (2.1) and the memoryless channel (2.4), the en-
coder component ft(ytte , z

t−1
0 ) that minimizes the LQ cost (2.10) is given by

it = arg min
k∈LI

E

{
T∑

s=t+1

(x′sVsxs + u′s−1Ps−1us−1)
∣
∣
∣ytte , it = k, zt−1

0

}

. (3.8)

Proof. The proof follows the principle of optimality. Recall the LQ cost (2.10), i.e.,

E {Jtot} = E

{
T∑

t=1

x′tVtxt + u′t−1Pt−1ut−1

}

.

The mapping ft influences E {Jtot} by producing it based on ytte and zt−1
0 . Hence,

it influences the states and controls that depend on it, i.e., xTt+1 and uT−1
t .

Let St(k, zt−1
0 ) denote the set of all ytte such that it= k∈LI given zt−1

0 . Since
E {Jtot} = E

{
E {Jtot|ytte , it, zt−1

0

}}
, specifying the optimal mapping ft is equiv-

alent to specifying the set St(k, zt−1
0 ) such that the inner term J(ytte , k, z

t−1
0 ) =

E
{
Jtot|ytte , it=k, zt−1

0

}
is minimized over k∈LI given ytte and zt−1

0 . That is

St(k, zt−1
0 ) , {ytte : J(ytte , k, z

t−1
0 ) ≤ J(ytte , l, z

t−1
0 ), 1 ≤ l ≤ LI}.

Since for any k, l∈LI ,

E

{
t∑

s=1

x′sVsxs + u′s−1Ps−1us−1

∣
∣
∣ytte , it = k, zt−1

0

}

= E

{
t∑

s=1

x′sVsxs + u′s−1Ps−1us−1

∣
∣
∣ytte , it = l, zt−1

0

}

,

because the choice of it only influences “future” terms, we equivalently get

St(k, zt−1
0 ) = {ytte : J+(ytte , k, z

t−1
0 ) ≤ J+(ytte , l, z

t−1
0 ), 1 ≤ l ≤ LI},

where

J+(ytte , k, z
t−1
0 ) , E

{
T∑

s=t+1

x′sVsxs + u′s−1Ps−1us−1

∣
∣
∣ytte , it = k, zt−1

0

}

.

This concludes the proof.

The encoder is specified by the encoder regions St(k, zt−1
0 ), k∈LI , t=0,. . ., T−1.

For Me>1 and p>1, it is often difficult to parameterize these regions, as they are
subsets of R

p×(Me+1), for each possible zt−1
0 . However, in the scalar case, Me = 1

and p=1, assuming “smooth” (continuous or differentiable) initial-state and noise
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pdf’s, the regions, St(k, zt−1
0 ), k ∈ LI , are non-overlapping subsets of R, for each

possible zt−1
0 . Therefore, they can be specified by storing the boundaries between

them. In the Gaussian case (Gaussian initial-state and noise pdf’s) our numerical
results indicate that the regions always become intervals when the training is close
to convergence. Hence, St(k, zt−1

0 ) can often be parameterized by storing at most
LI−1 real values for each possible zt−1

0 . However, as it is possible to find controllers
that result in disconnected optimal sets St(k, zt−1

0 ), it cannot be said in general
that the encoder regions are intervals. This also means that it is not possible to
parameterize the encoder regions as intervals without loss. More studies on the
properties of the encoder regions are given in Chapter 4.

In Proposition 3.3.2 below, we present a similar result for the open-loop encoder
in an open-loop encoder system. This result is useful when looking for locally op-
timal solutions to Problem 3.2.2 by iteratively alternating between optimizing the
open-loop encoder and the CE controller.

Proposition 3.3.2. Consider a fixed controller gT−1
0 and fixed open-loop encoder

components f̄ t−1
0 and f̄T−1

t+1 . Given the linear plant (2.1) and the channel (2.4), the
open-loop encoder mapping f̄t(ȳtte , j

t−1
0 ) that minimizes the LQ cost (2.10) is given

by

it = arg min
k∈LI

E

{
T∑

s=t+1

(x′sVsxs + u′s−1Ps−1us−1)
∣
∣
∣ȳtte , it = k, jt−1

0

}

. (3.9)

The proof is similar to the one of Proposition 3.3.1 with the modification that
{ȳtte , jt−1

0 } is the information available at the open-loop encoder. Since the CE con-
troller in (3.5) is the optimum control strategy in an open-loop encoder system
assuming a fixed open-loop encoder f̄T−1

0 , the following result is very useful.

Corollary 3.3.3. Consider an open-loop encoder system. There exists a solution
to Problem 3.2.2 that satisfies the following conditions: The controller mapping is
given by ut=ℓtx̆t with ℓt as in (3.6); and the open-loop encoder mapping f̄t is given
by

it = arg min
k∈LI

E

{
T−1∑

s=t

x̃′sπT−sx̃s

∣
∣
∣ȳtte , it = k, jt−1

0

}

, (3.10)

where πT−t is given in (3.7).

Proof. By Proposition 3.2.4 we know, given a fixed open-loop encoder (in this
case the optimal open-loop encoder), the CE controller (3.5) is the optimal control
strategy. Also, it is clear from (3.7) that, the choice of it influences only the term

E
{
∑T−1
s=t x̃

′
sπT−sx̃s

∣
∣
∣ jt0

}

in cost-to-go γt+1. This concludes the proof.

In the case of full SI or the open-loop encoder system, the encoding rule (3.9) is
replaced with (3.10), in order to reduce computations. Also notice that the encoder
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in (3.10) directly minimizes the weighted estimation error

E {x̃′sπT−sx̃s} , s = t, . . . , T − 1.

Hence there is “separation” between quantization/coding/estimation and control,
since the encoder tries to minimize the (weighted) average mean-squared error and
since the CE controller splits into computing the estimate x̆t and the scaling ℓt.
The encoding is influenced by the control problem only via the matrices πT−s, s=
t, . . . , T−1, and computing x̆t at the receiver side can be interpreted as decoding
or estimation.

3.3.1 Optimal Encoding for some Special Linear Systems and
Channels

This subsection is devoted to a discussion of the encoder design in Proposition 3.3.1
for certain special cases of the general system described in Chapter 2. In particular,
we compare the scenarios where process noise and measurement noise are absent
and the communication link from the encoder to the controller is error-free. The
following results, stated without proof, are a direct consequence of Proposition 3.3.1.

Corollary 3.3.4. Consider a fixed controller gT−1
0 , and the fixed encoder compo-

nents f t−1
0 and fT−1

t+1 , for a linear plant (2.1) and a memoryless channel (2.4).

1. If vt=et=0 and jt= it, the encoder mapping ft(ytte , z
t−1
0 ) that minimizes the

LQ cost (2.10) is given by

it = arg min
k∈LI

E

{
T∑

s=t+1

(x′sVsxs + u′s−1Ps−1us−1)
∣
∣
∣xtte , it = k, zt−1

0

}

, (3.11)

where the expectation is over the initial-state distribution.

2. If et=0 and jt= it, the encoder mapping ft(ytte , z
t−1
0 ) that minimizes the LQ

cost (2.10) is given by (3.11), where the expectation is over the initial-state
and the process noise distributions.

3. If et=0 and jt 6= it, the encoder mapping ft(ytte , z
t−1
0 ) that minimizes the LQ

cost (2.10) is given by (3.11), where the expectation is over the initial-state
distribution, the process noise distribution and the channel distribution.

In all the three cases above, the optimal encoder is described by (3.11). However,
the same expression leads to different levels of computational complexity. In the first
case, the initial-state is the only uncertainty involved in the estimation of the current
controller state and the prediction of the future evolution. In the second case, the
expectation takes not into account only the distribution of the initial-state but also
the distribution of the process noise. In the last case, the complexity is further
increased, in order to additionally take transmission errors into consideration.
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Initialize fT−1
0 and gT−1

0 ,

k :=0. Let Ĵtot(0)=E {Jtot}.

k :=k+ 1,

t :=0.

For fixed f
t−1
0 , f

T−1
t+1 , g

T−1
0 ,

update ft.

For fixed f
T−1
0 , g

t−1
0 , g

T−1
t+1 ,

update gt.

t=T?

|Ĵtot(k) − Ĵtot(k − 1)|<∆J?

End.

Compute Ĵtot(k)=E {Jtot}.

t := t+1.

Yes

Yes

No

No

Figure 3.3: The flow-diagram of the iterative encoder–controller optimization pro-
cedure. The variable k is a counter for the number of rounds. In each round, all the
mappings fT−1

0 and gT−1
0 are updated. The value Ĵtot(k) represents the resulting cost

E {Jtot} after the kth round. The iteration is terminated when the improvement in
the system performance is less than a certain threshold ∆J .
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3.4 Iterative Encoder–Controller Design Algorithm

In this section, we propose an encoder–controller design algorithm based on the
results from Section 3.2 and Section 3.3. The design is suitable in particular for low
transmission rates, and since the algorithm strives to find good encoder–controller
pairs for a given noisy channel, it introduces protection against transmission errors.
That is, the result is a design for joint quantization, error protection and control.
Since the controller information jt0 has finite resolution, there are only a finite
number of possible control commands. Thus, these values can be pre-calculated
and stored in a codebook at the controller.

As mentioned, the overall joint encoder–controller optimization problem is typ-
ically not tractable, and we therefore propose to optimize the encoder–controller
pair iteratively. There are two cases to handle separately:

1. Full encoder SI: In this case, as discussed in Section 3.2.2, we carry out the
design for the open-loop encoder system and then use Proposition 3.2.3 to
convert the solution to the original problem in Figure 2.1.

2. Partial encoder SI: In this case, we constrain the controller to be a CE con-
troller, as discussed in Section 3.2.3, and carry out the design for the original
system in Figure 2.1.

Figure 3.3 depicts a flow-diagram of the design procedure, with notation for
the original system (the case of partial SI). An initial encoder–controller pair is
specified. Thereafter, each encoder–controller component, f0, g0, . . . , fT−1, gT−1,
is successively optimized. After one round, if the improvement is not below a pre-
defined threshold ∆J , a new round is started to update f0, g0, . . . , fT−1, gT−1. At
time t, first ft is updated for fixed f t−1

0 , fT−1
t+1 , gT−1

0 and then gt is updated for fixed
fT−1
0 , gt−1

0 , gT−1
t+1 . The currently derived ft will replace the former one to be regarded

as a fixed component in optimizing the other components f t−1
0 , fT−1

t+1 and gT−1
0 ,

until next time when ft is updated. The rules for updating the encoder–controller
components are developed in Section 3.2 and Section 3.3. In particular, we update
the encoder component ft using (3.8) and the controller gt using (3.5)–(3.6).

In order to jointly optimize the open-loop encoder and controller in an open-loop
encoder system, in the case of full encoder SI, we use instead Proposition 3.2.4 to
update the CE controller. For the encoding rule, we can use the encoding rule (3.9),
or (3.10).

The complexity of the design and the quality of the solution are important
practical issues. The complexity issues will be studied in detail in Chapter 4, while
a few remarks on the quality are given here.

In principle (and neglecting e.g. problems with numerical accuracy) the iterative
design procedure always converges to a local optimum in the case of the open-loop
encoder system. This is because the CE controller in Proposition 3.2.4 is optimal for
any f̄T−1

0 . That is, each time Proposition 3.2.4 is invoked, given an updated encoder,
the performance can only remain the same or improve. Similarly, each time the
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encoder is updated for a given controller, the resulting performance cannot decline.
This is the usual rationale behind proving convergence for iterative training-based
designs [SG86, GG92]. Again, in principle the design converges to a stationary
point, but nothing can in general be said about the global optimality of this point
[SG86].

However, in the general case (with only partial encoder SI) the design does not
necessarily converge at all, since in the step where the controller is updated the
expressions in (3.5)–(3.6) do not necessarily lead to a new controller with better
performance, because the CE controller is not necessarily optimal for the given
encoder. Still, in our numerical experiments this has not been a problem, and em-
pirically the design algorithm appears to converge to a solution also in the general
case. Loosely speaking, the explanation is that after a few iteration the fact that
the new controller is a better CE controller than the previous one makes the per-
formance improve (while during the first few iterations the performance need not
improve in each step, depending on the initialization).

3.5 Numerical Examples

In this section we present numerical experiments conduced to demonstrate the
performance of the encoder–controller proposed in Section 3.4. For the simplicity
of the presentation, we consider a linear scalar plant for which the most recent
measurement is encoded and transmitted over a binary symmetric channel. More
specifically, the system equations are

xt+1 = axt + ut + vt, a > 0,

yt = xt + et,

and the linear quadratic cost Jtot in the performance measure E {Jtot} is

Jtot =

T∑

t=1

x2
t + ρu2

t−1, ρ ≥ 0,

where ρ is the weighting parameter specifying the penalty on the control input. The
initial-state x0, process noise vt and measurement noise et are mutually independent
and modeled as N (0, σ2

x0
), N (0, σ2

v), N (0, σ2
e), respectively.

Because the theoretically optimal performance is not established, in the ex-
periments presented here two special cases are employed as the reference systems.
Briefly, we mention them here. First, it is obvious that the best performance is
achieved when the channel imperfections are absent. In the case of the ideal chan-
nel, Problem 2.4.1 is reduced to the classical LQG problem whose solution can be
regarded as the best achievable performance. On the other hand, a control is use-
less if it results in a system performance worse than without control. Therefore,
we adopt the non-control system to verify the inefficiency of an encoder–controller
pair.
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In what follows, we describe the four types of coding–control schemes which are
used in the experiments.

1. U-Kalman I

The first type, referred to as U-Kalman I, uses a time-invariant uniform quantizer
to quantize state measurements. At the controller, the received index jt is mapped
into a reconstruction value which is then fed into a Kalman filter for the estimation
of the state xt. The Kalman filter is designed assuming the error cased by measure-
ment noise, quantization distortion, and transmission errors, is white and Gaussian
distributed. Thereafter, the control is calculated as a linear function of the Kalman
filter output. The linear feedback control law is ℓt in (3.6). By this method, the
distortion due to the quantization and channel error is treated as parts of measure-
ment noise. Note that, the “extended” measurement noise (including quantization
error and channel error) is in fact neither Gaussian nor uncorrelated with the state
and the process noise, which makes the Kalman filter a sub-optimal estimator.

2. U-Kalman II

The second type, referred to as U-Kalman II, adopts a time-invariant uniform quan-
tizer to quantize the state measurements. At the controller, the decoded symbols
are fed into a Kalman filter to estimate xt. The Kalman filter is designed assuming
that the channel is absent and the system is not exposed to the quantization and
transmission errors. Finally, the control is a linear function of the Kalman filter
output that the linear control law is ℓt (3.6).

3. U-CE

The third type, referred to as U-CE, utilizes a time-invariant uniform encoder to
encode the state measurements, and a CE controller at the receiver side. That is
to say ut= ℓtE {xt|jt0}, cf., (3.5). The linear control law ℓt is recursively computed
according to (3.6). This class of coding–control scheme is chosen in the interest of
demonstrating the significance of the CE controller. As shown later in the simula-
tions, the CE controller is important to the overall performance.

4. Proposed Encoder–Controller

The last type, referred to as the proposed encoder–controller, is trained iteratively
as proposed in Section 3.4, for an encoder of full SI and Me = 0. As explained
previously, the initial settings of the encoder–controller will affect the iteration
result. In the experiment we use U-CE as the initial setup, which often yields good
result.

The overall system performance is determined by a variety of system parameters.
The relations among them are complicated, therefore a number of experiments were
pursued to investigate the important system parameters, such as data rate, channel
errors, SI etc. In what follows, we will discuss each of them in detail.
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Figure 3.4: System performance is shown with respect to the crossover probability
ǫ. The state response xt, the transmitted symbol it, the received symbol jt and the
control ut are depicted. In this example, ǫ = 0.04 results in no transmission error
and ǫ=0.3 in three errors.

Channel Errors

How does the closed-loop system respond to channel errors is one of the main prob-
lems studied in this thesis. First, we assess the impact of the crossover probability
ǫ on the state response. In Figure 3.4, the state response of the system, by using
the proposed encoder–controller, is depicted together with the transmitted index it,
the received index jt, and the control input ut. The system parameters are chosen
in the interest of demonstrating the impact of control. In particular, the system
parameters are: a= 0.9, ρ= 0.5, T = 5 and R= 1. The initial-state and the noises
are modeled as N (0, 3), N (0, 0.5) and N (0, 0.5), respectively. The system has been
studied for the crossover probabilities ǫ=0.04 and ǫ=0.3. It can be observed from
Figure 3.4 that the number of symbol errors increases with ǫ. Then, since a symbol
error might result in a control command doing more harm than help, as expected,
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Figure 3.5: A performance comparison among the proposed encoder–controller and
two other encoder–controllers, namely U-Kalman I and U-CE.

the magnitudes of the admissible controls become smaller as the number of channel
errors increases.

In Figure 3.5, we compare the system performance of the proposed encoder–
controller with another two schemes, namely U-Kalman I and U-CE. The system
parameters are: a=1.1, ρ=0.5, T =2 and R=2. The initial-state and the noises are
modeled as N (0, 5), N (0, 0.5) and N (0, 0.5), respectively. The scheme U-Kalman I
has the encoder thresholds {−2, 0, 2} and the reconstruction values {−3,−1, 1, 3}.
The scheme U-CE has also the encoder thresholds {−2, 0, 2}. The performance
measure J̄tot is given by normalizing E {Jtot} with the expected cost obtained when
no control action is taken, cf., the horizontal line in Figure 3.5. It can be seen
from the figure that the proposed encoder–controller pair outperforms the other
two coding–control schemes evidently. Compared with the scenario using U-CE,
the improvement in performance of the proposed encoder–controller is moderate.
While, compared with the scenario using U-Kalman I, the improvement of the
proposed encoder–controller is significant. This observation indicates that the gain
obtained by the proposed encoder–controller appears to be mostly attributed to
the CE controller.

How do the proposed encoder and controller respond to the increasing channel
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Figure 3.6: The encoding boundaries given by f0 and the associated reconstructions
are shown with respect to the crossover probability ǫ.

error is illustrated in Figure 3.6. The system parameters are the same as in Fig-
ure 3.5. In the figure, we demonstrate the partition by the encoder mapping f0, and
the reconstructions x̆0, with respect to the growing ǫ. Recall that the control u0 is
a linear function of x̆0. We note that the number of different control inputs chosen
by the encoder decreases with increasing ǫ. This phenomenon, attributed to the
varying abilities of binary codewords in combating channel errors, is well-known in
quantization for noisy channels. That is, for channels with high error probability,
it is beneficial to transmit only the “stronger” codewords [Far90], providing true
redundancy for error protection. Note that, the asymmetry at ǫ = 0.16 is also a
consequence of the fact that the binary codewords are unequally sensitive to the
channel errors. Another impact of increasing ǫ is that the encoder thresholds and
the controls are all moved closer to zero, indicating that only small-valued control
actions are allowed.

In Figure 3.7, a comparison of all the four types of coding–control schemes, U-
Kalman I, U-Kalman II, U-CE, and the proposed encoder–controller, is depicted.
Especially, the scheme U-CE is displayed for several step lengths of the uniform
encoder. The system parameters are: a = 0.7, ρ = 0.5, T = 3 and R = 3. The
initial-state and the noises are modeled as N (0, 5), N (0, 1), N (0, 1), respectively.
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Figure 3.7: A performance comparison among various controller-encoders with re-
spect to the crossover probability ǫ. The scheme U-CE employs a uniform encoder
and a CE controller, where ∆ is the step length of the uniform encoder. The schemes
U-Kalman I and U-Kalman II employ a uniform encoder and a Kalman filter.

From the figure we see that the deterioration in system performance might not be
significant if the time-invariant uniform encoder is properly designed. Note that a
time-invariant encoder could be viewed as a performance bound for encoders with
no SI. All uniform encoders in Figure 3.7 have near-optimal step lengths. However,
if the step length is chosen improperly, it can have severe consequences.

Rate

In Figure 3.8 we demonstrate the impact of using different transmission rates to-
gether with measurement noise. The cost J̄tot is given by normalizing E {Jtot} with
the expected cost obtained without any control. The system parameters are: a=0.7,
ρ= 0.5, and T = 3. The initial-state and the process noise are modeled as N (0, 5),
N (0, 1) respectively. For all uniform encoders, we let the boundaries be kept equally
spaced between −2 and 2. Accordingly, the maximum quantization error in the sat-
urated region decreases with the increasing transmission rate. It can be seen in
the figure that the proposed encoder–controller pair outperforms the other three
coding–control schemes. Given the same encoder, the system employing a CE con-
troller always performs better than the systems employing the Kalman filters. Still,
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the figure shows that the gain obtained by the proposed encoder–controller appears
to be mostly attributed to the CE controller. Another interesting observation is that
U-Kalman I is not necessarily always superior to U-Kalman II. That means, the
way U-Kalman I handles the quantization distortion and transmission errors may
do more harm than good.

Side-Information

SI affects the system in several ways. In Figure 3.9, we show a comparison of differ-
ent degrees of SI when the encoder fT−1

0 is optimized. In particular, we explore no,
incomplete and full SI scenarios. In the experiment, the incomplete SI is generated
as follows. The least significant bit of the binary received codeword is discarded
and the resulting codeword is fed back to the encoder over a noiseless link. The
system parameters are the same as in Figure 3.5, i.e., a= 1.1, ρ= 0.5, T = 2 and
R= 2, and the initial-state and the noises are modeled as N (0, 5), N (0, 0.5) and
N (0, 0.5), respectively. We demonstrate the convergence properties of the training
algorithm by showing the successive iteration results J̄tot after each round. The
figure shows that the improvement given by knowing SI is moderate, since the opti-
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Figure 3.9: A performance comparison among full SI, incomplete SI and no SI
scenarios.

mized encoder–controller leads to close densities p(xt| yt, zt−1
0 ), irrespective of zt−1

0 .
However, it is expected that the advantage of having SI becomes more significant
when time horizon increases, because SI can reduce the encoder uncertainty in the
controller state which accumulates with time.

3.6 Summary

This chapter has investigated the joint optimization of the encoder and the con-
troller in closed-loop control of a linear plant with a low-rate feedback link over
a memoryless noisy channel. We introduced an iterative approach to the design
of encoder–controller pairs. In deriving design criteria, we arrived at new results
regarding the optimality of certainty equivalence controllers in our setting. In the
case of full encoder SI, we introduced a “virtual help-system,” the open-loop en-
coder system. We showed that a CE controller is optimal for any given encoder
in this system, and we argued that encoder–controller pairs designed for the help-
system can be translated to perform well in the original system. In the case of
partial SI, we cannot claim that enforcing the CE controller structure is with-
out loss. However, since the general controller problem is challenging in this case,
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we used CE controllers as sub-optimal, but practically feasible, approximations.
We have performed various numerical investigations. Our results demonstrate the
promising performance obtained by employing the proposed design algorithm. We
also investigated the impact on system performance of various degree of SI at the
encoder.
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3.A Proof of Proposition 3.2.1

Proof. According to the principle of optimality, e.g., [Ber76], the truncated control
sequence u⋆T−1

t = {u⋆t , . . . , u⋆T−1} is the optimal policy for the truncated problem
where the cost is summarized from time t+1 to T . Hence, the optimal ut is the one
that minimizes the sum of the future costs, i.e.,

u⋆t = arg min
ut

E

{
T∑

s=t+1

x′sVsxs + u′s−1Ps−1us−1

∣
∣
∣jt0

}

.

Let us start the recursive derivation at the last stage t = T . Since, the optimal
cost-to-go at t=T+1 is zero, i.e., γ⋆T+1 =0, the optimal uT−1 is the one minimizing
λT , namely,

λT = E
{
x′TVTxT + u′T−1PT−1uT−1

∣
∣ jT−1

0

}

= Tr {VTQT−1}+

∫

Rn

(x′T−1A
′VTAxT−1 + 2u′T−1B

′VTAxT−1

+ u′T−1(PT−1 +B′VTB)uT−1)p
(
xT−1| jT−1

0

)
dxT−1,

where the term Qt = E {vtv′t} denotes the covariance matrix of the process noise.
Since the noise variance QT−1 = E

{
vT−1v

′
T−1

}
is independent of the control uT−1,

the control uT−1 minimizing λT is then given by

u⋆T−1 = −(PT−1 +B′VTB)†B′VTAx̆T−1, (3.12)

where x̆T−1 = E
{
xT−1| jT−1

0

}
and (·)† denotes the Moore-Penrose pseudoinverse.

Substituting u⋆T−1 into λT , the optimal cost-to-go at t=T is

γ⋆T = min
uT−1

λT = E
{
x′T−1I1xT−1 +̟1

∣
∣ jT−1

0

}
,

I1 , A′VTA− π1,

π1 , A′VTB(PT−1 +B′VTB)†B′VTA,

̟1 , Tr {VTQT−1}+ E
{
x̃′T−1π1x̃T−1

∣
∣ jT−1

0

}
.

(3.13)

At the second last stage t=T − 1, the optimal uT−2 is the one minimizing γT−1, as

u⋆T−2 = arg min
uT−2

γT−1,

γT−1 = λT−1 + E
{
γ⋆T | jT−2

0

}
,

λT−1 = E
{
x′T−1VT−1xT−1 + u′T−2PT−2uT−2

∣
∣ jT−2

0

}
.

(3.14)

Generalizing to any time t, the optimal control u⋆t−1 can be obtained by solving the
following equation

u⋆t−1 = arg min
ut−1

γt = arg min
ut−1

{
λt + E

{
γ⋆t+1

∣
∣ jt−1

0

}}
,
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where γt is the cost-to-go, given by

γt = λt + E
{
γ⋆t+1

∣
∣ jt−1

0

}
,

λt = E {(Axt−1 +But−1 + vt−1)′Vt(Axt−1 +But−1 + vt−1)

+u′t−1Pt−1ut−1

∣
∣ jt−1

0

}
.

Note that γ0 =E {Jtot}. This concludes the proof.

As mentioned previously, it is in general not possible to solve (3.1) efficiently.
One main obstruction lies in how the term E

{
γ⋆t+1

∣
∣ jt−1

0

}
is affected by past controls.

Consider for example t=T−1. The quantity E
{
x̃′T−1π1x̃T−1

∣
∣ jT−1

0

}
in γ⋆T , is difficult

to analyze, since the received index jT−1 is itself a function of uT−2 via encoding and
transmission. Hence, obtaining an explicit solution to (3.1) is typically not feasible.

3.B Proof of Proposition 3.2.4

Proof. According to Figure 3.2, the open-loop encoder has access to the open-loop
measurement ȳtte and jt−1

0 . When the sequence of mappings f̄T−1
0 is fixed, we can

verify that the estimation error x̃t is not a function of ut−1
0 as follows

x̃t = xt − x̆t = Atx0 +
t−1∑

s=0

At−1−svs −E

{

Atx0 +
t−1∑

s=0

At−1−svs

∣
∣
∣jt0

}

,

since the controls ut−1
0 are completely determined by the received symbols jt−1

0 . As
{x0,v

T−1
0 , e

T−1
0 } are not affected by uT−1

0 , one can show by the following induction
that the indices jt0 are not functions of ut−1

0 . Start the induction at t = 0. The
statement holds true at t=0 since

i0 = f̄0(ȳ0) = f̄0(Cx0 + e0), j0 = E0(i0), z0 = j0.

Assuming for the moment the statement is valid for time t, as already validated for
t=0, then at time t+1,

it+1 = f̄t+1(ȳt+1
te , j

t
0), jt+1 = Et+1(it+1), zt+1 = jt+1,

which hence do not involve ut0. Therefore, iT−1
0 and jT−1

0 depend only on {x0, vT−1
0 ,

eT−1
0 } and potential channel errors, but not on uT−1

0 .
The fact that the estimation error x̃t = xt − x̆t is not a function of ut−1

0 for
the fixed mappings {f̄t(ȳtte , jt−1

0 )}T−1
t=0 will significantly simplify the derivation of

the optimal control. According to previous calculations, the optimal uT−1 is given
by (3.12), irrespective of the encoding. To derive the optimal uT−2, let us con-
sider (3.13) and (3.14). Since the covariance of the estimation error x̃T−1 is inde-
pendent of uT−2

0 , we can find the optimal uT−2 as

u⋆T−2 = ℓT−2x̆T−2,

ℓT−2 = −(PT−2 +B′(VT−1 + I1)B)†B′(VT−1 + I1)A,
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and the optimal cost-to-go at t=T−1 can be written as

γ⋆T−1 = E
{
x′T−2I2xT−2 +̟2

∣
∣ jT−2

0

}
,

I2 = A′(VT−1 + I1)A− π2,

π2 = A′(VT−1 + I1)B(PT−2 +B′(VT−1 + I1)B)†B′(VT−1 + I1)A,

̟2 = ̟1 + Tr {(VT−1 + I1)QT−2}+ E
{
x̃′T−2π2x̃T−2

∣
∣ jT−2

0

}
,

(3.15)

with {I1, π1, ̟1} as given in (3.13).
Assume u⋆t+1 for time t+1 is established, as already validated for t=T−1, let us

continue the derivation of u⋆t . According to Proposition 3.2.1, the optimal control
u⋆t is the one solving the following equation,

u⋆t = arg min
ut

{
λt+1 + E

{
γ⋆t+2

∣
∣ jt0
}}
,

where λt+1 =E
{
x′t+1Vt+1xt+1+u′tPtut

∣
∣ jt0
}

. By (3.15), γ⋆t+2 is written as

γ⋆t+2 = E
{
x′t+1IT−t−1xt+1 +̟T−t−1

∣
∣ jt+1

0

}
,

̟T−t−1 = ̟T−t−2 + Tr {(Vt+2 + IT−t−2)Qt+1}
+ E

{
x̃′t+1πT−t−1x̃t+1

∣
∣ jt+1

0

}
.

Since E
{
x̃′t+1πT−t−1x̃t+1

∣
∣ jt0
}

does not depend on ut−1
0 at any time instance t, we

can obtain the optimal ut by solving the following equation,

u⋆t = arg min
ut

{
E
{
x′t+1Vt+1xt+1 + u′tPtut

∣
∣ jt0
}

+ E
{
x′t+1IT−t−1xt+1

∣
∣ jt0
}}
,

and the solution is given by

u⋆t = ℓtx̆t, ℓt = −(Pt +B′(Vt+1 + IT−t−1)B)†B′(Vt+1 + IT−t−1)A.

Finally, the resulting optimal cost-to-go γ⋆t+1 is obtained by replacing ut in γt+1

with u⋆t ,

γ⋆t+1 = E
{
x′tIT−txt +̟T−t| jt0

}
,

IT−t = A′(Vt+1 + IT−t−1)A− πT−t,
πT−t = A′(Vt+1 + IT−t−1)B(Pt +B′(Vt+1 + IT−t−1)B)†

×B′(Vt+1 + IT−t−1)A,

̟T−t = ̟T−t−1 + Tr {(Vt+1 + IT−t−1)Qt}+ E
{
x̃′tπT−tx̃t| jt0

}
.



Chapter 4

Complexity Considerations

4.1 Introduction

This chapter is devoted to several issues related to the implementation of
the training method developed in Chapter 3, as well as the design of com-
plexity reduced systems. In the special case studied in this thesis, where

sensor measurements are fed to the controller through a low-rate noisy communi-
cation link, typically a few bits per sensor measurement, the validity of the source–
channel–control separation principle is questionable. This is a situation where a
jointly designed encoder–controller is expected to perform better by carrying out
the quantization, channel protection and control simultaneously. Of course, the
joint encoder–controller should be designed with much care, since here the overall
system performance relies only on a few number of bits. In Chapter 3 we proposed
an iterative method to optimize encoder–controller mappings to provide efficient
control over noisy channels. The main topic of this chapter is to describe how the
training procedure implemented in practice.

This chapter is organized as follows. In Sections 4.2–4.5, the complexity of the
training algorithm is discussed. We start in Section 4.2 with a few general remarks
on the advantages and disadvantages of the iterative design, and the common as-
sumptions for problems in this chapter are specified. Due to the lack of closed-form
solutions, Monte Carlo methods are heavily involved in the optimization of the en-
coder and controller, as described in Section 4.3. Thereafter, the complexity of the
encoder is thoroughly studied since it appears to be a crucial factor in determining
whether or not the training is implementable in practice. In particular, two spe-
cial encoder properties, namely sufficient statistics and regularity, which are very
useful to the practical implementation of the training algorithm, are addressed in
Section 4.4 and Section 4.5. Section 4.6 is entirely devoted to the practical encoder–
controller designs for long time horizons. Especially, some conventional solutions
customized for control over long time horizons are re-examined in the context of
control with limited information. Finally, a short summary of the chapter is pro-
vided in Section 4.7.

69
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4.2 General Remarks

In this section, we provide a few general remarks on the encoder–controller design
described in Chapter 3. Especially, the main advantages and disadvantages of the
training-based approach are addressed. Finally, certain common assumptions about
the problems studied in this chapter are specified.

4.2.1 Advantages and Disadvantages

As explained previously, finding the globally optimal solution to Problem 2.4.1 is
an open problem. We have shown that under certain conditions locally optimal
solutions can be obtained by means of iterative training. In general, the training-
based algorithm described in Chapter 3 suffers from the curse of dimensionality
[Bel61]. In our case, the dimensionality problem is mainly caused by the exponential
increase in complexity as the time horizon increases. Even for systems with low
rate, the training process is by no means simple to implement. The difficulties
will be described in detail in Section 4.3. Generally speaking, training becomes
impractical when confronting any of the following challenges: a long time horizon
T , a high system-order, or a high data rate. It is therefore of great importance to
find efficient and simple approximations and simplifications to construct practical
encoder–controllers which can simultaneously offer high performance and tractable
complexity. This issue will be further studied in Section 4.6.

The major drawback of training is the demand of a large number of computa-
tions, as described later in Section 4.3. In the meantime, for a large group of sensor
nodes subject to the same system parameters, training is an off-line process which
only needs to be performed once.

Hence, while carrying out the design can be computationally intensive, the result
can often be parameterized as a finite set of parameters, and stored in a look-
up table. The table can be implemented in many cheap notes deployed in a large
network. In the scalar case, the look-up table typically consists of a finite number of
partition boundaries of the encoding regions and control inputs. Thus, the proposed
system, when designed, can in general be used at low or moderate complexity. Since
the training can be carried out off-line, its complexity is not of crucial importance.

Before we start to describe the training algorithm in more detail, let us first in
Section 4.2.2 specify the system discussed in this chapter.

4.2.2 Preliminary

For the exposition of the basic principles, our discussion throughout this chapter is
restricted to the scalar special case of the general system described in Chapter 2.
The system equation is

xt+1 = axt + ut + vt, a > 0,

yt = xt + et,
(4.1)
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and the quadratic cost Jtot is defined by

Jtot =

T∑

t=1

x2
t + ρu2

t−1, ρ ≥ 0. (4.2)

Here, a and ρ are scalar system parameters. The relative weight ρ can be interpreted
as a power constraint imposed on control, and typically the average power of ut
reduces as ρ increases. The assumptions about all elements in (4.1) follow Chapter 2.
Especially, we assume:

1. The instantaneous rate is time invariant, i.e., R = log2 L.
2. The entire history of measurements, yt0, is available at the encoder.
3. Full SI, jt−1

0 , is available at the encoder.
4. The channel output shares the same alphabet with the channel input.

LI = LJ = L = {0, . . . , L− 1}, L = 2R.

It should be clear from Chapter 3 that for the general system with partial SI, the
optimal encoding and control mappings are interconnected to each other in a highly
complex manner. However, in the special case of full SI, there are useful results on
the separation of the optimal coding and control. For this reason, throughout this
chapter, we will restrict the discussion to the special case of full SI. When full SI
is available, the sub-problems involved in the design are often simplified, however
they may still be nontrivial. An understanding of full SI systems offers insights that
are useful to the practical encoder–controller design for partial SI. Furthermore, the
full SI solutions serve as the best achievable performance with respect to all levels
of partial SI.

According to Chapter 3, for this setup the optimal encoder and controller map-
pings at t, for fixed other encoder–controller components, are

gt
(
jt0
)

= ℓtE
{
xt| jt0

}
,

ft
(
yt0,j

t−1
0

)
= arg min

k∈L
E

{
T∑

s=t+1

x2
s + ρu2

s−1

∣
∣
∣yt0, it = k, jt−1

0

}

,
(4.3)

with ℓt given by (3.6). How these terms are computed in practice is discussed in
the subsequent sections.

4.3 Numerical Solution and Monte Carlo Method

In this section we study how to compute the expressions (4.3) in practice. We start
with the controller mapping gt. First, the linear control law ℓt is independent of
actual realizations, and hence it is not affected by updating fT−1

0 and gT−1
0 . We

can thus compute the entire sequence ℓT−1
0 in advance. As a matter of fact, only
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the conditional mean estimate, E {xt| jt0}, is required to be re-calculated whenever
one of the encoder–controller components fs or gs, s < t, has been updated. For
this reason, we may say that the complexity of the controller is mainly determined
by the conditional mean estimate E {xt| jt0}. Conversely, the updating of fs or gs,
t<s≤T−1, does not affect E {xt| jt0}.

Often, it is not possible to express E {xt| jt0} in a closed-form. On the other
hand, E {xt| jt0} is completely determined by the system model and system param-
eters, e.g., the mappings f t−1

0 and gt−1
0 , and the pdf’s (or pmf’s), p(x0), p(vs), p(es),

P(js| is), s= 0, . . . , t. We might think, once all information above is available, we
can at least compute E {xt| jt0} by numerical methods, for example by using Monte
Carlo methods to generate a set of samples describing the pdf p(xt| jt0). Start with
the sample set of x0, and then, successively generate the sample sets for y0, i0,
j0, u0, x1 etc, until we finally obtain the sample set describing the conditional pdf
p(xt| jt0).

Unfortunately, even using Monte Carlo methods in place of analytical expres-
sions, the design problem may still be infeasible. First, the size of the sample set is
important to the accuracy of simulated results. More specifically, in order to have
sufficient data for an accurate estimation, the sample set has to increase signifi-
cantly with T . Therefore, Monte Carlo methods are difficult to use for problems of
long time horizons. Consider a simple example where we compute f0 numerically,
according to (4.3), for fixed other encoding–control mappings. In order to derive a
decision for a given input y0, the future cost for each i0 ∈L should be simulated.
Start by computing the future cost for a fixed i0 by encoding y1

0 using f1(y1
0, j0).

To ensure that there is a sample set of y1
0 of the size N for each pair {i0, j0}, it

requires that the sample set of x0 should be at least of the size L2×N , with L=2R.
Continuing up to t=T−1 and performing fT−1(yT−1

0 , j
T−2
0 ), the sample set of x0 is

required to be at least of the size LT×N .
Second, more seriously, the numerical simulation might fail because of the com-

plexity of the encoder. Even though the above-mentioned problem of the sample size
can be handled by a powerful computer, the numerical simulations might still fail
because the encoder mappings (4.3) is not practically implementable. Consider the
worst case when the encoder mappings are given by the implicit expression (4.3),
for all t, without any further simplification. It is not difficult to realize that we
will encounter a serious problem because of the dimensionality of the sequence yt0,
referred hereby to as the encoder dimensionality problem. In order to simulate a de-
cision (4.3), all future decisions fs(ys0, j

s−1
0 ), s>t, are required. Each future decision

will require in its turn the simulation of their future costs etc. Furthermore, since
it is unrealistic to store the resulting it for all possible {yt0, jt−1

0 }, t= 0, . . . , T − 1,
we must perform the simulation whenever an encoding decision is required. Obvi-
ously, the overall encoding time will be impractical. We may say generally that the
computational complexity of E

{
xt| jt−1

0

}
is essentially determined by the encoder

complexity. Only when the encoding process can be completed within an acceptable
time, for all t, then it is possible to estimate p(xt| jt0) and derive E {xt| jt0}. If that
is the case, the controller can be simplified to a look-up table, which consists of a
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finite number of possible reconstructions gt(jt0). In short, a simplified encoder may
result in a simplified controller. But if the encoder cannot be simplified, it will be
difficult to simplify the controller. For this reason, a further study of the encoder
is provided in the next two sections.

4.4 Two Special Encoder Properties

In this section we discuss two special encoder properties that are useful to solve the
aforementioned dimensionality problem. As previously pointed out in Section 4.3,
the encoder complexity is a crucial factor to whether or not we are able to imple-
ment the training algorithm introduced in Chapter 3. Since it is difficult to express
ft of (4.3) in a closed-form, in general, we need to resort to numerical methods.
Consider updating ft according to (4.3) by using Monte Carlo methods, for certain
sequences yt0 and jt−1

0 . First, generate a sample set of xt, describing p(xt|yt0, jt−1
0 ).

Then, use those samples to simulate an expected future cost. However, the sim-
ulations can fail totally because of the encoder dimensionality problem. It is also
worth mentioning that since all encoder mappings are interconnected, if any one
of the encoder mappings has a serious dimensionality problem, it affects all other
mappings.

The encoder dimensionality problem is crucial to the methods based on numer-
ical simulations, and it is mainly caused by two facts: (i) the measurement memory
increases as time goes, and (ii) the measurement alphabet is infinite. However, we
note that the dimensionality problem can be solved for certain special encoders. In
the subsequent text, we demonstrate two special encoder properties that are useful
to deal with the dimensionality problem in training. They are, namely, (i) sufficient
statistics, by which a high-dimensional mapping ft(yt0, j

t−1
0 ) can be replaced by a

low-dimensional mapping, and (ii) regularity, by which the encoder can be repre-
sented by a finite number of thresholds (or the endpoints of the quantization cell).
These two properties are first demonstrated by examples in the remaining part of
this section. Thereafter, the property of regularity will be discussed in more detail
in Section 4.5.

4.4.1 Sufficient Statistics

Let us begin with the first-mentioned property, the sufficient statistics, which is
an important concept in statistics. This concept is introduced by Ronald Fisher,
and can be found in many textbooks, e.g., [Aok67]. Loosely speaking, regarding the
encoder mapping in (4.3), a statistic It(yt0, j

t−1
0 ) for which it holds that

p(xt|yt0, jt−1
0 ) = p(xt|It(yt0, jt−1

0 )),

is called a sufficient static. We illustrate the utility of the sufficient statistics by
using a simple example which is a straightforward application of classical LQG
control theory.
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Example 4.4.1. Sufficient Statistics for a Gaussian System
Recall the problem setting from Section 4.2 that all past measurements yt0 and

full SI are available at the encoder. Pay attention to the fact that knowing jt−1
0 is

equivalent to knowing ut−1
0 . Hence, it is straightforward to show that conditioned on

knowing yt0 and jt−1
0 , the state xt is Gaussian distributed,

p
(
xt|yt0, jt−1

0

)
∼ N

(

E
{
xt|yt0, jt−1

0

}
,E
{(
xt −E

{
xt|yt0, jt−1

0

})2
})

.

It means that the pdf p(xt|yt0, jt−1
0 ) is completely determined by the conditional ex-

pected value E
{
xt|yt0, jt−1

0

}
, and the variance E

{
(xt −E

{
xt|yt0, jt−1

0

}
)2
}

. They
can be calculated by using the classical Kalman filter [Aok67]. For brevity, upon
denoting the conditional variance

pt|s , E
{(
xt −E

{
xt|ys0, js−1

0

})2
}

,

the Kalman filter computes E
{
xt|yt0, jt−1

0

}
and pt|t recursively as

E
{
xt|yt−1

0 , j
t−1
0

}
=aE

{
xt−1|yt−2

0 , j
t−2
0

}
+ut−1+aKt−1(yt−1−E

{
xt−1|yt−2

0 , j
t−2
0

}
),

E
{
xt|yt0, jt−1

0

}
=E

{
xt|yt−1

0 , j
t−1
0

}
+Kt

(
yt−E

{
xt|yt−1

0 , j
t−1
0

})
,

Kt=pt|t−1

(
pt|t−1+σ2

e

)−1
,

pt|t−1 =a2pt−1|t−2+σ2
v−aKt−1pt−1|t−2,

pt|t=a
2pt|t−1+σ2

v,
(4.4)

where initially p0|−1 = σ2
x0

. It is worth noting that the variance pt|t is independent
of actual realizations, and therefore, the conditional mean E

{
xt|yt0, jt−1

0

}
is a suf-

ficient statistic.

Remark 4.4.2. In the classical LQG problem subject to an ideal communication
channel, the conditional mean estimate E

{
xt|yt0,ut−1

0

}
is computed at the con-

troller. In the case that the control ut is completely determined by yt0, it holds that
E
{
xt|yt0,ut−1

0

}
=E {xt|yt0}. In our setting of control over finite-rate noisy chan-

nels, two different conditional mean estimates are computed at the encoder and
controller. First, the encoder can compute E

{
xt|yt0, jt−1

0

}
. Here we should observe

that unlike in the classical LQG problem, in order to derive ut, jt−1
0 is needed,

in place of yt−1
0 , which explains the significance of full SI. Second, because of the

finite-rate communication link, the controller at the receiver side can only compute
the conditional mean estimate, E {xt| jt0}, based on the received symbols.

For the sake of clarity, in this chapter, the following notations are used for the
above-mentioned two conditional mean estimates,

x̆t|s , E {xt| js0} ,
x̂t|s , E

{
xt|ys0, js−1

0

}
,
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as well as the short notations x̆t,E {xt| jt0} and x̂t,E
{
xt|yt0, jt−1

0

}
.

It can be read from (4.4) that the conditional variance pt|t does not depend on
the realization of yt0. In fact, the conditional mean x̂t=E

{
xt|yt0, jt−1

0

}
and pt|t are

the sufficient statistics for characterizing the pdf p(xt|yt0, jt−1
0 ). By means of the

sufficient statistics, a high-dimensional encoder, which maps the sequence {yt0, jt−1
0 }

to it, can be replaced by a low-dimensional encoder which maps x̂t to it, for each
jt−1
0 . In short, for Example 4.4.1, we can simplify the encoder mapping ft as

ft = arg min
k∈L

E

{
T∑

s=t+1

(
x2
s + ρu2

s−1

)
∣
∣
∣yt0, it=k, j

t−1
0

}

= arg min
k∈L

E

{
T∑

s=t+1

(
x2
s + ρu2

s−1

)
∣
∣
∣x̂t, it=k, j

t−1
0

}

,

where the encoder dimensionality is significantly reduced. In what follows, we briefly
comment on sufficient statistics in the context of open-loop encoders.

Example 4.4.3. Sufficient Statistics for Open-Loop Encoders
Consider the open-loop encoder introduced in Chapter 3 and assume all previous

measurements and full SI are available at the encoder. Nevertheless, to optimize the
open-loop encoder, we need the conditional pdf p(xt| ȳt0, jt−1

0 ), where

ȳt = x̄t + et, x̄t = xt −
t−1∑

s=0

at−s−1us.

First, note that p( x̄t| ȳt0, jt−1
0 ) is a Gaussian pdf,

N
(

E
{
x̄t| ȳt0, jt−1

0

}
,E
{(
x̄t −E

{
x̄t
∣
∣ȳt0, j

t−1
0

})2
})

.

Therefore p(xt| ȳt0, jt−1
0 ) is Gaussian with the following expected value and variance,

m̄t=E
{
x̄t| ȳt0, jt−1

0

}
+
t−1∑

j=0

at−1−juj , σ
2
t =E

{(
x̄t−E

{
x̄t| ȳt0, jt−1

0

})2
}

,

which indicates that m̄t and σ2
t are sufficient statistics of {ȳt0, jt−1

0 }.

4.4.2 Regularity

Regularity is another encoder property which is very useful to solve the encoder
dimensionality problem. By regular we mean that the encoding regions are non-
overlapping and connected, that is, since we discussing the scalar case, each encod-
ing region is an interval containing one of its end points [GG92]. In general, from
the implementation point of view, if each encoding region is an interval, then it
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can be characterized by the interval end points. Hence, the encoder can be imple-
mented as a look-up table with only the partition thresholds (or the end points
of the quantization cells) stored. By regularity, there are at most L−1 thresholds
for each jt−1

0 , t = 0, . . . , T −1. As long as the number of the thresholds is small,
the difference is not really significant whether the quantization cell is connected or
disconnected. On the other hand, from the point of view of training the system, the
regularity is a desirable feature because it can simplify the optimization procedure
substantially, as will be explained later. For this reason, we discuss the regularity
property in a more detailed manner by solving a specific problem, concerning the
optimization of the encoder mapping f0. First, we demonstrate the regularity of
the encoder mapping by using numerical examples. Thereafter, the problem of how
to assess regularity is addressed in Section 4.5.

Now, let us introduce Problem 4.4.4 which is the problem studied in Section 4.4.2
and Section 4.5.

Problem 4.4.4. Consider a scalar special case of the general system from Chap-
ter 2 that full state measurement and full SI are available at the encoder. The overall
closed-loop system is governed by the following system equation, encoder–controller,
and channel,

Plant : xt+1 = axt + ut + vt, a > 0,

Encoder : it = ft
(
xt, j

t−1
0

)
,

Channel : jt = Et(it) ,

Controller : ut = gt(j
t
0) ,

(4.5)

it, jt∈L. All notations in (4.5) follow Chapter 2. The initial-state x0 and the pro-
cess noise vt are i.i.d. zero-mean Gaussian. The memoryless channel is completely
characterized by the transition probability function P(jt| it). Then, for the fixed
encoder–controller mappings {fT−1

1 ,gT−1
0 }, compute the optimal encoder mapping

f0(x0) = arg min
k∈L

E

{
T−1∑

t=0

x2
t+1 + u2

t

∣
∣
∣x0, i0 = k

}

.

We assume here that all future encoder mappings fT−1
1 are regular since we

often initialize with a regular quantizer. It is straightforward to verify that the
future terms E

{
x2
t+1

∣
∣ x0, i0

}
and E

{
u2
t

∣
∣ x0, i0

}
, t = 0, . . . , T −1, are continuous

functions of x0, as well as the overall cost E
{
∑T−1
t=0 x

2
t+1+u2

t

∣
∣
∣x0, i0

}

. The encoding

region S0(k), defined as

S0(k) ,

{

x0 ∈ R : ∃k, arg min
l

E

{
T−1∑

t=0

x2
t+1 + u2

t

∣
∣
∣x0, i0 = l

}

= k

}

, (4.6)

can be described as a union of disjoint intervals. As a result, instead of a great
number of online computations, the encoder can be implemented as a look-up ta-
ble consisting of thresholds. In Figure 4.1 and Figure 4.2, we use two numerical
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Figure 4.1: Encoder mapping i0 = f0(x0) for which the encoding regions can be
represented as unions of intervals. (a) The expected total cost for i0 = k, k ∈ L.
(b) The encoder decision f0(x0).
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Figure 4.2: A regular encoder mapping i0 = f0(x0), which can be represented by
connected intervals. (a) The expected total cost for i0 = k, k∈L. (b) The encoder
decision f0(x0).
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examples to show different classes of S0(k). The system parameters for the two
examples are almost identical except for the encoder–controller mappings fT−1

1 and

gT−1
0 . The predicted overall future cost E

{
∑T−1
t=0 x

2
t+1+u2

t

∣
∣
∣ x0, i0 =k

}

and the as-

sociated decision arg mink E
{
∑T−1
t=0 x

2
t+1+u2

t

∣
∣
∣ x0, i0 =k

}

, k∈{1, 2, 3, 4}, are plotted

as functions of x0, for R = 2 and T = 4. We see from the figures that all encod-
ing regions are unions of intervals. However, the encoder mapping in Figure 4.1
is not regular because the encoding region for f0(x0) = 1 is not an interval. On
the other hand, the mapping in Figure 4.2 is shown to be regular. This example
indicates that the regularity of the optimized encoder mapping is closely related to
the future coding–control mappings.

As already mentioned, regarding the trained encoder–controller, the importance
of regularity appears to be less obvious. On the other hand, from the training point
of view, regular encoding mappings are of great significance. First of all, the regular-
ity sets an upper bound on the number of boundaries of encoding regions. Second,
we can use simple and efficient search algorithms to compute the encoding bound-
aries, for example using binary search. In other words, given fixed computational
power, knowledge of the regularity can improve the quality of search results sig-
nificantly. For these reasons, the concept of the regularity is further studied in the
next section, particularly with regard to the impact of x0 on expected future cost.

4.5 Impact on Expected Future Cost

In Section 4.4, we argued that the regularity plays an important role in the im-
plementation of the iterative training algorithm. In this section, we will study this
property in more detail. First in Section 4.5.1 we discuss a special scenario where
the future cost is independent of the current decision. Based on the result of Sec-
tion 4.5.1, a sufficient condition of the regularity is proposed. Thereafter, we apply
the proposed sufficient condition to more general cases.

Recall that the optimized encoder assigns the index k to i0 if x0 belongs to
S0(k) of (4.6), which can also be written as

S0(k) =
2R−1⋂

l=0
l 6=k

S0(k, l), k, l ∈ L,

where the region S0(k, l) is defined as

S0(k, l) ,

{

x0 : E

{
T−1∑

s=0

x2
s+1+u2

s

∣
∣
∣x0, i0 =k

}

≤ E

{
T−1∑

s=0

x2
s+1+u2

s

∣
∣
∣x0, i0 = l

}}

=

{

x0 : E
{
x2

1 + u2
0

∣
∣x0, i0 = k

}
+ E

{
T−1∑

s=1

x2
s+1 + u2

s

∣
∣
∣x0, i0 = k

}
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≤ E
{
x2

1 + u2
0

∣
∣x0, i0 = l

}
+E

{
T−1∑

s=1

x2
s+1 + u2

s

∣
∣
∣x0, i0 = l

}}

, k, l ∈ L.

That is to say for all elements in S0(k, l), choosing k instead of l yields a lower
expected future cost. For brevity, let us take J0(x0, k) to denote the expected cost,
given x0 and the decision i0 =k, k∈L,

J0(x0, k) , E
{
x2

1 + u2
0

∣
∣x0, i0 = k

}
+ E

{
T−1∑

s=1

x2
s+1 + u2

s

∣
∣
∣x0, i0 = k

}

, k ∈ L,

where the overall cost is decomposed into two parts. We refer to the first term as
the current/direct cost, specifying the dependence of J0(x0, k) to u0 and x1. The
second term is referred to as the future/indirect cost, specifying the dependence of
J0(x0, k) to all other future controls uT−1

1 and states xT2 . An intersection point of
two encoding regions S0(k) and S0(l) belongs to the set

T0(k, l) , {x0 : J0(x0, k) = J0(x0, l)} , k, l ∈ L. (4.7)

It will be clear from Section 4.5.1 that the number of elements in the set T0(k, l) has
much to say about the regularity property. In the sequel we will exclude the trivial
case that J0(x0, k)=J0(x0, l), for all x0. In general, determining the set T0(k, l) is a
difficult task because the relation between x0 and J0(x0, k) is difficult to formulate
in a closed-form, except in certain special cases. Let us start to investigate T0(k, l)
by expanding the current cost in J0(x0, k),

E
{
x2

1 + u2
0

∣
∣ x0, k

}
=E

{

(ax0 + u0 + v0)2 + u2
0

∣
∣
∣x0, i0 = k

}

=E
{
a2x2

0 + 2x0u0 + 2u2
0 + v20

∣
∣ x0, i0 = k

}
, k ∈ L,

where E {x0v0}= 0 and E {u0v0}= 0, due to the independent process noise. Fur-
thermore, the terms E

{
a2x2

0

∣
∣x0, i0 =k

}
and E

{
v20
∣
∣ x0, i0 =k

}
will not affect the

decision since x0 is a constant and v0 is independent of x0 and i0. Define now

A0(x0, k, l) , E

{
T−1∑

s=1

x2
s+1 + u2

s

∣
∣
∣x0, i0 = l

}

−E

{
T−1∑

s=1

x2
s+1 + u2

s

∣
∣
∣x0, i0 = k

}

,

B0(x0, k, l) , E
{

2u2
0

∣
∣ x0, i0 = l

}
−E

{
2u2

0

∣
∣x0, i0 = k

}

= E
{

2u2
0

∣
∣ i0 = l

}
−E

{
2u2

0

∣
∣ i0 = k

}

= B0(k, l),

C0(x0, k, l) , E {au0|x0, i0 = k} −E {au0|x0, i0 = l} ,
= E {au0| i0 = k} −E {au0| i0 = l}
= C0(k, l).

(4.8)
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As shown in (4.8), B0(x0, k, l)=B0(k, l), and C0(x0, k, l)=C0(k, l) are terms inde-
pendent of x0. As a matter of fact, the challenge of determining T0(k, l) lies in the
future term A0(x0, k, l), because of its intricate relation to x0. In the special case
that A0(x0, k, l) is also independent of x0, the proof of the regularity is straightfor-
ward, as explained next in Section 4.5.1.

4.5.1 Independent Future Cost: A0(x0, k, l)=A0(k, l)

In this subsection we discuss the very special case that A0(x0, k, l)=A0(k, l), that
is, this term is independent of x0. Here we should observe that this is a case very
similar to optimizing quantizers in classical communications [FV87] with a future
cost equaling zero. Following [FV87], we can show that the set T0(k, l) has only one
solution which is given by,

T0(k, l) =

{
A0(k, l) +B0(k, l)

2C0(k, l)

}

.

For ease of the presentation, we introduce τ0(k, l) defined by

τ0(k, l) ,
A0(k, l) +B0(k, l)

2C0(k, l)
.

Then, the region S0(k, l) becomes

S0(k, l) =







(−∞, τ0(k, l)], C0(k, l) < 0,

[τ0(k, l),∞) , C0(k, l) > 0,

(−∞,∞), C0(k, l) = 0, A0(k, l) +B0(k, l) ≥ 0,

∅, C0(k, l) = 0, A0(k, l) +B0(k, l) < 0,

(4.9)

which is shown to be an interval. Because of the finite number of interactions of
intervals, S0(k) is also an interval, which can be represented as

S0(k)=







∅, C0(k, l)=0, A0(k, l)+B0(k, l) < 0 for some l,

R, C0(k, l)=0, A0(k, l)+B0(k, l) ≥ 0 for all l,
(
τ low0 (k), τup0 (k)

)
, otherwise,

where the upper and lower boundaries of S0(k) are given by

τup0 (k) = min
l:C0(k,l)>0

τ0(k, l),

τ low0 (k) = max
l:C0(k,l)<0

τ0(k, l).

Let the possible 2R controls be sorted in a decreasing order, i.e.,

u0(k) ≥ u0(l), if k < l.
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First we know that τ low0 (k)≤τup0 (k). Comparing τup0 (k) and τ low0 (l), k<l, it follows
that

τup0 (k) = min
m>k
τ0(k,m) ≤ τ0(k, l),

τ low0 (l) = max
m<l
τ0(l,m) ≥ τ0(l, k).

Then, because τ0(k, l)=τ0(l, k), it yields

τup0 (k) ≤ τ low0 (l). (4.10)

Unfortunately, the future term A0(x0, k, l) is in most cases a function of x0,
except in certain special cases. However, based on the discussion about the special
case where A0(x0, k, l)=A0(k, l), we can show a sufficient condition for the regular
encoder.

Lemma 4.5.1. A sufficient condition for regular encoding mappings is that the set
T0(k, l) of (4.7) has at most one single element.

The proof of Lemma 4.5.1 follows simply from (4.9)–(4.10). Lemma 4.5.1 sug-
gests that in order to verify the regularity, we are interested in the number of
elements in the set T0(k, l), rather than the exact solutions. Here comes another
illustrative example which shows that in certain region of x0, there is at most one
element in (4.7), and therefore, the regularity applies.

Example 4.5.2. Independent Future Cost
First, expand the expected cost J0(x0, k) for the decision i0 =k∈L,

J0(x0, k) = E

{
T−1∑

s=0

x2
s+1 + u2

s

∣
∣
∣x0, i0 = k

}

= E







T−1∑

s=0

(

asx0 +
s−1∑

m=0

as−1−mum +
s−1∑

n=0

as−1−nvn

)2
∣
∣
∣x0, i0 = k







+ E

{
T−1∑

s=0

u2
s

∣
∣
∣x0, i0 = k

}

.

Consider the following situation. At a low data rate, there exists certain xup0 (i0 =k),
k∈L, for which for all x0>x

up
0 (i0 =k), E

{
u2
s

∣
∣x0, i0 =k

}
and E {us|x0, i0 =k}, s=

0, . . . , T−1, are “approximately constant”. For example the “approximately constant”
can mean

P
(
|E
{
u2
s

∣
∣ x0, i0 = k

}
−E

{
u2
s

∣
∣ xup0 (i0 = k), i0 = k

}
|<∆

)
= 1, k ∈ L,

for some small-valued ∆. In other words, the expectations E
{
u2
s

∣
∣ x0, i0 =k

}
and

E {us|x0, i0 =k}, s= 0, . . . , T−1, k∈L, are “almost” independent of x0, for x0>
xup0 (i0 = k). Similarly, there exists certain xlow0 (i0) for which for all x0<x

low
0 (i0),
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the expectations E
{
u2
s

∣
∣x0, i0 =k

}
and E {us|x0, i0 =k}, s=0, . . . , T−1, k∈L stay

approximately unchanged. Again, we regard those expectations “almost” indepen-
dent of x0. In the both cases, without much degradation in performance, we can
approximate J0(x0, k) by a second order polynomial,

J0(x0, k) ≈ A1(k)x2
0 +A2(k)x0 +A3(k), x0 < x

low
0 (i0), x0 > x

up
0 (i0),

where the terms A1(k), A2(k) and A3(k), k ∈L, are all independent of x0. Espe-
cially, it follows that

A1(k) =

T−1∑

t=0

a2t,

irrespective of k. As a result, in the regions x0 < x
low
0 (i0) and x0 > x

up
0 (i0), the

difference between any of two functions J0(x0, k) and J0(x0, l), k, l ∈ L, k 6= l,
is a linear function of x0. Consequently, there are two situations that can happen
to T0(k, l): (i) It contains only one element, when J0(x0, k) 6= J0(x0, l), or (ii) it
contains infinitely many elements, when J0(x0, k)=J0(x0, l), for all x0.

Conversely, in the interval xlow0 (i0)<x0<x
up
0 (i0), it will be too coarse to approx-

imate J0(x0, k) by a second order polynomial. To get some idea of the computational
complexity of deriving J0(x0, k), let us compute a few steps of the future costs for
Problem 4.4.4. Following the order of time, E

{
u2
t

∣
∣ x0, i0

}
and E

{
x2
t+1

∣
∣x0, i0

}
for

different t will be successively investigated. Clearly, the expected costs are deter-
mined by the initial-state, the noises, and the future encoder–controller mappings.
Loosely speaking, we assume that a proper initial setup is selected. By “proper” we
mean that the resulting system performance should outperform the case without
any control action. In practice, uniform encoders work often reasonably well as the
initial setup.

4.5.2 General Case: A0(x0, k, l) 6=A0(k, l)

In this subsection, we remove the assumption from Section 4.5.1 that the future
cost is independent of x0, i.e., A0(x0, k, l)=A0(k, l). We discuss how to compute the
cost E

{
x2
t + u2

t−1

∣
∣ x0, i0

}
for the general case where A0(x0, k, l) 6=A0(k, l), k, l∈L.

First, expand the term E
{
u2
t

∣
∣x0, i0

}
,

E
{
u2
t

∣
∣ x0, i0

}
=

L−1∑

j0=0

· · ·
L−1∑

jt=0

u2
t (j
t
0)P

(
jt0
∣
∣ x0, i0

)

=

L−1∑

j0=0

· · ·
L−1∑

jt=0

L−1∑

i1=0

· · ·
L−1∑

it=0

u2
t (j
t
0)

t∏

s=0

P(js| is)P
(
is|x0, i

s−1
0 , j

s−1
0

)
,
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where we write ut(jt0) to indicate that ut is fully determined by jt0. The probability
P( is|x0, i

s−1
0 , j

s−1
0 ) is given by

P
(
is|x0, i

s−1
0 , j

s−1
0

)
=

∫

Ss(is0,j
s−1
0 )

p
(
xs|x0, i

s−1
0 , j

s−1
0

)
dxs,

and the encoding region Ss(is0, js−1
0 ) is defined as

Ss(is0, js−1
0 ) ,

{
xs : is0, j

s−1
0

}
.

The conditional pdf p(xs
∣
∣x0, i

s−1
0 , j

s−1
0 ) is truly of great importance, since it is also

central in computing E
{
x2
s

∣
∣ x0, i0

}
,

E
{
x2
s

∣
∣ x0, i0

}
=

L−1∑

j0=0

· · ·
L−1∑

js−1=0

L−1∑

i1=0

· · ·
L−1∑

is=0

P
(

is−1
1 , j

s−1
0

∣
∣ i0, x0

)

×
∫

Ss(is0,j
s−1
0 )

x2
sp
(
xs|x0, i

s−1
0 , j

s−1
0

)
dxs.

In a short summary, for any t, it follows that

E
{
x2
t+1+u2

t

∣
∣ x0, i0

}
=

L−1∑

j0=0

· · ·
L−1∑

jt=0

L−1∑

i1=0

· · ·
L−1∑

it=0

E
{
x2
t+1+u2

t

∣
∣ x0, j

t
0, i
t
0

}
P
(

jt0, i
t
1

∣
∣ x0, i0

)

=
L−1∑

j0=0

· · ·
L−1∑

jt=0

L−1∑

i1=0

· · ·
L−1∑

it=0

E
{
x2
t+1+u2

t

∣
∣ x0, j

t
0, i
t
0

}
P(j0| i0)

× P( i1|x0, i0, j0)P(j1| i1)P
(
i2|x0, i

1
0, j

1
0

)
× . . .

× P
(
it|x0, i

t−1
0 , j

t−1
0

)
P(jt| it)

=

L−1∑

j0=0

· · ·
L−1∑

jt=0

L−1∑

i1=0

· · ·
L−1∑

it=0

E
{
x2
t+1+u2

t

∣
∣ x0, j

t
0, i
t
0

}

×
t∏

s=0

P
(
is|x0, i

s−1
0 , j

s−1
0

)
P(js| is) .

Since ut is completely specified by jt0, we can also write

E
{
x2
t+1 + u2

t

∣
∣x0, i

t
0, j
t
0

}
=

L−1∑

it+1=0

∫

St+1(i
t+1
0 ,jt0)

x2
t+1p

(
xt+1|x0, i

t
0, j
t
0

)
dxt+1 + u2

t .

(4.11)
More detail about the key factor p(xt+1|x0, i

t
0, j
t
0) will be given later in this section.

Now, let us move on to compute (4.11) for a few steps, following the order of time
that signals are generated,

x0 → u0 → x1 → · · · → uT−1 → xT .
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It turns out that for t<2, we can compute E
{
u2
t

∣
∣ x0, i0

}
and E

{
x2
t

∣
∣x0, i0

}
explic-

itly, while for t≥ 2, a closed-form solution is extremely difficult. In that case, we
will resort to an approximation in terms of exponential functions. In the subsequent
text, we show how to compute the future cost for t<2 and t≥2, respectively.

Case 1: t < 2

- Computing E
{
u2

0

∣
∣ x0, i0

}

Let us begin by computing E
{
u2

0

∣
∣ x0, i0

}
. Conditioned on i0, u0 is independent

of x0, i.e., E
{
u2

0

∣
∣ x0, i0

}
=E

{
u2

0

∣
∣ i0
}

. Particularly, E
{
u2

0

∣
∣x0, i0

}
can be computed

as

E
{
u2

0

∣
∣x0, i0

}
=
L−1∑

j0=0

u2
0(j0)P(j0| i0) ,

which is a constant, irrespective of x0.

- Computing E
{
x2

1

∣
∣ x0, i0

}

Next, move on to x1 and compute E
{
x2

1

∣
∣ x0, i0

}
,

E
{
x2

1

∣
∣ x0, i0

}
=
L−1∑

j0=0

L−1∑

i1=0

P(j0|i0)

∫

S1(i1
0,j0)

x2
1p(x1|x0, i0, j0) dx1,

which involves the encoder–controller mappings g0(j0) and f1(x1, j0). Observe that
it holds that p(x1|x0, i0, j0) = p(ax0 + u0 + v0|x0, i0, j0). We know that u0 is de-
terministic when j0 is given, hence, p(x1|x0, i0, j0) is a Gaussian pdf, in fact, a
shifted function of p(v0). We can also show that E

{
x2

1

∣
∣ x0, i0

}
is a convex function

of x0, since its second order derivative is always positive.

- Computing E
{
u2

1

∣
∣ x0, i0

}

Following the evolution of the system, the next step is to compute E
{
u2

1

∣
∣x0, i0

}
,

E
{
u2

1

∣
∣x0, i0

}
=
L−1∑

j0=0

L−1∑

j1=0

L−1∑

i1=0

u2
1(j1

0)P(j1| i1)P( i1|x0, i0, j0)P(j0| i0).

The calculation is straightforward. We depict E
{
u2

1

∣
∣ x0, i0

}
and its second order

derivatives in Figure 4.3, which shows that as x0 moves away from the origin, the
function E

{
u2

1

∣
∣x0, i0

}
converges to fixed values. This observation is consistent with

the fact that there are a finite number of u1(j1
0).
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Case 2: t ≥ 2

Now we are in the position to compute E
{
x2

2

∣
∣x0, i0

}
,

E
{
x2

2

∣
∣ x0, i0

}
= E

{
(ax1 + u1 + v1)2

∣
∣x0, i0

}

= E
{
a2x2

1 + u2
1 + 2ax1u1 + 2(ax1 + u1)v1 + v21

∣
∣ x0, i0

}
.

Unfortunately the calculation is not straightforward, where the major challenge is
caused by the conditional pdf p(x2

∣
∣x0, i

1
0, j

1
0 ).

Generally speaking, by the linear system model, cf., Problem 4.4.4, the condi-
tional pdf p(xt

∣
∣x0, i

t−1
0 , j

t−1
0 ) can be obtained by the convolution of two pdf’s, namely

a scaled and shifted version of p(xt−1|x0, i
t−1
0 , j

t−2
0 ) and the Gaussian p(vt−1). The

pdf p(xt|x0, i
t−1
0 , j

t−1
0 ) can be deduced recursively in terms of the conditional pdf

p(xt−1

∣
∣x0, i

t−2
0 , j

t−2
0 ), the encoder mapping ft−1(xt−1, j

t−2
0 ), the channel P(jt−1| it−1)

and the process noise pdf p(vt−1). Since scaling, shifting and convolution are all
operations preserving continuality, by induction, p(xt|x0, i

t−1
0 , j

t−1
0 ) is a continuous

pdf of x0.
Back to p(x2

∣
∣x0, i

1
0, j

1
0 ), we already know that p(x1|x0, i0, j0) is a Gaussian pdf.

Then, because f1 is regular by assumption, p(x1|x0, i
1
0, j0) is a truncated Gaussian.

The pdf p(x2|x0, i
1
0, j

1
0) is therefore a continuous function of x0, computed by the

convolution of a scaled and shifted version of p(x1|x0, i
1
0, j0) and p(v1),

p
(
x2|x0, i

1
0, j

1
0

)
= p
(
ax1 + u1|x0, i

1
0, j

1
0

)
∗ p(v1),

where ∗ denotes the convolution operator. Generalizing to any t, it follows that

p
(
xt|x0, i

t−1
0 , j

t−1
0

)
= p
(
axt−1 + ut−1|x0, i

t−1
0 , j

t−1
0

)
∗ p(vt−1). (4.12)

Unfortunately, we do not have a closed-form solution to (4.12) for t>2, which will be
explained shortly. In order to proceed, we resort to approximations as shown subse-
quently. First, for the ease of presentation, let us introduce the following polynomial
functions,

W (x, z, α) , α(1)x2 + α(2)z2 + α(3)x+ α(4)z + α(5)xz + α(6), (4.13)

W1(x, α) , α(1)x2 + α(2)x+ α(3), (4.14)

W2(x, z, α) , α(1)x + α(2)z + α(3), (4.15)

where α= {α(k)}, k ∈N, is a vector independent of x and z. Note that, W1(x, α)
and W2(x, z, α) are simple special cases of W (x, z, α). Let us also introduce the
erf(x) function [CD02], defined as,

erf(x) ,
2√
π

∫ x

0

e−y
2

dy.
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According to [CD02], we can approximate the erf(x) function as

erf(x) =

{

1− erfc(x), x > 0,

−(1− erfc(−x)), x ≤ 0,

≈
{

1− (1
6e
−x2

+ 1
2e
− 4

3x
2

), x > 0,

−1 + (1
6e
−x2

+ 1
2e
− 4

3x
2

), x ≤ 0.

(4.16)

Based on the approximation (4.16), in the following lemma we show a useful closed-
form approximation of the conditional pdf p

(
xt|x0, i

t−1
0 , j

t−1
0

)
and the expectation

E
{
x2
t

∣
∣ x0, i

t−1
0 , j

t−1
0

}
.

Lemma 4.5.3. Consider Problem 4.4.4. Let t≥2, it holds that

1. A closed-form approximation of the conditional pdf p(xt|x0, i
t−1
0 , j

t−1
0 ) is given

by a sum of functions of the form

B1e
W (x0, xt, B2) (erf(W2(x0, xt, B3))− erf(W2(x0, xt, B4))) , (4.17)

where W and W2 are as defined in (4.13) and (4.15), and the vector terms
B1–B4 are independent of x0 and xt. As a matter of fact, (4.17) can also be
expressed as a sum of functions of the form A1e

W (x0,xt,A2), where A1 and A2

are vectors independent of x0 and xt.

2. A closed-form approximation of the expectation E
{
x2
t

∣
∣x0, i

t−1
0 , j

t−1
0

}
can be

written as a sum of functions of the form,

W1(x0, C1)eW1(x0, C2), (4.18)

whereW1 is defined in (4.14), and the vector terms C1 and C2 are independent
of x0.

The proof of Lemma 4.5.3 is given in Appendix 4.A.

4.5.3 Numerical Example

In this subsection, we demonstrate a numerical example which solves Problem 4.4.4
based on the results of Section 4.5.2. First in Figure 4.5, the expected cost

J0(x0, k) = E

{
1∑

t=0

x2
t+1 + u2

t

∣
∣
∣x0, i0 = k

}

, k ∈ L,

is depicted for k ∈ {0, 1, 2, 3}. We can read from the figure that all the encoding
regions of this example are regular. Then, the difference between two predictions is
computed,

E

{
1∑

t=0

x2
t+1+u2

t

∣
∣
∣x0, i0 =k

}

−E

{
1∑

t=0

x2
t+1 +u2

t

∣
∣
∣x0, i0 = l

}

, k, l ∈ L, k 6= l.
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Figure 4.5 shows the differences between J0(x0, 1) and J0(x0, k), k 6= 1. All three
curves cross zero only once. Furthermore, in Figure 4.6, the second order derivatives
of J0(x0, k), k∈{0, 1, 2, 3}, are depicted. In the region far from the origin, the second
order derivative is approximately constant, which is in accordance with the previous
discussions. On the other hand, in the neighborhood of the origin, the expected cost
is not a second order polynomial. Yet it is a convex function shown by the positive
second order derivative.

Finally, the performance–complexity trade-off is shown in Figure 4.7. In partic-
ular, the figure depicts the impact on the optimized encoder by taking more future
costs into account. We sort the thresholds in the increasing order, and label the
threshold by τ t0(x0, k). Regarding the notation τ t0(x0, k), first, t∈{0, . . . , T} speci-
fies the length of the time horizon involved in the overall cost. In other words, the
threshold τ t0(x0, k) is computed based on the future terms xt1 and ut−1

0 . Second, the
index k∈{1, . . . , 2R − 1} specifies the kth threshold, and

τ t0(x0, k) ≤ τ t0(x0, l), if k < l.

In the example, by taking more future costs into consideration, the thresholds are
shifted towards the origin. It is also worth mentioning that in the example in Fig-
ure 4.7, the impact on the optimized encoder by the future costs decreases rapidly
with time. The figure shows that even though the future costs are significant to the
overall cost E {Jtot}=

∑T
t=1 E

{
x2
t + u2

t−1

}
, their impact on the optimized threshold

is limited. We also know that the encoder complexity increases significantly with
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the future terms. Hence, from a practical point of view, we can significantly re-
duce the computational burden by only taking into account the near-future cost
arg mink∈L

∑t+∆t
s=t E

{
u2
s + x2

s+1|xt, it = k, jt−1
0

}
, for properly selected step length

∆t, without causing serious performance degradation. How to select a suitable ∆t
is worth further investigation.

In this section, we proposed an approximation to compute the expected fu-
ture cost. The approximation can be used to assess the regularity property of the
encoder. In our simulations of Example 4.4.1, we always observe regular encoder
mappings if we initialize with regular encoder mappings. For the general system
in which the initial-state, process noise or measurement noise have arbitrary pdf’s,
and initialized with arbitrary encoder–controller mappings, the situation is much
more complex. It is not difficult to find such examples that the encoding mappings
are not regular.

4.6 Control over Long Time Horizon

In this section the problem of designing encoder–controllers for long time hori-
zon is studied. As explained previously, in the case of a long time horizon, even
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for a scalar system of a low data rate, a solution by iterative training requires
extensive computation. The high computational complexity of the training proce-
dure is a driving factor for the development of lower-complexity high-performance
coding–control schemes. In striving toward practical encoder–controller designs of
high performance and low complexity, it is important to find efficient and useful
simplifications and approximations. This section is mainly devoted to an empirical
study of several practical encoder–controllers constructed based on the results from
Chapter 3. The objective is to seek a good compromise between computational
effort and efficient controls.

As discussed in the first part of this chapter, the iterative encoder–controller
design from Chapter 3 suffers from the dimensionality problem. Generally speaking,
the design becomes impractical when confronting any of the following challenges:
a long time horizon T , a high system-order, or a high data rate. However, our
experiments have shown that satisfactory performance can be achieved in practice
even though the encoder–controller pair is trained for a low communication rate
and a short time horizon. Here we mention two observations.

1. Typically in control systems, the state response can be divided into two
phases, the transient-state phase and the steady state phase. During the
transient-state phase, in order to catch up the rapid time variation of the
state, the encoder–controller mappings ft and gt change correspondingly with
time. On the other hand, in the steady state phase, the mappings ft and gt
are relatively constant. Therefore, in practice, satisfactory performance can
be expected by only optimizing the encoder–controller components for steps
until the steady state is reached, and thereafter applying a time-invariant
encoder–controller mapping.

2. The experiments have shown that above a certain value, the performance
gain attained by increasing data rate drops significantly. Unlike the situa-
tion when the channel is error-free, in order to maintain robustness against
channel errors, training typically results in cautious control inputs, meaning:
(i) Magnitudes of controls are small, and (ii) differences among controls are
small. In fact, the higher the crossover probability is, the smaller and closer
are the values of the feasible controls. Consequently, the advantage of having
a high rate, is substantially reduced as the error-level increases.

4.6.1 Problem Formulation

Since the key point is to deal with long time horizon, we consider a scalar system,
which is governed by the linear equation system (4.1), i.e.,

xt+1 = axt + ut + vt, a > 0,

yt = xt + et.

Process noise vt and measurement noise et are modeled as i.i.d. Gaussian zero-
mean processes with variances σ2

v and σ2
e . They are mutually independent of the
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initial-state x0, which is also i.i.d. zero-mean Gaussian, i.e., x0 ∼N (0, σ2
x0

). State
measurements will be conveyed to the controller via a low-rate noisy channel. The
coding–control scheme will be described in the subsequent text. Here, we first spec-
ify the design goal which is to minimize the expected cost E {Jtot} where Jtot is
given by (4.2), i.e.,

Jtot =

T∑

t=1

x2
t + ρu2

t−1.

Focusing on explaining basic concepts, we consider the special scenario that full SI
and all previous measurements are available at the encoder, where the Kalman filter
can be adopted at the encoder to compute the conditional mean squared estimate.
As discussed previously, unlike in the classical LQG problem, the control ut is now
completely determined by the channel outputs jt0, and the Kalman filter employed
at the encoder will compute the conditional mean estimate x̂t = E {xt|yt0, jt0},
cf., (4.4).

According to the results from Chapter 3, the optimal controller for a fixed
encoder is given by

ut = ℓtE
{
xt| jt0

}
, ℓt =

a φt+1

φt+1 + ρ
, φt = 1 +

a2φt+1ρ

φt+1 + ρ
, with φT = 1, (4.19)

where the separation principle applies. As discussed in the first part of this chapter,
deriving the estimate E {xt| jt0} is a challenging task, mostly because the computa-
tional complexity is significantly increased as the time horizon increases. In what
follows, we are going to present several alternative designs which use different ap-
proximations of E {xt| jt0}, grouped with respect to the memory access pattern.
In all designs, we employ a separate decoder at the receiver side, and restrict the
control to take the following form,

ut = ltdt,

where lt denotes a linear control law and dt denotes a state estimator. Next we
introduce a class of decoders with limited memory, the deterministic mapping

dt = Dt(j
t
tc), tc = t−Mc, Mc ∈ {0, . . . , t},

where Mc specifies the memory of the past received symbols at the controller. The
decoded symbol dt is viewed as an estimate of the state xt. As before, x̆t denotes
the state estimator E {xt| jt0}, and x̂t the state estimator E {xt|yt0, jt0}.

4.6.2 Type I: Coding–Control Schemes with limited memory

As discussed previously, the main challenge of implementing (4.19) lies in the sig-
nificantly increasing complexity of ft and gt as the time horizon T grows, since both
ft and gt utilize information from the past, and as well, they influence the future



94 Complexity Considerations

evolution. According to the system model, the state xt and past received symbols
jt0 are the most important terms to the future evolution at each t. Based on experi-
mental study we observe that a substantial part of information about xt and jt−1

0 is
often carried in the latest state measurements and channel outputs. Similarly, the
major impact of the current state is on near-future states. Therefore, a reasonable
simplification is to ignore part of information from far past, and also, part of impact
on far future. In addition, when the system approaches the steady state the time
variation of encoder–controller mappings typically becomes insignificant. For these
reasons, we can simplify the decoder–controller by introducing a restriction on the
decoder–controller memory. In other words, the decoder–controller is only given ac-
cess to the latestMc+1 channel outputs. Aiming at providing good performance at
both the transient and steady state, we present the following coding–control (CCS)
policies.

CCS 4.6.1. We divide the entire time horizon into two phases. The first phase,
including the beginning Mc+1 pairs of encoder–controller mappings, fMc0 and gMc0 ,
answers for the transient behavior of the system. They are designed using the train-
ing method proposed in Chapter 3. More precisely, they are designed for the case
that the horizon is T , and the costs contributed by the states after tMc are zero. In
the second phase, tMc+1, . . . , T , a pair of time-invariant encoder–controller map-
pings are used. A reasonable candidate is the encoder–controller pair designed for
t=Mc, i.e., fMc and gMc(j

t
t−Mc

).

CCS 4.6.1 is somehow an ad hoc approach, especially the encoder–control map-
pings for t > tMc . However, if the system quickly approaches the steady state in
the first Mc+1 steps, the performance degradation is expected to be insignificant.
Below, we introduce two other memory-restricted encoder–controllers, based on the
idea of moving horizon. They will be compared with CCS 4.6.1.

CCS 4.6.2. Divide the entire time horizon into short time slots of equal-length,
and let Mc denote the length of one time slot. At each time slot a Mc-step encoder–
controller optimized using the training method from Chapter 3 is employed.

Note that, the last state in the current time slot is also the initial-state of
the next time slot. To avoid ambiguity, we distinguish ℓt computed for the longer
horizon T and the shorter horizon Mc by the notations ℓT,s, s ∈ {0, . . . , T}, and
ℓMc,s, s∈{0, . . . ,Mc}. It follows that ℓt= ℓT,t, if nothing else is stated. Regarding
CCS 4.6.2, at each t=kMc, k∈Z+, the linear control law lT,kMc is reset to ℓMc,0,
and similarly, lT,kMc+1 =ℓMc,1, and so on.

The linear control law ℓt (4.19) plays an important role in the minimization
over the entire time horizon in the classical LQG problem. Therefore, we present
CCS 4.6.3 by modifying CCS 4.6.2 slightly.

CCS 4.6.3. Divide the entire time horizon into short time slots of equal-length, and
let Mc denote the length of one time slot. In the kth time slot, i.e., t=kMc, . . . , (k+
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1)Mc−1, we apply an Mc-step encoder–controller, trained according to Chapter 3,
but with the linear law ℓT,kMc , . . . , ℓT,(k+1)Mc−1.

One obvious drawback of CCS 4.6.2 and CCS 4.6.3 is the inefficient use of
memory. Loosely speaking, at a low rate, the memory plays a significant role in
increasing the resolution of the measurement. CCS 4.6.1 is superior to CCS 4.6.2
and CCS 4.6.3 since it is better at trading the memory for data rate. This will be
illustrated by the numerical examples in Section 4.6.5. Finally, the following two
systems are also used as reference systems.

4.6.3 Type II: Coding–Control Schemes with No Memory

Consider the special case that the encoder–controller has only access to the current
measurement yt and received symbol jt. We design encoder–controllers according
to the following criterion.

CCS 4.6.4. The encoder–controller mappings take only the nearest future into
account, based on the latest state measurement and channel output,

ft(yt) = arg min
k

E
{
x2
t+1 + ρu2

t

∣
∣ yt, it = k

}
,

gt(jt) = arg min
ut

E
{
x2
t+1 + ρu2

t

∣
∣ jt
}
.

(4.20)

It is straightforward to show that we can also write the design criterion (4.20)
as the following one,

ft(yt) = arg min
k

E
{

(xt − dt)2
∣
∣ yt, it = k

}
,

gt(jt) = − a

ρ+ 1
E {xt| jt} ,

(4.21)

which means lt=−a/(ρ+ 1) and dt= E {xt| jt}. Here, the linear control law lt is
time-invariant. In fact, it is exactly the same one as ℓT in (4.19). Further, due to the
mutual dependence of the encoder and controller, the mappings (4.21) are obtained
iteratively in practice. The training process is performed in a similar manner to
that used in Chapter 3, i.e., alternating between the optimization of encoder and
controller mappings. Here, the complexity of the training is substantially reduced
because of the ignorance of the past and future terms. Note also, the function
E
{

(xt − dt)2
∣
∣ yt, it

}
can be rewritten as,

E
{

(xt−dt)2
∣
∣ yt, it

}

=

L−1∑

l=0

P(jt= l| it)
(

(E {xt| yt} − dt)2
+E

{
x2
t

∣
∣ yt
}
−(E {xt| yt})2

)

,

which makes use of the facts that (i) conditioned on it, jt is independent of yt,
and (ii), xt conditioned on yt is independent of it and jt. The last two terms
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E
{
x2
t

∣
∣ yt
}

and (E {xt| yt})2 have no impact on the decision of it, therefore the
encoder mapping (4.21) can be reduced to

ft(yt) = arg min
k

L−1∑

l=0

P(jt = l| it = k) (E {xt| yt} − dt)2
.

Finally, to demonstrate the significance of the linear control law ℓt of (4.19), the
following encoder–controller pair is included.

CCS 4.6.5. The encoder–controller is given by the equations

ft(yt) = arg min
k

E
{

(xt − dt)2
∣
∣ yt, it = k

}
,

gt(jt) = ℓtE {xt| jt} .

4.6.4 Type III: Coding–Control Schemes with Infinite Memory

Type II encoder–controllers, CCS 4.6.4 and CCS 4.6.5, utilize only information
carried in the current measurement yt and channel output jt, to minimize the av-
erage cost one step ahead. Consequently, these approaches may degrade the overall
system performance seriously, since the useful information in the history is not
fully exploited. To study the significance of memory, we consider two full-memory
encoder–controllers, and particularly assume jt0 and yt0 are available to the con-
troller and the encoder, respectively.

However since the optimal full-memory encoder–controller is prohibited by com-
plexity limitations, only practical schemes are considered here. More specifically, we
adopt a Kalman filter to compute an estimate of the expected value E {xt| jt0}. Re-
call that the Kalman filter can perfectly compute the conditional mean estimate
E {xt|yt0,ut0}, as well as E {xt|yt0, jt0} in the special case that ut is completely de-
termined by jt0. Unfortunately, the Kalman filter is not able to produce E {xt| jt0}.
In other words, we can not use the Kalman filter to implement an optimal controller
when there is a channel between the sensor and the controller. However, we can
implement the Kalman filter to obtain a computationally feasible solution. In short,
the coding–controller scheme works as follows. At the encoder, a time-invariant uni-
form encoder is employed, and then at the receiver side, the reconstructed values
are fed into a Kalman filter. Thereafter, the control law is computed as a linear
function of the Kalman filter output where we let the linear control law lt be equal
to ℓt of (4.19). In CCS 4.6.6 and CCS 4.6.7, we present two system designs in which
the Kalman filter is designed differently. As a matter of fact, they are U-Kalman I
and U-Kalman II from Section 3.5.

CCS 4.6.6. Let lt be ℓt of (4.19). Design the Kalman filter assuming the channel is
absent. In other words, the Kalman filter is designed entirely based on the statistical
knowledge of the initial-state, the process noise and the measurement noise, as in
the classical LQG problem.
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CCS 4.6.7. Let lt be ℓt of (4.19). Design the Kalman filter assuming the total
distortion due to measurement noise, quantization and transmission error is white
and Gaussian distributed.

By CCS 4.6.7, the distortion caused by quantization and transmission error
is treated as a part of measurement noise. Note that, the “extended” measure-
ment noise (including quantization error and channel error) is neither Gaussian
nor uncorrelated with the state and the process noise, making the Kalman filter a
sub-optimal estimator.

4.6.5 Numerical Examples

In this sub-section, numerical experiments are carried out to demonstrate the per-
formance of the various encoder–controllers presented in this section. For the sim-
plicity of presentation, in the experiments we consider a linear scalar plant for
which the encoded measurement is transmitted over a binary symmetric channel.
The system equations and the LQ cost follow (4.1) and (4.2). The initial-state x0,
process noise vt and measurement noise et are all i.i.d. zero-mean Gaussian. The
system parameters are chosen in the interest of demonstrating both the transient
phase and the steady-state phase. In particular, the parameters are: a=0.9, σ2

x0
=5,

σ2
v=2, σ2

e=2, ρ=5, T =30, ǫ=0.08, and R=2.
In Figure 4.8, we compare the Type I schemes for which the controllers are

restricted to have a memory-length of Mc = 2. On the y-axis, the instantaneous
expected cost is depicted, as a function of t. As expected, the best performance
is achieved by CCS 4.6.1, because of the efficient use of the memory. Regarding
the other two schemes, CCS 4.6.2 and CCS 4.6.3, the latter one performs better.
In fact, it can be read from Figure 4.8 that CCS 4.6.2 is superior to CCS 4.6.3
only in the initial steps, and thereafter, CCS 4.6.2 converges to a level higher
than CCS 4.6.3 does. For both CCS 4.6.2 and CCS 4.6.3, a sawtooth behavior is
observed at the steady state. This is attributed to the periodic memory building
process. Both CCS 4.6.2 and CCS 4.6.3 employ a new Mc-step encoder–controller
in each time slot, so the memory is emptied at each t = kMc + 1, k ∈ Z

+, and
then built up as the time goes by. Consequently, the number of admissible controls
is periodically reduced to L, and then gradually increases as memory accumulates.
However, the memory re-building problem is eased up by using CCS 4.6.1, for which
the instantaneous cost is decreasing smoothly.

As stated previously, the computational complexity increases substantially with
the channel rate R and the controller memoryMc. The degradation in performance
is expected to be small if Mc is large enough that the steady state is quickly
reached. In the study of the impact of Mc, our experiments often show that even
for smallMc, the performance improvement along with increasingMc is practically
negligible. In a similar manner we also investigate the significance of transmission
rate R. Empirically, it shows that the performance gain along with the increasing
transmission rate also drops rapidly, since in order to protect against channel errors,
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Figure 4.8: The performance of the Type I coding–control schemes, CCS 4.6.1-
CCS 4.6.3.
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Figure 4.10: The performance of the Type III coding–control schemes, compared
with CCS 4.6.1 and CCS 4.6.4.

0 0.5 1 1.5 2 2.5 3 3.5 4

0.85

0.9

0.95

1

1.05

1.1

∆

 

 

no
rm

al
iz

ed
ov

er
al

l
co

st
J̄
to
t

(2, 0.08), CCS 4.6.6

(2, 0.08), CCS 4.6.7

(2, 0.2), CCS 4.6.6

(2, 0.2), CCS 4.6.7

(3, 0.08), CCS 4.6.6

(3, 0.08), CCS 4.6.7

(3, 0.2), CCS 4.6.6

(3, 0.2), CCS 4.6.7

Figure 4.11: The performance of CCS 4.6.6 and CCS 4.6.7 in terms of the step
length of the uniform encoder. The notation (2, 0.08) means R=2 and ǫ=0.08.
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redundancy is introduced by the jointly designed encoder–controller to function
as a sort of channel code. In the case of high crossover probabilities, this fact
explains why the number of codewords the encoder chooses is less than the available
codewords.

In Figure 4.9, Type II coding–control schemes, CCS 4.6.4 and CCS 4.6.5, are
evaluated. Compared with CCS 4.6.1, there is an evident gap, attributed to the
ignorance of the information in memory. Figure 4.9 also shows that by replacing
ℓT of CCS 4.6.4 with ℓt the performance can be considerably improved without
increasing the memory. This is because ℓt is derived with respect to the total cost
over the entire time horizon, while ℓT is obtained by only taking the cost at next
step into consideration. As expected, CCS 4.6.4 outperforms the modified control
only at the first step. But, the modified system converges to an average cost at a
lower level.

In Figure 4.10, Type III coding–control schemes, CCS 4.6.6 and CCS 4.6.7 are
compared with CCS 4.6.1 and CCS 4.6.4. First of all, since both CCS 4.6.6 and
CCS 4.6.7 employ optimal time-invariant uniform encoders, their overall perfor-
mance appear to be equally good. Second, there is also an evident gap between
the Type III coding–control schemes and CCS 4.6.1, which illustrates the situation
that information in the memory is wasted when it can not be properly exploited.
CCS 4.6.1 outperforms the Type III coding–control schemes, although its accessible
memory is substantially limited.

Further comparison of the Kalman-filter-based approaches are shown in Fig-
ure 4.11. We let the step length of the uniform encoder vary along the x-axis, and
the normalized overall cost, with respect to the non-control case, is depicted along
the y-axis. Other parameters are the same as in Figure 4.10. The figure reveals
that severe consequences can be expected if the information in the memory is not
properly exploited. When the step length is small, CCS 4.6.6 performs slightly
better than CCS 4.6.7. On the other hand, the expected cost of CCS 4.6.6 grows
unbounded as the step length increases. Relatively, the performance of CCS 4.6.7
deteriorates slowly as the step length increases, and the corresponding instanta-
neous cost converges to a certain value. In general, in the presence of channel errors
the impact of data rate becomes more complicated that increasing the rate R does
not necessarily always lead to a better performance. Figure 4.11 shows also that
low-rate mappings could be more robust to quantization and transmission errors
than certain high-rate mappings. For CCS 4.6.6, increasing or reducing the step
length, both will worsen the mismatch between the true noise variance and the
one the Kalman filter is designed for. If the mismatch is serious, it can have dire
consequences. On the other hand, in CCS 4.6.7, all distortions contributing to the
difference between the true state and the message decoded at the controller are
treated as measurement noise, i.i.d. zero-man Gaussian. Although this assumption
differs from reality, CCS 4.6.7 is aware of the true noise variance. In the worst case,
the system turns to an open-loop system, without any control action.

Finally in Figure 4.12a, we compare our methods with the coding–control scheme
proposed in [GN08]. We adopt the same system parameters used in the numerical
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Figure 4.12: The performance of CCS 4.6.1 and CCS 4.6.5, applied to the system
from [GN08], for different rate R. The common system parameters are: a = 1.1,
T =100, R=2, σ2

w=1, σ2
x0

=1, σ2
e=1. (a) The rate R is 2. (b The rate R is 3.
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example in [GN08] where the system parameters are: a=1.1, T =100, R=2, ρ=0,
ǫ=0.01, x0 ∼N (0, 1), vt∼N (0, 1), et∼N (0, 1). The two reference systems, without
controls and without channels, are included in the same figure. Note that, the
open-loop system, without any control, is unstable. In [GN08], the authors showed
numerically that their scheme was able to stabilize the unstable plant. Here we show
in Figure 4.12 that our methods CCS 4.6.1 and CCS 4.6.5 are able to stabilize the
unstable plant as well. Compared with [GN08], our schemes achieve a more smooth
and lower steady-state level. In the same figure, CCS 4.6.5 is also simulated for
higher ρ and ǫ values to demonstrate the negative impact on the overall system
performance caused by increasing ρ or ǫ. In the both cases, the stability is violated
because of the reduced control power. Figure 4.12b is used to demonstrate that
a higher rate may improve the stability of the closed-loop system. At ρ = 0.5 or
ǫ = 0.05, CCS 4.6.5 is not able to stabilize the closed-loop system for R = 2. By
increasing the transmission rate R from 2 to 3, the closed-loop system is stabilized.

4.7 Summary

In this chapter, we discussed the implementation of the training algorithm proposed
in Chapter 3. A major part was devoted to a discussion of the encoder complexity
which was revealed to play an important role in the optimization process. In gen-
eral, the proposed training algorithm is complicated and the implementation may
encounter the dimensionally problem. Overcoming the complexity barrier is really
one of the major challenges from the practical point of view. In the first part of
this chapter, we discussed two special encoder properties, the sufficient statistics
and the regularity, which appeared to be very useful in solving the dimensionality
problem in training. We derived a closed-form approximation to compute the ex-
pected future costs, which can be used to determine the regularity of the encoder.
Thereafter, in the second part the complexity problem encountered when the hori-
zon is large was studied. In particular, a number of low-complexity coding–control
strategies subject to various memory restrictions, were empirically compared.

4.A Proof of Lemma 4.5.3

Proof. We prove Lemma 4.5.3 by using induction. Start at t= 2, the derivation of
p(x2|x0, i

1
0, j

1
0) involves a convolution of two pdf’s, which can be written as

∫

x1

A1e
−
W 2

2 (x1, x0, A2)
A3 e

−
W 2

2 (x2, x1, A4)
A5 dx1, (4.22)

where W2 is as defined in (4.15) and the terms A1–A5 are independent of x2
0. The

resulting p(x2|x0, i
1
0, j

1
0) can be written as a sum of terms of the form (4.17), i.e.,

B1e
W (x0, x2, B2) (erf (W2 (x0, x2, B3))− erf (W2 (x0, x2, B4))) ,
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Figure 4.13: Predicted costs obtained by numerical simulation.

where B1–B4 are vector terms independent of x0 and x2, and W and W2 are as
defined in (4.13) and (4.15). As a matter of fact, (4.17) can be expressed as a sum
of functions of the form A1e

W (x0,x2,A2), where A1 and A2 are independent of x0

and x2.
In order to obtain E

{
x2

2

∣
∣ x0, i

1
0, j

1
0

}
and p(x3|x0, i

2
0, j

2
0), it involves the integra-

tion of the erf(·) function. Unfortunately, there is no explicit expression to this
integration. Resorting to numerical methods, we depict some E

{
x2
t

∣
∣x0, i0

}
and

E
{
u2
t

∣
∣ x0, i0

}
in Figure 4.13. However, the numerical computation is not only time

consuming, but also unable to reveal certain useful properties of the functions.
Given the above-mentioned challenges, we solve the problem by approximating the
erf(x) function with certain exponential functions, as shown in (4.16), and thereby
deriving a closed-form approximation of the overall cost.

First, consider the derivation of E
{
x2

2

∣
∣ x0, i

1
0, j

1
0

}
. According to (4.22), it is
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straightforward to show that the derivation involves the following type of inte-
gration, ∫

x2

x2
2A1e
W (x0, x2, A2)dx2,

where A1 and A2 are independent of x0 and x2. The result of the above integration
is a sum of functions which can all be written into the form (4.18), i.e.,

W1(x0, C1)eW1(x0, C2),

where C1 and C2 are vectors independent of x0. Similarly, the derivation of the
conditional pdf p(x3|x0, i

2
0, j

2
0) leads to integrations of the form

∫

x2

A1e
W (x0, x2, A2)eW (x2, x3, A3)dx2,

and finally a sum of functions of (4.17), i.e.,

B1e
W (x0, x3, B2) (erf(W2(x0, x3, B3))− erf(W2(x0, x3, B4))) ,

where A1–A3 and B1–B4 are vector terms independent of x0 and x3. This is exactly
the same type of function as the approximation of p(x2|x0, i

1
0, j

1
0).

As a matter of fact, the above result can be generalized to all t, i.e., any
p(xt|x0, i

t−1
0 , j

t−1
0 ) can be written as a sum of functions of the form (4.17). Simi-

larly, the expectation E
{
x2
t

∣
∣x0, i

t−1
0 , j

t−1
0

}
can be written as a sum of functions of

the form (4.18).



Chapter 5

Optimized Rate Allocation

5.1 Introduction

In Chapter 3, the problem of how to optimize encoder–controller mappings to
improve the efficiency of control over a finite-rate noisy channel was addressed.
In this chapter we present an alternative method to advance the overall con-

trol performance, given limited communication resources. That is to optimize the
allocation of the instantaneous rates over time. How to allocate communication
resources over space and time is important. For feedback control system this is
a largely open problem. In the literature of control with quantized feedback, it
has often been assumed that bits (rates) are evenly distributed to sensor measure-
ments, e.g., [TSM04, NFZE07, BSJ08], mainly for the reason of simplicity. Some
work about how to assign bits among the elements of a state vector of the plant,
while imposing a constraint on the number of bits over time, can be found in e.g.,
[LL05a, XJH+05]. However, owing to the non-stationarity of the state observations,
it is natural to expect considerable gains by employing time-varying communication
resources, i.e., a non-uniform allocation of transmission rates over time. Hence, an
even distribution of bits to all instantaneous rates is often not the most efficient
solution.

How to achieve the optimal rate allocation in control systems is a challenging
task. One obstacle is to find a tractable distortion function, which we need to use
as objective functions for the rate optimization problem. Furthermore, such an
optimization problem is often non-convex and non-linear, which implies that it is
difficult to compute the optimal solution in practice.

The main contribution of this chapter is a novel method of rate allocation for
state feedback control of a linear system over a noisy channel. Specifically, we are
interested to the rate allocation problem in two important cases in closed-loop con-
trol: linear feedback control and state estimation. By resorting to an approximation
based on high-rate quantization theory, we are able to derive a computationally fea-
sible scheme that seeks to minimize the overall distortion over a finite time horizon.
The resulting rate allocation is not necessarily evenly distributed. Practical con-
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siderations concerning integer-rate constraints and the accuracy of high-rate ap-
proximations are discussed and illustrated through numerical examples. It is worth
remarking that although high-rate theory requires high rates to be valid, this theory
can often be used also at lower rates. Experience has shown that high-rate theory
can make useful predictions at low rates. Overall good performance of our method
is shown by numerical simulations, even the rate is as low as 3, 4 bits per sample.

The rate allocation problem studied in this chapter is related to classical rate
allocation problems in communications, e.g., [GG92, FZ06]. Inspired by [GG92,
FZ06], we resort to high-rate quantization theory [Ger79, GG92, MN93, GR95,
RRM03] to quantify the relation between rate and performance for a general class
of quantizers, while previous work has often focused on the special case of opti-
mized quantizers. For example in [Lim05], the problem is studied in the context of
transform codes, where the objective function is convex, and a closed-form optimal
solution can be derived. In our setting we will show that the overall distortion is
a non-convex function of the instantaneous rates, which makes more difficult the
computation of the optimal solution.

The rest of this chapter is organized as follows. First, in Section 5.2, the closed-
loop control system studied in this chapter is described and the rate allocation
problem is presented. Since many results in this chapter are based on high-rate
theory, Section 5.3 is devoted to a brief review of some useful results on high-rate
quantization. In Section 5.4, a state estimation problem under rate allocation con-
straints is posed and solved for cases with and without channel errors. Thereafter,
Section 5.5 deals with the state feedback control problem by following the same
procedure as in Section 5.4. However, the solution derived in Section 5.5 is limited
by the fact that the number of equations increases as the horizon T grows, and it
is therefore not practically useful when T is large. For this reason, in Section 5.6,
a fast bit-rate allocation algorithm is suggested based on certain additional ap-
proximations. In many cases the low-complexity solution from Section 5.6 works
sufficiently well. In addition, search methods based on testing are discussed in Sec-
tion 5.7. In the same section, we propose an efficient search algorithm, specially
customized for the rate allocation in control systems. Practical issues such as how
to deal with non-negativity and integer constraints can be found in Section 5.8,
as well as some remarks on the performance degradation caused by various ap-
proximations and simplifications. In Section 5.9, numerical simulations are carried
out to demonstrate the performance of the proposed bit-rate allocations. Finally, a
summary of the chapter is given in Section 5.10.

5.2 System Description and Problem Statement

The goal of this chapter is to arrive at a practical rate allocation scheme for state
feedback control over a noisy channel. Figure 5.1 shows a block-diagram of the con-
trol systems studied in this chapter. Following Figure 5.1, we first briefly introduce
each building block of the system, and then describe the rate constrained optimiza-



5.2. System Description and Problem Statement 107

xt
it

ut

Plant
Encoder
ft

Decoder
Dt

Controller
gt

dt

vt x0

jt

Channel

Figure 5.1: Block-diagram for the closed-loop system studied in this chapter. The
system has a separate decoder unit and a controller.

tion problem. Finally, the coding unit and the channel will be further explained.

5.2.1 System Description

We throughout this chapter consider a special case of the general model of Chap-
ter 2, namely a scalar system with full state observation (a system without mea-
surement noise), to focus mainly on the influence of a current decision on future
events, which is one of the most fundamental properties of a control system. More
specifically, the linear plant is governed by the equation

xt+1 = axt + ut + vt, a > 0, (5.1)

where xt, ut, vt∈R. Process noise vt is modeled as an i.i.d. Gaussian zero-mean pro-
cess with a time-invariant variance σ2

v. The process noise is mutually independent
of the initial-state x0, which is also i.i.d. zero-mean Gaussian, i.e., x0∼N (0, σ2

x0
).

At the encoder, the full state measurement is coded by a memoryless time-
varying encoder, which takes only the current state xt as input, and produces an
index it,

it = ft(xt) ∈ Lt =
{

0, . . . , 2Rt − 1
}
, Rt ∈ Z

+, t = 0, . . . , T − 1, (5.2)

where we allow the rate Rt to be a time-varying non-negative integer. The index
it will be mapped into a binary codeword before being fed into a binary channel.
Details concerning the channel model will be given later. Recall, the mapping from
an index to a codeword is commonly referred to as the index assignment (IA). Un-
like in the error-free scenario where all IA’s perform equally well, in the presence
of channel errors different IA’s have different impact on the system performance.
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Finding the optimal IA is a combinatorial problem which is known to be NP-hard
[Far90]. In this chapter, we therefore average out the dependence on a specific IA
by randomization. At each transmission, a random assignment is generated and
revealed to the encoder and decoder. Previous work that assumed a random IA to
facilitate further analysis includes [ZM94, MR06]. Of course, to assign IA randomly
for each transmission is impractical in real communication systems. However, us-
ing the random IA in the analysis can characterize the average performance for a
given rate allocation, and one can always find at least one IA which performs as
good as the random assignment. Often, it is possible to find IA’s which outperform
the random assignment. Therefore, in practice, we can first use random IA in the
analysis to optimize the rate allocation. Then, for the optimized rate allocation we
can use an IA which performs better than the random assignement.

At the receiver side, there is a separate decoder unit and a controller. The
decoder takes the instantaneous channel output jt∈Lt as the input, and produces
an estimate of xt, denoted by dt,

dt = Dt(jt) ∈ R, (5.3)

where Dt(·) is a deterministic function. The estimate dt can take on one of 2Rt

values, referred to as the reconstructions. For brevity, we also use dt to represent
the decoding codebook, in particular, the notation dt(k) specifies the decoded value
associated with the integer value k. Accordingly, dt(it) is the reconstruction chosen
by the encoder, and dt(jt) by the decoder. Finally, the control ut is computed based
on the decoded symbol, i.e.,

ut = gt(dt) ∈ R.

We will be more specific about the control law gt after the rate allocation problem
is presented.

5.2.2 Problem Statement

In short, the goal is to minimize the expected overall cost E
{
Jtot(R

T−1
0 )

}
, sub-

ject to a total rate constraint. More specifically, the overall performance measure
Jtot(R

T−1
0 ) is given by

Jtot(R
T−1
0 ) =

T∑

t=1

Jt(R
t−1
0 ) =

T∑

t=1

x2
t + ρu2

t−1, ρ ≥ 0, (5.4)

where Jt denotes the instantaneous cost, and ρ is the importance factor of the
control input with respect to the state. The rate constraint is

T−1∑

t=0

Rt ≤ Rtot, Rt ∈ Z
+, t = 0, . . . , T − 1. (5.5)
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That is to say, the sum of the instantaneous rates cannot exceed Rtot, the total rate.
The sequence of rates is denoted by RT−1

0 = {R0, . . . , RT−1}. We refer to RT−1
0 as

the bit-rate allocation. Throughout this chapter, we say “for all t” when we mean
“for t= 0, . . . , T−1”. Notice that, the implicit relation of the rate allocation RT−1

0

and the cost E
{
Jtot(R

T−1
0 )

}
is closely related to the channel and coding–control

scheme, which will be specified next.
Generally speaking, it is a hard problem to optimize the average cost E {Jtot}

with respect to both the coding–control scheme and the rate allocation. Therefore,
we take a more problematic approach and assume that the controller is given by
the classical LQG state feedback control law. That is, the control is taken to be a
linear function of the decoded symbol dt,

ut = ℓtdt, (5.6)

where the linear control law ℓt is calculated as

ℓt , − aφt+1

φt+1 + ρ
, φt = 1 +

a2φt+1ρ

φt+1 + ρ
, with φT = 1. (5.7)

That is to say, if the estimate dt is close to the true state xt then classical linear
quadratic Gaussian (LQG) theory [Aok67, Ber76] is expected to give good results,
even though this theory does not account for channel errors and quantization dis-
tortion.

Next, we specify the communication units in the closed-loop system, i.e., the
channel and encoder–decoder pair.

Binary Symmetric Channel and Random Index Assignment

Let the discrete memoryless channel have the input it∈Lt and the output jt∈Lt.
A discrete memoryless channel is described by the transition probability function
P(jt|it). In this chapter, two types of discrete channels are considered: (i) the finite-
rate error-free channel, and (ii) the noisy channel consisting of a BSC and a random
IA.

The combination of the random IA and a BSC forms the end-to-end channel
seen by the encoder and decoder. The end-to-end channel is completely specified by
the symbol transition probability function P(jt| it). At the bit level, the channel is
characterized by the crossover probability ǫ=P(0| 1)=P(1| 0) of the BSC. Because
of the symmetry, it is reasonable to consider only 0≤ ǫ≤ 0.5. The overall symbol
error probability P(jt|it) of the end-to-end channel is determined by both ǫ and
the randomized IA, according to

P(jt| it) =

{

α (Rt) , jt 6= it,
1− (2Rt − 1)α (Rt) , jt = it.

(5.8)
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Here, α(Rt) is obtained by averaging over all possible IA’s [ZM94],

α (Rt) ,
1

∏2Rt

k=1 k

∑

bt∈Bt

P(bt(jt)|bt(it))

=
1

∏2Rt

k=1 k
(2Rt − 2)!





2Rt−1∑

n=0

2Rt−1∑

m=0,m 6=n

P(jt = m|it = n)





=
1− (1 − ǫ)Rt

2Rt − 1
,

with (·)! denoting the factorial. The set Bt contains all the functions bt : Lt 7→
{0, 1}Rt, also referred to as IA’s. For the channel (5.8), all symbol errors are equally
probable.

Clearly, the error-free channel is the special case with ǫ = 0 and jt = it, i.e.,
the channel output is always identical to the channel input. The only restriction
imposed by this channel is the finite-rate Rt. The reason for considering error-free
channels is mainly to study the impact of quantization.

Two Examples of Encoder–Decoders

Throughout the chapter, encoder–decoder pairs are memoryless mappings equiv-
alent to a quantizer. We will use two conventional quantizers for demonstrating
concepts and techniques. They are: (i) the uniform quantizer, and (ii) the memo-
ryless source-optimized quantizer. We choose to study these two quantizers mostly
because they are simple to implement and feasible to analyze. Also, we use them
to represent different degrees of source information the controller can take advan-
tage of. Usually, more statistical information is exploited by the source-optimized
quantizer than by the uniform quantizer.

Example 5.2.1. Uniform Quantizer
Owing to its simplicity, the uniform quantizer is thoroughly studied in the liter-

ature and commonly used in practice. We describe the step length ∆t of a uniform
quantizer as a function of the rate Rt and the quantizer range [−νt, νt],

∆t =
2νt

2Rt
.

The quantizer works as follows,

it =







0, xt < −νt + ∆t,

k, −νt + k∆t ≤ xt ≤ −νt + (k + 1)∆t, k ∈ N,

2Rt − 1, xt > νt −∆t.

The range νt can be selected with respect to the source, see Example 5.2.2 next.
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Example 5.2.2. Uniform Quantizer and Gaussian source
Consider a source xt, and let pνt denote the probability that xt is within the

range of the quantizer, i.e., pνt,P(xt∈ [−νt, νt]). If xt is zero-mean Gaussian with
variance σ2

xt , νt is related to pνt and σ2
x as follows,

νt = σxtQ
−1

(
1− pνt

2

)

,

where Q−1(·) is the inverse function of the Q-function [Pro95], with the Q-function
defined as

Q(x) ,

∫ ∞

x

1√
2π
e
−y2

2 dy.

Example 5.2.3. Source-Optimized Quantizer
Besides the uniform quantizer, we will also study a so-called source-optimized

quantizer. The index it is chosen according to the following rule

it = arg min
k

{
(xt − dt(k))2

}
,

dt(k) = arg min
y∈R

{
E
{

(xt − y)2
∣
∣ xt ∈ St(k)

}}
,

where St(k),{xt : it=k} denotes a quantization cell. The decoding rule is

dt = dt(k), if jt = k,

where jt is the index received at the decoder. Here, the quantization cell St(k) and
the reconstruction dt(k) are optimized only with respect to the pdf p(xt) and the
quadratic cost E

{
(xt−dt(it))2

}
, without taking any potential channel error into

account. However, if transmission error occurs seldom, the source-optimized quan-
tizer is expected to still achieve a good performance.

Summarizing the above discussions, Problem 5.2.4 below specifies the rate allo-
cation problems studied in this chapter.

Problem 5.2.4. Given the linear plant (5.1), the memoryless channel (5.8), the
memoryless encoder–decoder pair (5.2)–(5.3), and the control law (5.6)–(5.7), find
the optimal bit-rate allocation RT−1

0 , Rt∈Z+, ∀t, which minimizes the expected cost
of (5.4), subject to the total bit-rate constraint (5.5), i.e.,

min
R
T−1
0

E
{
Jtot(R

T−1
0 )

}

s. t.
T−1∑

t=0

Rt ≤ Rtot, Rt ∈ Z
+, t = 0, . . . , T − 1.

As stated in Problem 5.2.4, the rate Rt is a non-negative integer. In this work,
we will first solve a relaxed problem by optimizing the rate allocation for RT−1

0 ∈RT ,
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Encoder Π BSC Π−1 Decoder
xt dt

Figure 5.2: Block-diagram for the communication over a BSC. The symbol Π is a
notation for the IA unit.

and thereafter, treat the non-negativity and integer constraints separately. One of
the main challenges of Problem 5.2.4 is that the cost function does not have a closed-
form expression in terms of RT−1

0 . In the next section, we propose an approximation,
which will then be used to derive the solution of the bit-rate allocation problem.

5.3 High-Rate Approximation of MSE

The rate allocation proposed in this chapter can be generalized, by which we mean
that it can be readily adopted to a variety of quantizers under certain assumptions.
To achieve this goal, we need to formulate a general objective function. The first
major challenge lies in deriving a useful expression for the mean squared error, which
appears to be a central figure-of-merit not only in the state estimation problem but
also in the state feedback control problem. In general, it is difficult to formulate
closed-form expressions, even in the case of simple uniform quantizers. Inspired by
the classical works, e.g., [GG92], we resort to high-rate quantization to compute
MSE. For this reason, some results on high-rate quantization theory are briefly
reviewed in this section. For further detail about high-rate quantization theory, we
refer the reader to e.g., [ZM94, MR06]. It is worth remarking that although high-
rate quantization requires high rates to be valid. However, in practice this theory
is also useful at low rates, such as Rt=3, 4 bits.

Figure 5.2 illustrates the signal path from the source to the destination, through
a noisy channel. Consider transmitting one sensor measurement over the channel.
The source signal xt is first fed into an encoder, producing the coded index it ∈
{0, . . . , 2Rt−1}, with Rt denoting the instantaneous rate. Each index value will
be mapped to a unique binary codeword of length Rt, by means of the IA unit.
As stated previously, IA is important to the overall system performance. A good
IA exploits knowledge about the source, the channel, and the encoder–decoder.
However, finding the optimal IA is a combinatorial problem which is known to be
NP-hard. As discussed above, we therefore average out the dependence on a specific
IA by randomization. At each transmission, a random assignment is generated and
revealed to the encoder and decoder. At the receiver side, the inverse procedures
of IA and quantization are applied to channel outputs to produce an estimate dt.
Given a source with the pdf p(xt), a channel P(jt| it), and an encoder–decoder pair
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of the rate Rt, the MSE can be calculated as

E
{

(xt − dt)2
}

=

2Rt−1∑

k=0

2Rt−1∑

l=0

P(jt = l| it = k)

∫

xt∈St(k)

|xt − dt(l)|2p(xt)dxt,

(5.9)
where St(k),{xt : it=k} is the quantization cell that all xt∈St(k) will be assigned
the index value k.

To quantify the impact of the rate Rt on the MSE (5.9), we need to be more
specific about the source, the channel, and the quantizer. In general, it is diffi-
cult to formulate a closed-form expression for (5.9). Given this difficulty, we show
below a useful approximation of (5.9), derived under the high-rate assumption.
Roughly speaking, the high-rate assumption requires that the pdf of the source is
approximately constant within the same quantization cell. Following [MR06], for a
symmetric channel, e.g., (5.8), a high-rate approximation of the MSE is

E
{

(xt−dt)2
}
≈ 2Rtα(Rt)σ

2
xt+ϕtα(Rt)

∫

y∈R

y2λt(y)dy

+
G−2

3
ϕ−2
t

∫

x∈R

λ−2
t (x)p(xt = x)dx,

(5.10)

where the source xt is zero-mean with variance σ2
xt . A brief explanation of (5.10) is

given here, and more detail of this expression can be found in Appendix 5.A. First,
the constant G represents the volume of a unit sphere, and for a scalar quantizer
G=2. Second, the function λt(x) is referred to as the point density function, speci-
fying the density of reconstruction values of the quantizer. Resembling a probability
density function, it follows that λt(x) ≥ 0, for all x, and

∫

R
λt(x)dx= 1. Finally,

ϕt, 1 ≤ ϕt≤ 2Rt , specifies the number of codewords the encoder will chose. If the
crossover probability ǫ is large-valued, in order to protect against the channel error,
a good encoder may only use a part of the available codewords. Both the uniform
quantizer and the source-optimized quantizer have ϕt=2Rt , for all t.

Essentially, we are interested in an efficient approximation to describe the rela-
tion between the MSE and the rate Rt. By a further approximation, 2Rtα(Rt) ≈
1− (1− ǫ)Rt , we rewrite (5.10) and introduce the high-rate approximation Ĵt,

E
{

(xt − dt)2
}
≈ Ĵt(βt, κt, Rt) , βt(1− (1− ǫ)Rt) + κt2

−2Rt , (5.11)

where βt and κt are,

βt , σ2
xt +

∫

y∈R

y2λt(y)dy, (5.12)

κt , Ḡ

∫

x∈R

λ−2
t (x)p(x)dx, (5.13)

with Ḡ , G−2/3. According to (5.11)–(5.13), βt and κt can take on any non-negative
real value, including 0 and ∞. However, for practical sources and encoder–decoder
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Figure 5.3: The impact of Rt, κt, βt and ǫ on the distortion Ĵt in (5.11).

pairs, it follows that 0<βt <∞, 0<κt <∞, which is considered throughout this
chapter. The expression of the distortion Ĵt in (5.11) is rather general for a large
variety of quantizers, described by means of the point density function, and derived
under the high-rate assumption.

The expression in (5.11) has certain useful properties that will allow us to solve
the rate allocation problem. In Figure 5.3 we illustrate the impact of the parameters
Rt, κt, βt, and ǫ on the distortion Ĵt for three cases. First, it should be observed
that the crossover probability ǫ is instrumental to the convexity of the function.
When ǫ=0, Ĵt is always monotonically decreasing. In fact, Ĵt is a convex function
with respect to Rt. On the other hand, for noisy channels, convexity only holds for
certain {βt, κt} pairs. For the general case of an arbitrary {βt, κt} pair, (5.11) is a
so-called quasi-convex function, as explained below in Lemma 5.3.2.

Definition 5.3.1. Quasi-convex function [BV04]
A function f : Rn 7→ R is quasi-convex if its domain, domf , and all its sub-level

sets Sα={x ∈ domf : f(x) ≤ α}, for α ∈ R, are convex.

Lemma 5.3.2. The distortion function

Ĵt(βt, κt, Rt) = βt(1− (1 − ǫ)Rt) + κt2
−2Rt , 0 < βt <∞, 0 < κt <∞,
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is a quasi-convex function and has a unique global minimum.

Proof. Compute the first order derivative of Ĵt, with respect to Rt,

∂Ĵt
∂Rt

(βt, κt, Rt) = −βt ln (1 − ǫ)(1− ǫ)Rt − 2κt ln (2)2−2Rt .

The first part, −βt ln (1− ǫ)(1− ǫ)Rt , is strictly decreasing towards 0 as Rt goes to
infinity, i.e., limRt→∞−βt ln (1− ǫ)(1− ǫ)Rt=↓0. The second part −2κt ln (2)2−2Rt

is strictly increasing towards 0 as Rt grows, i.e., limRt→∞−2κt ln (2)2−2Rt =↑ 0.
Note also, since 0≤ǫ≤0.5, (1− ǫ)Rt decreases more slowly than 2−2Rt . Accordingly,
we can conclude that ∂Ĵt/∂Rt has at most one critical point R⋆t , which solves the
following equation

∂Ĵt
∂Rt

(βt, κt, R
⋆
t ) = −βt ln (1− ǫ)(1 − ǫ)R⋆t − 2 ln (2)κt2

−2R⋆t = 0.

In case that ǫ = 0, the critical point is always at infinity, i.e., R⋆t = ∞, for all
0 < κt < ∞, since limRt→∞ ∂Ĵt/∂Rt = 0. Similarly, compute the second order
derivative of Ĵt, with respect to Rt,

∂2Ĵt
∂R2
t

(βt, κt, Rt) = −βt(ln (1 − ǫ))2(1− ǫ)Rt) + 4(ln 2)2κt2
−2Rt . (5.14)

We can show that the critical point is a minimum, since limRt→0 ∂
2Ĵt/∂R

2
t > 0.

Then, for all Rt < R⋆t , ∂Ĵt/∂Rt is negative, and Ĵt is monotonically decreasing.
Conversely, for all Rt>R⋆t , ∂Ĵt/∂Rt is positive, and Ĵt is monotonically increasing,
cf., Figure 5.3.

As will be shown later, Lemma 5.3.2 is instrumental to solve the rate allocation
problems studied in this chapter.

5.3.1 Examples

In the remaining part of this section, we compute Ĵt for two examples: the uniform
quantizer and the source-optimized quantizer, introduced in Section 5.2.

Example 5.3.3. Uniform Quantizer
For a uniform quantizer with a quantization range [−νt, νt], the point density

function is

λt(xt) =
1

2νt
.

If the source signal and the uniform quantizer share the same range [−νt, νt], the
high-rate approximation Ĵt, according to (5.11), is

Ĵt =

(

σ2
xt +
ν2
t

3

)
(
1− (1− ǫ)Rt

)
+ 4ν2

t Ḡ2−2Rt , (5.15)
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which means that the parameters βt and κt of (5.12)–(5.13) are

βt = σ2
xt +
ν2
t

3
, κt = 4ν2

t Ḡ. (5.16)

The first order derivative of Ĵt, with respect to Rt, becomes

∂Ĵt
∂Rt

= −
(

σ2
xt +
ν2
t

3

)

(1− ǫ)Rt ln (1− ǫ)− 8ν2
t Ḡ2−2Rt .

In the absence of channel errors, the high-rate distortion Ĵt and its first order
derivative with respect to Rt, are

Ĵt = 4ν2
t Ḡ2−2Rt ,

∂Ĵt
∂Rt

= −8ν2
t Ḡ2−2Rt .

Example 5.3.4. Source-Optimized Quantizer
A source-optimized quantizer minimizes the MSE distortion (5.9) for the special

case where channel errors are absent. As shown in literature, e.g., [GG92, NN95],
the point density function for this class of quantizers is given by

λt(xt) =
(p(xt))

1/3

∫

R

(p(xt))
1/3dxt

.

For Gaussian distributed sources (shown in Appendix 5.B), the high-rate approxi-
mation of the MSE distortion is

Ĵt = 4σ2
xt(1 − (1− ǫ)Rt) + µσ2

xt2
−2Rt , (5.17)

where µ, determined by the pdf of the normalized source signal y=xt/σ
2
xt, is

µ,
1

12

(∫

y∈R

(p(y))
1
3 dy

)3

=
1

12







∫

y∈R






1√
2π
e

−y2

2






1
3

dy







3

=

√
3π

2
. (5.18)

Accordingly, the parameters βt and κt, are

βt = 4σ2
xt , κt = µσ2

xt , (5.19)

with µ as defined in (5.18). The first order derivative is simply

∂Ĵt
∂Rt

= −4σ2
xt ln (1− ǫ)(1− ǫ)Rt − 2µσ2

xt2
−2Rt .

For an error-free channel (ǫ=0), Ĵt and ∂Ĵt/∂Rt are

Ĵt = µσ2
xt2
−2Rt ,

∂Ĵt
∂Rt

= −2µσ2
xt2
−2Rt .
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Here we mention a special class of Ĵt, which can be written as

Ĵt = σ2
xt

(
β̃t(1 − (1− ǫ)Rt) + κ̃t2

−2Rt
)

= σ2
xt J̃t(β̃t, κ̃t, Rt), (5.20)

where J̃t(β̃t, κ̃t, Rt) , β̃t(1 − (1 − ǫ)Rt)+ κ̃t2
−2Rt , and 0 < β̃t <∞ and 0< κ̃t< 0

are independent of Rt and σ2
xt . As will be shown later in Section 5.5, this class of

Ĵt is central to our solutions to the state feedback control problems. The first and
the second order derivatives of J̃t(β̃t, κ̃t, Rt) with respect to Rt are

∂J̃t
∂Rt

(β̃t, κ̃t, Rt) = −β̃t ln(1− ǫ)(1− ǫ)Rt − 2 ln (2)κ̃t2
−2Rt , (5.21)

∂2J̃t
∂R2
t

(β̃, κ̃, Rt) = −β̃t(ln(1− ǫ))2(1− ǫ)Rt + 4(ln 2)2κ̃t2
−2Rt . (5.22)

Owing to the fact that J̃t is a special case of Ĵt, Lemma 5.3.2 applies directly to
J̃t. The next two examples are used to demonstrate the utility of (5.20).

Example 5.3.5. Gaussian Source and Source-Optimized Quantizer
Consider a zero-mean Gaussian source and a source-optimized quantizer, as

described in Example 5.3.4. The MSE under the high-rate assumption can be ap-
proximated by (5.20), where

β̃t = 4, κ̃t = µ,

with µ as defined in (5.18).

Example 5.3.6. Gaussian Source and Uniform Quantizer
Consider a zero-mean Gaussian source and a uniform quantizer as described

in Example 5.3.3. If the distortion caused by signals out of the quantizer support
[−νt, νt] is negligible, the MSE under the high-rate assumption can be approximated
by (5.20) with the following β̃t and κ̃t

β̃t = 1 +

(

Q−1
(

1−pνt
2

))2

3
, κ̃t = 4Ḡ

(

Q−1

(
1− pνt

2

))2

.

The high-rate approximation of MSE described in this section is instrumental
to formulate useful objective functions for the rate allocation problems, as shown in
the next two sections. Again, we stress that in practice high-rate theory has been
shown to be also very useful at low rates.

5.4 Rate Allocation for State Estimation

This section discusses the special case of the general system (5.1) when ut = 0.
For this dynamic system, we can formulate a rate allocation problem for state
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estimation, where the criterion is motivated by the closed-loop control, as clarified
later in Section 5.5. The estimation problem is easier to solve, compared with the
analogues control problem. For this reason, we will first in this section study the
rate allocation problem for state estimation before tackling Problem 5.2.4.

Consider now a linear plant governed by the equation

xt+1 = axt + vt, a > 0. (5.23)

Following Section 5.2, the mutually independent initial-state and process noise are
i.i.d. zero-mean Gaussian with variances σ2

x0
and σ2

v , respectively. Now, the goal is
to minimize the expected overall estimation error E

{
Jtot(R

T−1
0 )

}
with Jtot(R

T−1
0 )

given by

Jtot(R
T−1
0 ) =

T−1∑

t=0

Jt(Rt) =

T−1∑

t=0

(xt − dt)2. (5.24)

Problem 5.4.1 below specifies the rate allocation problem studied in this section.

Problem 5.4.1. Given the linear plant (5.23), the channel (5.8), and the encoder–
decoder mapping (5.2)–(5.3), find the optimal bit-rate allocation RT−1

0 which min-
imizes the expected value of the LQ cost (5.24), subject to the total bit-rate con-
straint (5.5), i.e.,

min
R
T−1
0

E
{
Jtot(R

T−1
0 )

}
,

s. t.

T−1∑

t=0

Rt ≤ Rtot, Rt ∈ Z
+, t = 0, . . . , T − 1,

with Jtot(RT−1
0 ) given by (5.24).

Note that the average instantaneous distortion

E {Jt(Rt)} = E
{

(xt − dt)2
}
, (5.25)

is a function of Rt because of the reconstruction dt. According to (5.23), we can
write the state xt as a function of the initial-state x0 and the process noises vt−1

0

xt = atx0 +

t−1∑

s=0

at−1−svs.

Since x0 and vt−1
0 are i.i.d. zero-mean Gaussian, consequently, xt is also zero-mean

Gaussian with the variance

σ2
xt = a2tσ2

x0
+

t−1∑

s=0

(
at−1−s

)2
σ2
v .
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We recall that the state xt does not depend on the communication over the noisy
link. Therefore, xt is not affected by the rate allocation, and consequently, the
instantaneous distortion functions are separable, i.e., the instantaneous distortion
Jt(Rt) depends only on the current rate Rt. As a result, the major challenge lies
in deriving a useful expression of the MSE, cf., the instantaneous distortion (5.25).
In general, it is difficult to formulate closed-form expressions, even in the case of
simple uniform quantizers. In order to proceed, we resort to approximations based
on high-rate theory. More specifically, we approximate the distortion E {Jt(Rt)}
of (5.25) by the high-rate expression Ĵt(βt, κt, Rt) of (5.11), and solve the rate
allocation problem with respect to the optimization instantaneous distortion,

E {Jt(Rt)} ≈ Ĵt(βt, κt, Rt) = βt(1 − (1− ǫ)Rt) + κt2
−2Rt . (5.26)

Next, we introduce the rate unconstrained and constrained optimization problems
which are approximate versions of Problem 5.4.1.

Problem 5.4.2. Find the rate allocation RT−1
0 ∈ R

T which solves the problem,

min
R
T−1
0

T−1∑

t=0

Ĵt(βt, κt, Rt),

where Ĵt(βt, κt, Rt) is given by (5.26).

Problem 5.4.3. Find the rate allocation RT−1
0 ∈ R

T which solves the problem,

min
R
T−1
0

T−1∑

t=0

Ĵt(βt, κt, Rt),

s. t.

T−1∑

t=0

Rt ≤ Rtot,

where Ĵt(βt, κt, Rt) is given by (5.26).

The solution to Problem 5.4.3, summarized in Theorem 5.4.4 below, states the
main result of this section.

Theorem 5.4.4. Suppose RT−1
0 ∈RT .

• For noisy channels (ǫ>0), it holds that

1. If Rtot≥
∑T−1
t=0 R

⋆
t , where R⋆T−1

0 is a solution to the system of equations

∂Ĵ0

∂R0
(β0, κ0, R

⋆
0) = 0,

...

∂ĴT−1

∂RT−1
(βT−1, κT−1, R

⋆
T−1) = 0,

(5.27)
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then R⋆T−1
0 solves Problem 5.4.3.

2. If Rtot<
∑T−1
t=0 R

⋆
t , where R⋆T−1

0 solves (5.27), then a solution {RT−1
0 , θ}

to the system of equations

− ∂Ĵ0

∂R0
(β0, κ0, R0) = θ,

...

− ∂ĴT−1

∂RT−1
(βT−1, κT−1, RT−1) = θ,

T−1∑

t=0

Rt = Rtot,

(5.28)

solves Problem 5.4.3, with θ denoting the associated Lagrange multiplier.

• For error-free channels (ǫ=0), it holds that

Rt =
Rtot
T

+
1

2
log2






κt
(
∏T−1
t=0 κt

) 1
T




, t = 0, . . . , T − 1, (5.29)

solves Problem 5.4.3.

To prove Theorem 5.4.4, we need to use Lemma 5.4.5–Lemma 5.4.8, as shown
subsequently. First, we deal with the general case that ǫ>0, following the standard
approach for constrained optimization problems. Thereafter, the special case that
ǫ= 0 is discussed. We should mention that the rates given by Theorem 5.4.4 are
real values. How to cope with the non-negativity and integer constraints will be
discussed later in Section 5.8.

Noisy Channels

We start by discussing the general case that ǫ> 0. First, we note that the uncon-
strained problem for the noisy scenario has a unique global minimum that is not
necessarily achieved at infinity, i.e., Rt=∞, as stated in the following lemma.

Lemma 5.4.5. Let ǫ > 0. Problem 5.4.2 has a unique global minimum, R⋆T−1
0 ,

which solves (5.27), i.e.,

−β0 ln (1− ǫ)(1− ǫ)R⋆0 − 2 ln (2)κ02−2R⋆0 = 0,

...

−βT−1 ln (1− ǫ)(1− ǫ)R⋆T−1 − 2 ln (2)κT−12−2R⋆T−1 = 0.
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Proof. Compute the critical point, at which the gradient G(R⋆T−1
0 ) is a zero vector,

G(R⋆T−1
0 ) ,








∂
∂R0

∑T−1
t=0 Ĵt(βt, κt, R

⋆
t )

...
∂
∂RT−1

∑T−1
t=0 Ĵt(βt, κt, R

⋆
t )








= 0.

Straightforward calculation yields (5.27). It is interesting to note that the system
of equations is decoupled and the variables RT−1

0 are separable. We can argue that,
since each decoupled function Ĵt(βt, κt, Rt) is quasi-convex and has one unique
global minimum, as shown in Lemma 5.3.2, the overall distortion

∑T−1
t=0 Ĵt(βt, κt, Rt)

has a unique global minimum.

From Lemma 5.4.5, we know that when Rtot ≥
∑T−1
t=0 R

⋆
t , where R⋆T−1

0 is a
solution to (5.27), the same allocation R⋆T−1

0 simultaneously solves Problem 5.4.3.
On the other hand if Rtot <

∑T−1
t=0 R

⋆
t , where R⋆T−1

0 solves (5.27), the solution to
the system of equations (5.28) solves Problem 5.4.3, as stated in the lemma below.

Lemma 5.4.6. Let ǫ > 0. A solution to the system of equations (5.28) solves
Problem 5.4.3.

Proof. The proof is based on Lagrange duality theory. First, we note that strong
duality applies, because the constraint is a positive linearly independent combi-
nation of Rt, the Mangasarian-Fromowitz constraint qualification applies [Hor95].
More discussion on the strong duality will be given later. Second, we minimize the
Lagrangian

η(RT−1
0 , θ) =

T−1∑

t=0

E {Jt(Rt)}+ θ

(
T−1∑

t=0

Rt −Rtot
)

=

T−1∑

t=0

(
βt(1− (1− ǫ)Rt) + κt2

−2Rt
)

+ θ

(
T−1∑

t=0

Rt −Rtot
)

.

The first order derivatives of η(RT−1
0 , θ) with respect to the variables Rt and θ, are

∂

∂Rt
η(RT−1

0 , θ) = −βt ln (1− ǫ)(1− ǫ)Rt − 2 ln (2)κt2
−2Rt + θ,

=
∂Ĵt
∂Rt

(βt, κt, Rt) + θ, t = 0, . . . , T − 1,

∂

∂θ
η(RT−1

0 , θ) =

T−1∑

t=0

Rt −Rtot.

The minimum is achieved when all above equations are equal to 0. Observe that,
we arrive at a system of equations with T+1 equations and T+1 unknowns, i.e.,
RT−1

0 and θ,



122 Optimized Rate Allocation

− ∂Ĵ0

∂R0
(β0, κ0, R0) = θ,

...

− ∂ĴT−1

∂RT−1
(βT−1, κT−1, RT−1) = θ,

T−1∑

t=0

Rt = Rtot,

as given in (5.28).

It is worth noting that the solution to (5.28) belongs to the set {RT−1
0 :0≤Rt≤

R⋆t , ∀t}, where R⋆T−1
0 is the unconstrained global minimum that solves (5.27). This

can be realized by the following facts. First, observe that ∂Ĵt/∂Rt<0 when Rt<R⋆t ,
and ∂Ĵt/∂Rt> 0 when Rt>R⋆t , ∀t. The solution to (5.27) requires that ∂Ĵt/∂Rt,
∀t, have the same sign. However, if ∂Ĵt/∂Rt > 0, ∀t, it will violate the total rate
constraint Rtot ≤

∑T−1
t=0 Rt. Therefore, only RT−1

0 ∈{RT−1
0 : 0≤Rt≤R⋆t , ∀t} can be

a solution to (5.28). Moreover, the rates are always non-negative numbers which in
practice can be ensured by excluding the instantaneous cost E {Jt(Rt)} associated
with the negative rate and resolving the rate optimization problems with respect
to the new overall cost. Consequently, a solution to the constrained problem always
belongs to the convex set {RT−1

0 : 0 ≤ Rt ≤ R⋆t , ∀t}. As a result, we arrive at a
convex optimization problem since both the objective function and the variable set
are convex, then the strong duality applies.

In general, we do not have a closed-form solution to (5.28). However, this non-
linear system of equations can be solved by using numerical methods, e.g., [BT97].
Below, we briefly discuss one algorithm based on Newton’s method. We start by
defining the vector Φ, constructed by all unknown variables,

Φ ,









R0

...

RT−1

θ









,

and the system of equations

Z(Φ) ,







Z0 = −β0 ln(1− ǫ)(1− ǫ)R0 − 2 ln (2)κ02−2R0 + θ,
...

ZT−1 = −βT−1 ln(1− ǫ)(1− ǫ)RT−1 − 2 ln (2)κT−12−2RT−1 + θ,

ZT =

T−1∑

t=0

Rt −Rtot.
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Newton’s method performs an iterative search for the optimal vector Φ, which solves
the equation

Z(Φ) = 0.

The results of the kth and (k−1)th iterations, Φ[k] and Φ[k−1], are related by

Φ[k] = Φ[k−1] − J−1
F Z(Φ[k−1]),

where JF denotes the Jacobian matrix,

JF
(
RT−1

0 , θ
)

=










∂Z0

∂R0
. . . ∂Z0

∂RT−1

∂Z0

∂θ

...
. . .

...
...

∂ZT−1

∂R0
. . . ∂ZT−1

∂RT−1

∂ZT−1

∂θ
∂ZT
∂R0

. . . ∂ZT
∂RT−1

∂ZT
∂θ










.

The elements in JF are calculated according to

∂Zt
∂Rs

=







∂2Ĵs
∂R2
s

(βs, κs, Rs), t = s, t 6= T,
0, t 6= s, t 6= T,
1, t = T,

∂Zt
∂θ

=

{

1, t 6= T,
0, t = T,

where ∂2Ĵs/∂R
2
s is given by (5.14). We can see below that many elements in the

Jacobian matrix are zero,

JF =










∂2Ĵ0

∂R2
0

(β0, κ0, R0) . . . 0 1

...
. . .

...
...

0 . . . ∂2ĴT−1

∂R2
T−1

(βT−1, κT−1, RT−1) 1

1 . . . 1 0










.

Error-Free Channels

For an error-free channel (ǫ= 0), we can show that the system of equations (5.28)
has a closed-form solution. This is because when ǫ=0, βt ln (1− ǫ)(1− ǫ)Rt =0, ∀t.
Let us first take a look at the unconstrained problem, and the solution is formulated
in Lemma 5.4.7.

Lemma 5.4.7. Let ǫ = 0. Problem 5.4.2 is convex and the global minimum is
achieved at infinity, i.e., R⋆t =∞, ∀t.
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Proof. When ǫ=0, the instantaneous distortion of Problem 5.4.2 becomes

E {Jt(Rt)} = κt2
−2Rt , t = 0, . . . , T − 1.

Taking the derivative of the overall cost with respect to Rt, gives

∂

∂Rs

T−1∑

t=0

E {Jt(Rt)} = −2 ln (2)κs2
−2Rs , s = 0, . . . , T − 1.

The function −2 ln (2)κt2
−2Rt is monotonically increasing with the rate Rt, and

limRt→∞−2 ln (2)κt2
−2Rt=0. Computing the second order derivatives,

∂2

∂R2
k

T−1∑

t=0

E {Jt(Rt)} = 4(ln 2)2κk2
−2Rk ,

∂2

∂Rk∂Rl

T−1∑

t=0

E {Jt(Rt)} = 0, k 6= l,

the Hessian of the overall cost
∑T−1
t=0 E {Jt(Rt)} is

H(RT−1
0 ) =









4(ln 2)2κ02−2R0 0 . . . 0

0 4(ln 2)2κ12−2R1 . . . 0
...

...
. . .

...

0 0 · · · 4(ln 2)2κT−12−2RT−1









.

We note that the above Hessian matrix is positive definite, for all Rt < ∞ and
0<κt<∞, because all the elements on the diagonal are positive. As a result, the
optimization problem is convex, and the minimum is achieved at Rt=∞, ∀t.

According to Lemma 5.4.7, there is no finite-valued Rtot that achieves the global
minimum when ǫ= 0. Next, we move on to the constrained optimization problem.
The solution to (5.28) is summarized in Lemma 5.4.8.

Lemma 5.4.8. Let ǫ = 0. A solution RT−1
0 to the system of equations (5.28)

is (5.29), i.e.,

Rt =
Rtot
T

+
1

2
log2






κt
(
∏T−1
t=0 κt

) 1
T




, t = 0, . . . , T − 1.

Proof. According to (5.28), it is straightforward to write Rt as a function of θ,

Rt = −1

2
log2

θ

2 ln (2)κt
=

1

2
log2 (2 ln (2)κt)−

1

2
log2 θ. (5.30)
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We can solve θ by means of the total bit-rate constraint (5.5), and the answer is

θ = 2
1
T

(∑
T−1

t=0
log2(2 ln (2)κt)−Rtot

)

. (5.31)

Substituting (5.31) into (5.30), (5.29) follows immediately. Note that
(
∏T−1
t=0 κt

) 1
T

is the geometric mean of the sequence κt.

Example 5.4.9. Gaussian Source and Source-Optimized Quantizer
Applying (5.19) and (5.29) to a zero-mean Gaussian source and its associated

source-optimized quantizer, the solution is

Rt =
Rtot
T

+
1

2
log2






σ2
xt

(
∏T−1
t=0 σ

2
xt

) 1
T




, t = 0, . . . , T − 1,

where
(
∏T−1
t=0 σ

2
xt

) 1
T

is the geometric mean of the sequence σ2
xt.

Now we are in the position to prove Theorem 5.4.4.

Proof. (Theorem 5.4.4)
In short, we prove the general case for noisy channels in two steps. First, we can

show that Problem 5.4.2 has a global minimum at R⋆T−1
0 , which solves the system of

equations (5.27), as shown by Lemma 5.4.5. Second, we can show that the solution
to (5.28) solves Problem 5.4.3, by using Lagrange duality theory, cf., Lemma 5.4.6.
The error-free special case is also proved in two steps where the unconstrained global
minimum is discussed in Lemma 5.4.7, while the constrained solution is derived in
Lemma 5.4.8. Based on Lemma 5.4.5–Lemma 5.4.8, we conclude that Theorem 5.4.4
is proved.

Before we move on to the feedback control problem, let us consider a special case
of Problem 5.4.2 and Problem 5.4.3 where the instantaneous cost can be written to
the form

Ĵt(β̃, κ̃, Rt) = σ2
xt(β̃(1− (1− ǫ)Rt) + κ̃2−2Rt) = σ2

xt J̃t(β̃, κ̃, Rt), (5.32)

where β̃ and κ̃ are time-invariant and J̃t(β̃, κ̃, Rt) is as defined in (5.20). Applying
Lemma 5.4.5 and Theorem 5.4.4 to this special case, i.e., with Ĵt(β̃, κ̃, Rt) as given
by (5.32), the results are summarized in Corollary 5.4.10 and Corollary 5.4.11.

Corollary 5.4.10. Consider the special case with Ĵt(β̃, κ̃, Rt) as given by (5.32).
Problem 5.4.2 has a unique global minimum Rt=R⋆, ∀t, with R⋆ solving the equa-
tion

0 = β̃ ln (1− ǫ)(1− ǫ)R⋆ + 2 ln (2)κ̃2−2R⋆ . (5.33)
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The proof of Corollary 5.4.10 follows the proof of Lemma 5.4.5. In this special
case the optimal rates are identical for all t, i.e.,

R⋆0 = R⋆1 = · · · = R⋆T−1 = R⋆.

The optimal value R⋆ can be obtained numerically by solving the equation (5.33).
This result suggests that when Rtot≥TR⋆, where R⋆ is the solution to (5.33), the
optimal bit allocation is Rt = R⋆, ∀t. On the other hand, when Rtot < TR⋆, we
should solve the unconstrained optimization problem as described previously, cf.,
Corollary 5.4.11 below.

Corollary 5.4.11. Consider the special case with Ĵt(β̃, κ̃, Rt) as given by (5.32).
Suppose RT−1

0 ∈RT .

- For noisy channels (ǫ>0), it holds that

1. If Rtot ≥ TR⋆, where R⋆ is the solution to (5.33), then Rt = R
⋆, ∀t,

solves Problem 5.4.3.

2. If Rtot < TR⋆ where R⋆ solves (5.33), then the solution {RT−1
0 , θ} to

(5.28) solves Problem 5.4.3, with θ denoting the associated Lagrange mul-
tiplier.

- For error-free channels (ǫ=0), it holds that

Rt =
Rtot
T

+
1

2
log2






κ̃t
(
∏T−1
t=0 κ̃t

) 1
T




, t = 0, . . . , T − 1,

solves Problem 5.4.3.

The proof of Corollary 5.4.11 follows straightforwardly the proofs of Theo-
rem 5.4.4 and Corollary 5.4.10.

Back to the system of equations (5.28), under certain conditions, further ap-
proximations can be introduced to solve systems of equations, somewhat simpler
than (5.28). An example is given here. First, it could be observed that ǫ is typically
a small number. Thus, by setting (1 − ǫ)Rt ≈ 1, we obtain the following system of
equations,

βt ln(1 − ǫ) + 2 ln (2)κt2
−2Rt = θ, t = 0, . . . , T − 1,

T−1∑

t=0

Rt = Rtot.
(5.34)
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Rewrite the system of equations (5.34) and let Rt be a function of θ,

−1

2
log2

(
θ − βt ln(1− ǫ)

2 ln (2)κt

)

= Rt, t = 0, . . . , T − 1,

T−1∑

t=0

Rt = Rtot.

(5.35)

The Lagrange multiplier θ in (5.35) can be solved numerically, for example by
Newton’s method, as explained below. According to (5.35), Rtot can be written as

Rtot=

T−1∑

t=0

−1

2
log2

(
θ−βt ln(1−ǫ)

2 ln (2)κt

)

=log 1
4

(
T−1∏

t=0

(
θ

2 ln (2)κt
− βt ln(1−ǫ)

2 ln (2)κt

))

.

(5.36)
Let us introduce Z, a function of θ

Z(θ) ,

T−1∏

t=0

(
θ

2 ln (2)κt
− βt ln(1 − ǫ)

2 ln (2)κt

)

−
(

1

4

)Rtot

.

It is straightforward to verify that (5.36) is equivalent to require

Z(θ) = 0.

Taking the first order derivative of Z(θ) with respect to θ, we obtain

∂Z

∂θ
=

T−1∑

t=0

1

2 ln (2)κt

T−1∏

s=0
s6=t

(
θ

2 ln (2)κt
− βs ln(1− ǫ)

2 ln (2)κs

)

.

Let θ[k], k ∈N, be taken to denote the result given by the kth iteration, and it is
related to θ[k−1] as

θ[k] = θ[k−1] −
Z(θ[k−1])

∂Z

∂θ
(θ[k−1])

.

Finally, substituting the iteration result into (5.35), the optimized rates are ob-
tained.

In this section, we studied the special case of optimizing the rate allocation for
state estimation, as a first fundamental step in solving the rate allocation problem
for state feedback control. First, we approximated the overall distortion function
by means of high-rate approximation theory. Second, we showed that the uncon-
strained optimization problem has a global minimum, which solves the rate alloca-
tion problem if such a global minimum does not violate the rate constraint. On the
other hand, if the global minimum violates the rate constraint, we solved the rate
constrained optimization problem by means of Lagrangian duality for non-linear
non-convex problems. Based on the result in this section, we will in the next sec-
tion solve the analogous problem of bit allocation for controlling a dynamic system.
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5.5 Rate Allocation for State Feedback Control

Now we are in the position to study the rate allocation problem for state feedback
control. We follow exactly the same optimization procedure as the one used for the
state estimation problem in Section 5.4: (i) Express the overall cost E

{
Jtot(R

T−1
0 )

}

explicitly as a function of the rates RT−1
0 , and (ii) introduce Lagrange multipliers

to solve the constrained optimization problem. Compared with the state estima-
tion problem in Section 5.4, optimizing rate allocation for state feedback control
becomes much more complicated. The essential challenge is that the communica-
tion between the sensor and the controller will affect all future states. This fact has
some negative effects on the optimization of the rate allocation. Most importantly,
the nice property that xt is independent of all past Rt−1

0 , valid for systems in Sec-
tion 5.4, is violated. Estimating E

{
x2
t

}
becomes a formidable task also because the

estimation error propagates with time. Errors from the past unfortunately influence
all future states. However, in practice, systems of interest are mostly stable in the
closed-loop, where error propagation is expected to be less problematic.

Recall the quadratic cost of Problem 5.2.4, i.e., Jtot(R
T−1
0 ) given by (5.4),

Jtot(R
T−1
0 ) =

T∑

t=1

(
x2
t + ρu2

t−1

)
.

Because the process noise vt is white, uncorrelated with xt and ut, we can write
E
{
Jtot(R

T−1
0 )

}
as

E
{
Jtot(R

T−1
0 )

}
= E

{

(φ0 − 1)x2
0 +

T−1∑

t=0

φt+1v
2
t +

T−1∑

t=0

(φt+1 + ρ)(−xtℓt + ut)
2

}

,

(5.37)
where φt and ℓt are as given in (5.6)–(5.7), i.e.,

φt = 1 +
a2φt+1ρ

φt+1 + ρ
, with φT = 1; ℓt = − aφt+1

φt+1 + ρ
.

Clearly, only the last sum of (5.37) is affected by control. As explained previously
in Section 5.2, throughout this chapter we restrict the control ut to take the form

ut = ℓtdt,

where ℓt is calculated according to (5.6)–(5.7). This control is motivated by the
observation that satisfactory performance is expected if dt is close to xt. By us-
ing ut = ℓtdt, minimizing E

{
Jtot(R

T−1
0 )

}
of (5.4) is equivalent to minimizing the

expected value of the following Jtot(RT−1
0 ),

Jtot(R
T−1
0 ) =

T−1∑

t=0

πt(xt − dt)2, πt , (φt+1 + ρ)ℓ2t , (5.38)



5.5. Rate Allocation for State Feedback Control 129

subject to the total bit-rate constraint (5.5). Hereby, we replace the cost func-
tion (5.4) with (5.38), and the instantaneous objective function is now

E
{
Jt(R

t
0)
}

= E
{
πt(xt − dt)2

}
. (5.39)

Compared with the distortion function for state estimation (5.25), there are two
main differences: (i) the objective function (5.39) has a time-varying weighting
factor; and (ii), the state xt depends on all past rate allocations Rt−1

0 .
Before dealing with Problem 5.2.4, we will first discuss a special but important

case of Problem 5.2.4, with ρ=0, known as the minimum variance control [Åst70]
in the literature. This special case has a considerably simplified solution, compared
with the general case. However, this solution reveals a couple of important fea-
tures of the rate allocation in control systems. Thereafter, the general system of
Problem 5.2.4 is treated using basically similar techniques, both with and without
channel errors.

5.5.1 Minimum Variance Control: ρ=0

In this section, we reveal some key features of the rate allocation in control systems,
by solving a simple special case of Problem 5.2.4. That is the minimum variance
control problem, with ρ=0. In particular, we seek the optimal rate allocation that
minimizes the average cost E

{
Jtot(R

T−1
0 )

}
, where Jtot(RT−1

0 ) is given by

Jtot(R
T−1
0 ) =

T∑

t=1

Jt(R
t−1
0 ) =

T∑

t=1

x2
t , (5.40)

and the associated average instantaneous cost is

E
{
Jt(R

t−1
0 )
}

= E
{
x2
t

}
. (5.41)

The state equation is still (5.1), and the initial-state and process noise are i.i.d. zero-
mean Gaussian, mutually independent. According to (5.6), if ρ= 0, then ℓt=−a,
i.e., the control law becomes

ut = −adt. (5.42)

The cost Jtot(R
T−1
0 ) in (5.40) is not explicitly dependent of uT−1

0 , but implicitly
through xT−1

0 . Furthermore, to focus on explaining the challenges in a state feedback
control system, we consider here a finite-rate error-free channel (ǫ=0). The encoder
takes the fully observed state measurement xt as the input, and the decoder takes
the received symbol, jt= it.

In contrast to the estimation problem in Section 5.4, here, the true pdf of xt is
in advance no longer available. We have to estimate it in certain ways. In order to
proceed, we will approximate the state xt by a zero-mean Gaussian source, because
the initial-state and the process noise are zero-mean Gaussian. By imposing such
a Gaussian approximation, we only need to estimate the state variance, which is
denoted by σ̂2

xt .
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Based on the model (5.40)–(5.42), E
{
x2
t

}
can be deduced from E

{
x2
t−1

}
as,

E
{
x2
t

}
= E

{
(axt−1 − adt−1 + vt−1)2

}
= a2E

{
(xt−1 − dt−1)2

}
+ σ2
v,

because vt−1 is uncorrelated with xt−1
0 and dt−1

0 . For the simplicity of the presenta-
tion, we also assume that E

{
(xt−1−dt−1)2

}
can be approximated by the high-rate

form (5.20) with κ̃t= κ̃, ∀t, i.e.,

E
{

(xt−1 − dt−1)2
}
≈ σ2

xt−1
J̃t−1(κ̃, Rt−1) = σ2

xt−1
κ̃2−2Rt−1 .

Thus, σ2
xt can be recursively expressed in terms of σ2

xt−1
and Rt−1. Likewise, σ2

xt−1

can be recursively expressed in terms of σ2
xt−2

and Rt−1
t−2, etc. Continuing up, σ2

xt can
finally be expressed in terms of σ2

x0
and Rt−1

0 . Based on this observation, a high-rate
approximation of E

{
x2
t

}
can be recursively computed as

σ̂2
xt = σ̂2

xt−1
κ̃2−2Rt−1 . (5.43)

For the ease of presentation, let us introduce the parameters At>0 and Bt>0,

At , a2(t+1)σ2
x0
κ̃(t+1), Bt , a2tσ2

v κ̃
t. (5.44)

When κ̃ is known, At and Bt can be computed in advance. By substituting (5.44)
to (5.43), we can write σ̂2

xt as a function of Rt−1
0 , σ2

x0
and σ2

v ,

σ̂2
xt = At−12−2

∑
t−1

s=0
Rs +

t−1∑

m=1

Bm2
−2
∑
t−1

n=t−m
Rn + σ2

v . (5.45)

The high-rate approximation leads to the following approximate version of the
instantaneous cost (5.41)

E
{
Jt(R

t−1
0 )
}

= σ̂2
xt , (5.46)

where σ̂2
xt is given by (5.45), and with σ̂2

x0
=σ2
x0

. Hereby, we will optimize the rate
allocation with respect to (5.46), instead of (5.41). The constrained rate allocation
problems based on (5.45) is formulated as follows.

Problem 5.5.1. Find the rate allocation RT−1
0 ∈RT which solves the problem,

min
R
T−1
0

T∑

t=1

σ̂2
xt ,

s. t.

T−1∑

t=0

Rt ≤ Rtot,

where σ̂2
xt is given by (5.45).
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By arguing similarly as for Lemma 5.4.7, the rate unconstrained version of
Problem 5.5.1 has a unique global minimum that cannot be achieved by finite-valued
RT−1

0 . On the other hand, the solution to the constrained optimization problem can
be computed as stated below in Lemma 5.5.2,

Lemma 5.5.2. Let ǫ=0. A solution to the system of equations,

T∑

s=t+1

(

2As−12−2
∑
s−1

k=0
Rk
)

+

T∑

n=t+1

n−1∑

m=1

2Bm2
−2
∑
n−1

l=n−m
Rl = θ, ∀t,

T−1∑

t=0

Rt= Rtot,

(5.47)

solves Problem 5.5.1, where As and Bn are defined in (5.44).

Proof. The proof is based on Lagrange duality theory. The strong duality holds,
because the constraint is a positive linearly independent combination of the rates
Rt, t=0, . . . , T−1, then the Mangasarian-Fromowitz constraint qualification applies.
The next step is to minimize the Lagrangian,

η(RT−1
0 , θ) =

T−1∑

t=0

σ̂2
xt + θ

(
T−1∑

t=0

Rt −Rtot
)

,

which is done by setting the first order derivatives of η(RT−1
0 , θ) to 0. Note that,

σ̂2
xt in (5.45) depends upon all past Rt−1

0 . Similarly, all future σ̂2
xs , for which s>t,

depends on the current Rt. Straightforward calculation of ∂η(RT−1
0 , θ)/∂Rt = 0

leads to the equation,

T∑

s=t+1

(

2As−12−2
∑
s−1

k=0
Rk
)

+

T∑

n=t+1

n−1∑

m=1

2Bm2
−2
∑
n−1

l=n−m
Rl = θ.

Hence, we obtain a system of T+1 equations and T+1 unknowns, i.e., RT−1
0 and

θ.

Sort the first T equations, ∂η(RT−1
0 , θ)/∂Rt= 0, ∀t, after t. Observe that, each

product term that contains both 2−2Rt and 2−2Rt+1 is a common product term for
the (t+1)

th and (t+2)
th equations. We can simplify the system of equations by

setting the left-hand side of the (t+1)
th equation equal to the left-hand side of the

(t+2)
th equation. By doing this, the Lagrange multiplier θ is eliminated, and as

well as the common terms for the (t+1)
th and (t+2)

th equations. A new system of
equations, consisting of T equations and T unknowns, RT−1

0 , is obtained, where the
tth equation is

At−12−2
∑
t−1

n=0
Rn +

t−1∑

s=1

Bt−12−2
∑
t−1

n=s
Rn −

T−1∑

s=t

Bs2
−2
∑
s

n=t
Rn = 0, (5.48)
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t = 1, . . . , T −1, and the T th equation is the total bit-rate constraint (5.5). An
example will make the system of equations clear. We demonstrate (5.47)–(5.48)
for T = 5, see Figure 5.4 and (5.49). The system of equations with the Lagrange
multiplier θ can be found in Figure 5.4, while the system of equations without the
Lagrange multiplier θ is shown in (5.49).

0 = A02−2R0−B12−2R1−B22−2(
∑

2

t=1
Rt)−B32−2(

∑
3

t=1
Rt)−B42−2(

∑
4

t=1
Rt),

0 = A12−2(
∑

1

t=0
Rt)+B12−2R1−B22−2R2−B32−2(

∑
3

t=2
Rt)−B42−2(

∑
4

t=2
Rt),

0 = A22−2(
∑2

t=0
Rt)+B22−2(

∑2

t=1
Rt)+B22−2R2−B32−2R3−B42−2(

∑4

t=3
Rt),

0 = A32−2(
∑3

t=0
Rt)+B32−2(

∑3

t=1
Rt)+B32−2(

∑3

t=2
Rt)+B32−2R3−B42−2R4,

0 =

4∑

t=0

Rt−Rtot.

(5.49)

In the system of equations in Figure 5.4, there are six unknowns {R4
0, θ}. The

common terms of two adjacent equations are marked with different frames. After
removing the common terms, we arrive at (5.49), a new system of equations with
five unknowns, R4

0. When T is a very small number we could solve the system of
equations explicitly. However, as T increases, it becomes impractical to derive a
closed-form solution. Alternatively, the system of equations (5.49), can be solved
by numerical methods, for example Newton’s method, cf., Section 5.4.

5.5.2 General Case

Now, we move on to solve Problem 5.2.4 for the general case of arbitrary ǫ and ρ.
Similar to the special case where ρ= 0, the terms E

{
x2
t

}
and E

{
(xt − dt)2

}
are

essential to the solution. In order to proceed, we still approximate the state xt by a
zero-mean Gaussian variable, where σ̂2

xt denotes the estimated variance. The next
challenge lies in the derivation of σ̂2

xt . To facilitate the derivation of a tractable
overall cost for optimization, we consider an upper bound for σ̂2

xt by simplifying
the correlation between xt and dt, so that it holds

σ̂2
xt = (At +BtJ̃t−1(β̃t−1, κ̃t−1, Rt−1))σ̂2

xt−1
+ σ2
v, (5.50)

where J̃t−1(β̃t−1, κ̃t−1, Rt−1) is as defined in (5.20), and At>0 and Bt>0 are indepen-
dent of Rt−1, σ̂2

xt−1
and σ2

v . The above assumption is reasonable, and the following
two examples are used to illustrate the utility and explain the motivation of (5.50).

Example 5.5.3. Decoder dt=E {xt|jt}
Consider the decoder dt=E {xt|jt}. In this case, the estimation error xt−dt is

uncorrelated with the estimate dt, which gives

E
{

(xt − dt)2
}

= E
{
x2
t

}
−E

{
d2t
}
.
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Figure 5.4: Equation systems for T = 4. Between two adjacent equations, the common terms are marked with the same
type of frame.
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Accordingly, we can approximate E
{
x2
t

}
as

E
{
x2
t

}
= a2E

{
x2
t−1

}
+ ℓ2t−1E

{
d2t−1

}
+ 2aℓt−1E {xt−1dt−1}+ σ2

v

≈
(
a2+ℓ2t−1+2aℓt−1−(ℓ2t−1+2aℓt−1)J̃t−1(β̃t−1, κ̃t−1, Rt−1)

)
E
{
x2
t−1

}
+σ2
v,

(5.51)
by using E

{
(xt−1−dt−1)2

}
≈E

{
x2
t−1

}
J̃t−1(β̃t−1, κ̃t−1, Rt−1). Based on (5.51), we re-

late the approximations σ̂2
xt and σ̂2

xt−1
as

σ̂2
xt =

(
a2 + ℓ2t−1 + 2aℓt−1 − (ℓ2t−1 + 2aℓt−1)J̃t−1(β̃t−1, κ̃t−1, Rt−1)

)
σ̂2
xt−1

+ σ2
v,

which implies

At = a2 + ℓ2t−1 + 2aℓt−1, Bt = −(ℓ2t−1 + 2aℓt−1).

Clearly, both At and Bt are independent of Rt−1, σ̂2
xt−1

and σ2
v .

In general, we can write E
{
x2
t

}
as,

E
{
x2
t

}
= E

{
(axt−1 + ℓt−1dt−1 + vt−1)2

}

= E
{

(−ℓt−1xt−1 + ℓt−1dt−1 + (a+ ℓt−1)xt−1)2
}

+ σ2
v

= ℓ2t−1E
{

(xt−1 − dt−1)2
}

+ (a+ ℓt−1)2E
{
x2
t−1

}

− 2(a+ ℓt−1)ℓt−1E {xt−1(xt−1 − dt−1)}+ σ2
v .

The term E {xt−1(xt−1 − dt−1)} depends on the source, the quantizer and the chan-
nel. It is often difficult to formulate a closed-form expression. Example 5.5.4 below
shows another case that (5.50) applies.

Example 5.5.4. E {xt−1(xt−1 − dt−1)}=Γ(ǫ)E
{
x2
t−1

}
.

Consider the scenario that E {xt−1(xt−1 − dt−1)} can be written as

E {xt−1(xt−1 − dt−1)} = Γ(ǫ)E
{
x2
t−1

}
, (5.52)

where Γ depends only on ǫ. Then σ̂2
xt can be expressed in the form of (5.50), with

At = (a+ ℓt−1)2 − 2(a+ ℓt−1)ℓt−1Γ(ǫ), Bt = ℓ2t−1. (5.53)

In practice, the linear approximation (5.52) can be applied generally to all sys-
tems in Section 5.2.2 by finding suitable At and Bt to approximate the true instan-
taneous costs. Therefore, (5.50) is always applicable. In what follows, we rewrite
the overall cost by taking (5.50) into consideration. According to the high-rate ap-
proximation (5.20) and (5.50), we define a new instantaneous cost, an approximate
version of the instantaneous cost (5.39),

E
{
Jt(R

t
0)
}
≈ Jt(R

t
0) , πtσ̂

2
xt J̃t(β̃t, κ̃t, Rt), (5.54)
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where σ̂2
xt can be written as (5.50). That is

σ̂2
xt = (At +BtJ̃t−1(β̃t−1, κ̃t−1, Rt−1))σ̂2

xt−1
+ σ2
v , (5.55)

where At and Bt are independent of Rt−1, σ̂2
xt−1

, and σ2
v. The unconstrained and

constrained rate allocation problems based on (5.54) are formulated as follows.

Problem 5.5.5. Find the rate allocation RT−1
0 ∈RT which solves the problem,

min
R
T−1
0

T−1∑

t=0

Jt(R
t
0),

where Jt(R
t
0) is given by (5.54)–(5.55).

Problem 5.5.6. Find the rate allocation RT−1
0 ∈RT which solves the problem,

min
R
T−1
0

∑T−1
t=0 Jt(R

t
0),

s. t.

T−1∑

t=0

Rt ≤ Rtot,

where Jt(R
t
0) is given by (5.54)–(5.55).

Similarly to Section 5.4, we first present Theorem 5.5.7, the main result of this
section. Then the proof of Theorem 5.5.7 is detailed subsequently.

Theorem 5.5.7. Suppose RT−1
0 ∈RT .

- For error-free channels (ǫ=0), it holds that a solution RT−1
0 to the system of

equations

T−1∑

s=t



2

1∑

b0=0

· · ·
1∑

bt=1

· · ·
1∑

bs−1=0

Ψs(b0, . . . , bs−1)



 = θ, t=0, . . . , T−1,

T−1∑

t=0

Rt = Rtot,

(5.56)

solves Problem 5.5.6, with θ denoting the associated Lagrange multiplier,
and bk ∈ {0, 1}, k ∈ {0, . . . , T − 2}, denoting a binary variable. The term
Ψt(b0, . . . , bt−1) is defined as

Ψt(b0, . . . , bt−1) , πtB̄

(
t−1∏

s=s̄+1

B̄s

)(
t∏

m=0

κ̃bmm

)

2
−2
(∑

t−1

n=0
bnRn+Rt

)

.

(5.57)
Here,
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1. The terms πt and κ̃t are specified in (5.7) and (5.20).

2. The term s̄ is the smallest integer s that bs=1, (i.e., bs=0, s<s̄).

3. The term B̄ is

B̄ ,

{

τs̄−1, s̄ > 0,

B0σ
2
x0
, s̄ = 0,

(5.58)

where Bt is defined as in (5.50), and τs is calculated recursively as,

τs , Asτs−1 + σ2
v , τ0 , A0σ

2
x0

+ σ2
v .

4. The parameter B̄s is

B̄s ,

{

As, bs = 0,

Bs, bs = 1.
(5.59)

- For noisy channels (ǫ>0), it holds that

1. If Rtot≥
∑T−1
t=0 R

⋆
t , where R⋆T−1

0 is a solution to the system of equations

J̃0(β̃0, κ̃0, R
⋆
0) = 0,

...

J̃T−1(β̃T−1, κ̃T−1, R
⋆
T−1) = 0,

(5.60)

with J̃t(β̃t, κ̃t, Rt) given by (5.20), then the same R⋆T−1
0 solves Prob-

lem 5.5.6.

2. If Rtot<
∑T−1
t=0 R

⋆
t , where R⋆T−1

0 is a solution to (5.60), then the solution
to the system of equations

−
T−1∑

s=t

Ψt,s = θ, t = 0, . . . , T − 1,

T−1∑

t=0

Rt = Rtot,

(5.61)

solves Problem 5.5.6. Here, the term Ψt,s is defined as

Ψt,s ,

1∑

b0=0

· · ·
1∑

bt=1

· · ·
1∑

bs−1=0

πsΨ̄(b0, . . . , bs), (5.62)

where bk∈{0, 1}, k∈{0, . . . , T−2}, is a binary variable, and Ψ̄(b0, . . . , bs)
is given by

Ψ̄(b0, . . . , bs) , B̄

(
s−1∏

m=s̄+1

B̄m

)(
s−1∏

n=s̄+1

(Cn)bn

)

.
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The terms B̄ and B̄n are given by (5.58)–(5.59), and Cn is defined as

Cn ,

{
∂J̃n
∂Rn

(β̃n, κ̃n, Rn), n = t,

J̃n(β̃n, κ̃n, Rn), n 6= t. (5.63)

To prove Theorem 5.5.7, we need to use Lemma 5.5.8–Lemma 5.5.14, as shown
subsequently. We start by describing the error-free scenario.

Error-Free Channels

In this section we derive a solution in the case of error-free channels. We recall
that the key to the problem is to find a useful objective function. Therefore, in
Lemma 5.5.8 we rewrite (5.54) and express it in a more handy form.

Lemma 5.5.8. Let ǫ= 0. The instantaneous cost (5.54) can be written as a sum
of 2t product terms, denoted by Ψt(b0, . . . , bt−1),

Jt(R
t
0) =

1∑

b0=0

· · ·
1∑

bt−1=0

Ψt(b0, . . . , bt−1), (5.64)

where bs∈{0, 1}, s=0, . . . , t−1, is a binary variable, and the term Ψt(b0, . . . , bt−1)
is as defined in (5.57).

Proof. Let ǫ=0. The instantaneous cost (5.54) becomes

Jt(R
t
0) = πtσ̂

2
xt κ̃t2

−2Rt , (5.65)

where σ̂2
xt can be written in the form

σ̂2
xt = (At +Btκ̃t2

−2Rt−1)σ̂2
xt−1

+ σ2
v,

with At and Bt as defined in (5.50). By recursively replacing σ̂2
xs with σ̂2

xs−1
and

Rs−1, for s= t, . . . , 1, up to σ̂2
x0

= σ2
x0

, we can write σ̂2
xt as a function of Rt−1

0 . In
particular, Jt(R

t
0) can be written as a sum of 2t product terms, Ψt(b0, . . . , bt−1)

from (5.57), i.e.,

Ψt(b0, . . . , bt−1) = πtB̄

(
t−1∏

s=s̄+1

B̄s

)(
t∏

m=0

κ̃bmm

)

2
−2
(∑

t−1

n=0
bnRn+Rt

)

,

where all notations are referred to Theorem 5.5.7.

Next, we show the solution to Problem 5.5.5, with Jt(R
t
0) as given by (5.65).

Lemma 5.5.9. Let ǫ= 0. Problem 5.5.5 has a unique global minimum, which is
achieved at R⋆t =∞, ∀t.
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Proof. Based on (5.64), it is straightforward to show that

(1)
∂

∂Rs
Jt(R

t
0)<0,

(2) lim
Rs→∞

∂

∂Rs
Jt(R

t
0) = 0,

s=0, . . . , t, for all t, which concludes the proof. Note that ∂Jt(Rt0)/∂Rs=0, s>t,
for all t.

Next, we show that given a finite-valued Rtot, the constrained optimization
problem can be solved according to Lemma 5.5.10 below.

Lemma 5.5.10. Let ǫ=0. A solution to the system of equations (5.56), i.e.,

T−1∑

s=t



2

1∑

b0=0

· · ·
1∑

bt=1

· · ·
1∑

bs−1=0

Ψs(b0, . . . , bs−1)



 = θ, t = 0, . . . , T − 1,

T−1∑

t=0

Rt = Rtot,

solves Problem 5.5.6, where Ψt(b0, . . . , bt−1) is given by (5.57).

Proof. First, we note that strong duality holds, because the constraint is positive
and linearly independent of the rate Rt, the Mangasarian-Fromowitz constraint
qualification applies. When ǫ=0, the instantaneous cost (5.54) becomes

Jt = πtσ̂
2
xt κ̃t2

−2Rt =
1∑

b0=0

· · ·
1∑

bt−1=0

Ψt(b0, . . . , bt−1),

with Ψt(b0, . . . , bt−1) given by (5.57). Then, we minimize the Lagrangian

η(RT−1
0 , θ) =

T−1∑

t=0

Jt(R
t
0) + θ

(
T−1∑

t=0

Rt −Rtot
)

.

Taking the derivative of η(RT−1
0 , θ) with respect to each Rt, it leads to

∂

∂Rt
η(RT−1

0 , θ) =

T−1∑

s=t



−2

1∑

b0=0

· · ·
1∑

bt=1

· · ·
1∑

bs−1=0

Ψs(b0, . . . , bs−1)



+ θ.

Setting ∂η(RT−1
0 , θ)/∂Rt=0 and ∂η(RT−1

0 , θ)/∂θ=0, yields immediately the system
of equations (5.56).
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Sort the equations of (5.56) by time. We note that a Ψs(b0, . . . , bs−1) with bt=
bt+1 = 1 is a common term for the adjacent (t+1)

th and (t+2)
th equations. A

substraction between the two equations can eliminate the Lagrange multiplier θ and
the other common terms. As a matter of fact, a Ψs(b0, . . . , bs−1) with bm=bn=1 is
a common term for the (m+1)

th and (n+1)
th equations. Likewise, we can identify

a common term shared by more than two equations using a similar rule.
When T is very small, we can solve the system of equations (5.56) by following

the standard approach, i.e., successively eliminating unknown parameters. However,
as the horizon grows, it becomes hard to eliminate all unknown parameters. Instead,
we solve the overall system of equations numerically, as discussed in the preceding
section.

Noisy Channels

In this section, we deal with Problem 5.5.5 and Problem 5.5.6 for cases where ǫ>0.
At this point it should be clear that the approximated variance σ̂2

xt is essential
to the derivation of the overall cost. As similar to the error-free scenario, starting
at s = t, by successively replacing σ̂2

xs with σ̂2
xs−1

, right up to σ̂2
x0

= σ2
x0

, we can
formulate σ̂2

xt as a function of Rt−1
0 , σ2

x0
and σ2

v . In particular, Jt(R
t
0) is a sum of

2t terms, as shown in Lemma 5.5.11,

Lemma 5.5.11. Let ǫ>0. The instantaneous cost (5.54) can be rewritten as

Jt(R
t
0) =

1∑

b0=0

· · ·
1∑

bt−1=0

πtΨt(b0, . . . , bt−1)J̃t(β̃t, κ̃t, Rt), (5.66)

where J̃t(β̃t, κ̃t, Rt) is as defined in (5.20), and bs ∈ {0, 1}, s ∈ {0, . . . , t−1}, is a
binary variable. The term Ψt(b0, . . . , bt−1) is defined as

Ψt(b0, . . . , bt−1) , B̄

(
t−1∏

s=s̄+1

B̄s
(
J̃s(β̃s, κ̃s, Rs)

)bs

)

,

with πt, B̄, B̄s given by (5.38) and (5.58)–(5.59), and s̄ is the smallest integer s
for which bs=1.

Proof. Lemma 5.5.11 is proved by straightforward calculation.

Jt(R
t
0) =

1∑

b0=0

· · ·
1∑

bt−1=0

πtΨt(b0, . . . , bt−1)
(

β̃t

(

1−(1− ǫ)Rt
)

+κ̃t2
−2Rt

)

,

where Ψt(b0, . . . , bt−1) is defined as

Ψt(b0, . . . , bt−1) = B̄

(
t−1∏

s=s̄+1

B̄s

(

β̃t

(

1− (1− ǫ)Rs
)

+ κ̃s2
−2Rs

)bs

)

.
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According to Lemma 5.5.11, each instantaneous cost consists of 2t terms, and all
the 2t terms have the common factors πt and J̃t(β̃t, κ̃t, Rt). Figure 5.5 demonstrates
an efficient method to compute the middle term Ψt(b0, . . . , bt−1), where the binary
sequence bt−1

0 plays an important role. Note that, there are totally 2t different binary
sequences of length t. Each sequence bt−1

0 has a corresponding Ψt(b0, . . . , bt−1), which
can be computed by following the binary tree in Figure 5.5 from the root to the
branch nodes. As a matter of fact, the 2t branch nodes at the tth level represent
the 2t Ψt(b0, . . . , bt−1) terms. We illustrate the computation of one Ψt(b0, . . . , bt−1)
term in Example 5.5.12.

Example 5.5.12. Computing Ψt(0, 0, 1, 1)
In this example, we demonstrate how to compute Ψt(0, 0, 1, 1) by following the

binary tree in Figure 5.5 from the root to the branch note. Start by setting s=σ2
x0

,
and then successively obtain

b0 = 0⇒ s := A0σ
2
0 + σ2

v ,

b1 = 0⇒ s := A1(A0σ
2
0 + σ2

v) + σ2
v,

b2 = 1⇒ s := B2(A1(A0σ
2
0 + σ2

v) + σ2
v)J̃2(β̃2, κ̃2, R2),

b3 = 1⇒ s := B3(B2(A1(A0σ
2
0 + σ2

v) + σ2
v)J̃2(β̃2, κ̃2, R2))J̃3(β̃3, κ̃3, R3).

Finally, Ψt(0, 0, 1, 1)=B3(B2(A1(A0σ
2
0 + σ2

v) + σ2
v)J̃2(β̃2, κ̃2, R2))J̃3(β̃3, κ̃3, R3).

Next, in Lemma 5.5.13 we show the solution to the rate unconstrained problem.

Lemma 5.5.13. Let ǫ > 0. Problem 5.5.5 has a unique global minimum R⋆T−1
0 ,

which solves the following system of equations,

∂J̃0

∂R0
(β̃0, κ̃0, R

⋆
0) = 0,

...

∂J̃T−1

∂RT−1
(β̃T−1, κ̃T−1, R

⋆
T−1) = 0,

with ∂J̃t/∂Rt as defined in (5.21).

The proof of Lemma 5.5.13 can be found in Appendix 5.C. Following the stan-
dard procedure, we show how to solve the rate constrained optimization problem
in Lemma 5.5.14.
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Figure 5.5: The break-down terms of Ψt(b0, . . . , bt−1), where J̃1, J̃2 and J̃3 are short notations for J̃t(β̃1, κ̃1, R1),
J̃t(β̃2, κ̃2, R2) and J̃t(β̃3, κ̃3, R3).
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Lemma 5.5.14. Let ǫ>0. A solution to the system of equations (5.61), i.e.,

−
T−1∑

s=t

Ψt,s = θ, t = 0, . . . , T − 1,

T−1∑

t=0

Rt = Rtot,

solves Problem 5.5.6, with θ denoting the associated Lagrangian multiplier, and with
Ψt,s given by (5.62).

Proof. The proof is still based on Lagrange duality theory. First, strong duality
applies, because the constraint is positive and linearly independent of the rate Rt,
the Mangasarian-Fromowitz constraint qualification applies. Second, we minimize
the Lagrangian,

η(RT−1
0 , θ) =

T−1∑

t=0

Jt(R
t
0) + θ

(
T−1∑

t=0

Rt −Rtot
)

,

where σ̂2
xt is given by (5.55). The derivative ∂η(RT−1

0 , θ)/∂Rt is

∂

∂Rt
η(RT−1

0 , θ) =

T−1∑

s=t

Ψt,s + θ,

where Ψt,s is given by (5.62), i.e.,

Ψt,s =

1∑

b0=0

· · ·
1∑

bt=1

· · ·
1∑

bs−1=0

πsΨ̄(b0, . . . , bs).

The binary variable bm, m= 0, . . . , s, and m 6= t, takes the value in {0, 1}, except
bt, which takes only the value 1. The term Ψ̄(b0, . . . , bs) is defined as

Ψ̄(b0, . . . , bs) = B̄

(
s−1∏

m=s̄+1

B̄m

)(
s−1∏

n=s̄+1

(Cn)
bn

)

,

where B̄ and B̄n are given by (5.58)–(5.59), and Cn is given by (5.63). Then
∂η(RT−1

0 , θ)/∂Rt = 0 and ∂η(RT−1
0 , θ)/∂θ = 0 together lead to (5.61), as stated

in Lemma 5.5.14.

An example will make the system of equations (5.61) more clear. Let T = 3
which yields 4 equations and 4 unknown parameters, {R2

0, θ}. Given {π2
0 ,A

1
0,B

1
0}



5.5. Rate Allocation for State Feedback Control 143

as defined previously in Theorem 5.5.7, (5.61) leads to the following system of
equations,

θ=−π0σ
2
x0

∂J̃0

∂R0
(β0, κ̃0, R0)−π1B0σ

2
x0

∂J̃0

∂R0
(β̃0, κ̃0, R0)J̃1(β̃1, κ̃1, R1)

−π2A1B0σ
2
x0

∂J̃0

∂R0
(β̃0, κ̃0, R0)J̃2(β̃2, κ̃2, R2)

−π2B1B0σ
2
x0

∂J̃0

∂R0
(β̃0, κ̃2, R0)J̃1(β̃1, κ̃1, R1)J̃2(β̃2, κ̃2, R2),

θ=−π1(A0σ
2
x0

+σ2
v)
∂J̃1

∂R1
(β̃1, κ̃1, R1)−π1B0σ

2
x0
J̃0(β̃0, κ̃0, R0)

∂J̃1

∂R1
(β̃1, κ̃1, R1)

−π2B1(A0σ
2
x0

+σ2
v)
∂J̃1

∂R1
(β̃1, κ̃1, R1)J̃2(β̃2, κ̃2, R2)

−π2B1B0σ
2
x0

(J̃0(β̃0, κ̃0, R0)
∂J̃1

∂R1
(β̃1, κ̃1, R1)J̃2(β̃2, κ̃2, R2),

θ=−π2(A1(A0σ
2
x0

+σ2
v)+σ2

v)
∂J̃2

∂R2
(β̃2, κ̃2, R2)

−π2A1B0σ
2
x0
J̃0(β̃0, κ̃0, R0)

∂J̃2

∂R2
(β̃2, κ̃2, R2)

−π2B1(A0σ
2
x0

+σ2
v)J̃1(β̃1, κ̃1, R1)

∂J̃2

∂R2
(β̃2, κ̃2, R2)

−π2B1B0σ
2
x0
J̃0(β̃0, κ̃0, R0)J̃1(β̃1, κ̃1, R1)

∂J̃2

∂R2
(β̃2, κ̃2, R2),

Rtot=

2∑

t=0

Rt.

As discussed previously, the resulting system of equations can be solved by numer-
ical methods. Finally, the proof of Theorem 5.5.7 is given below.

Proof. (Theorem 5.5.7)
Based on Lemma 5.5.8–Lemma 5.5.10, we note that when ǫ = 0, given any

Rtot<∞, a solution to Problem 5.5.6 is given by (5.56), since the global optimum
to the unconstrained problem is R⋆t =∞, ∀t. For ǫ>0, a solution to Problem 5.5.6
is (5.60), if the global optimum to the unconstrained problem does not violate
the rate constraint, cf., Lemma 5.5.13. Otherwise the solution is given by (5.61),
as shown by Lemma 5.5.14. Hence, we conclude that the proof of Theorem 5.5.7
follows Lemma 5.5.8–Lemma 5.5.14.

It is worth noting that when β̃t = β̃ and κ̃t = κ̃, the unconstrained estimation
problem and control problem, Problem 5.4.2 and Problem 5.5.5, have the same
global minimum.
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In this section, we studied the problem to assign optimally Rtot bits to T time
units for state feedback control over noisy channels. The solutions are derived first
for the minimum variance control scenario (ρ = 0) and then for the general case
(ρ > 0). In the both cases, the rate allocation problems are solved in two steps.
First, we approximated the objective functions by means of high-rate quantization
theory. Second, we showed that the unconstrained optimization problem has a global
minimum, which solves the rate allocation problem if such a global minimum does
not violate the rate constraint. On the other hand, if the global minimum violates
the rate constraint, then we solved the rate constrained optimization problem by
means of Lagrangian duality for non-convex non-linear problems.

5.6 Low Complexity Solutions

The complexity of the rate allocation optimization algorithm presented in Sec-
tion 5.5 for feedback state control is significantly increased, compared with the
state estimation problem in Section 5.4. This is due to the fact that E

{
x2
t

}
and

its approximation σ̂2
xt depend on all previous Rt−1

0 , in a complicated manner. As a
result, deriving σ̂2

xt as a function of Rt−1
0 requires a large number of computations,

as T increases. In this section a fast rate allocation algorithm is presented by which
we aim for a method of reasonably good performance, without heavy computations.
The idea is to take advantage of some realistic approximations of σ2

xt that are not
dependent on the past rates Rt−1

0 . Recall the cost (5.37), introduced in Section 5.5,

Jtot(R
T−1
0 ) =

T−1∑

t=0

E
{
πt(xt − dt)2

}
, πt = (φt+1 + ρ)ℓ2t .

Based on the preceding discussions in Section 5.5 we know that the true statistics
of xt is obtainable first after the control sequence ut−1

0 is known. However, it is
in general impossible to express the pdf p(xt) in a closed-form, even if ut−1

0 is
available. In order to proceed, certain approximations and simplifications will be
made. First of all, we simplify the problem by approximating xt using a zero-mean
Gaussian pdf, denoted by N (0, σ̂2

xt), as done previously in Section 5.5. Certainly,
we are interested in controls that have positive impact on the system performance.
Loosely speaking, by positive impact we mean that the control should ensure the
true state to stay within a bounded region. First, the upper bound is given by the
case that no control action is taken, for all t. It is obvious that a useful coding–
control scheme should outperform the uncontrolled system. Second, the lower bound
is given by the case that there is no channel in the system. In the absence of the
channel imperfections (quantizer distortion and transmission errors), Problem 5.2.4
is reduced to the classical LQG problem, and the optimal solution is well-known.
Naturally, this lower bound serves as the best achievable performance. A solution of
a satisfactory controller should stay close to the optimal solution of LQG problem.
For ease of presentation, we refer to the upper bound as the non-controlled scenario,
and the lower bound to as the optimally-controlled scenario.
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Based on the above discussion, we first introduce the upper bound Jup for the
non-controlled scenario,

Jup(R
T−1
0 ) =

T−1∑

t=0

E
{

πt (x
up
t − dt)

2
}

,

where xupt denotes the state obtained when no control action is applied, in particular

xupt = atx0 +
t−1∑

s=0

at−1−svs.

Note that, since x0 and vt−1
0 are i.i.d. zero-mean Gaussian variables, xupt is conse-

quently zero-mean Gaussian with the variance

σ2
xup
t

= a2σ2
xup
t−1

+ σ2
v = a2tσ2

x0
+
t−1∑

s=0

(
at−1−s

)2
σ2
v .

In the second place, the lower bound Jlow is given by,

Jlow(RT−1
0 ) =

T−1∑

t=0

E
{

πt
(
xlowt − dt

)2
}

,

where xlowt is obtained by the LQG control assuming xt is directly available at the
controller. Also, xlowt is zero-mean Gaussian with the variance

σ2
xlow
t

= (a+ ℓt−1)2σ2
xlow
t−1

+ σ2
v

=

(
t−1∏

s=0

(a+ ℓs)
2

)

σ2
x0

+

t−2∑

n=0

(
n∏

m=0

(a+ ℓt−1−m)2

)

σ2
v .

If we compute the instantaneous cost using (5.54) and approximating σ̂2
xt with σ2

xlowt

or σ2
xup
t

, the rate allocation problem is substantially simplified. In that case, we find
ourselves confronted by a problem resembling Problem 5.4.1 in Section 5.4. The
main advantage of the system of Problem 5.4.1 is that the instantaneous cost is
independent of Rt−1

0 , and consequently separable.
Once the cost function is established, we can straightforwardly apply the method

of Lagrange multipliers. Below, we summarize the results for the error-free scenario
in Corollary 5.6.1, and the noisy scenario in Corollary 5.6.2.

Corollary 5.6.1. For error-free channels (ǫ=0), it holds that

Rt =
Rtot
T

+
1

2
log2






σ̂2
xt κ̃tπt

(
∏T−1
t=0 σ̂

2
xt κ̃tπt

) 1
T




, t = 0, . . . , T − 1,
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is a solution which minimizes the Lagrangian

η(RT−1
0 , θ) =

T−1∑

t=0

πtσ̂
2
xt κ̃t2

−2Rt + θ

(
T−1∑

t=0

Rt −Rtot
)

.

Following the standard procedure, Corollary 5.6.1 is proved by finding RT−1
0

which simultaneously satisfies ∂η(RT−1
0 , θ)/∂θ=0 and ∂η(RT−1

0 , θ)/∂Rt=0, ∀t.

Corollary 5.6.2. For noisy channels (ǫ>0), it holds that a solution {RT−1
0 , θ} to

the system of equations

πtσ̂
2
xt β̃t(1− ǫ)Rt + πtσ̂

2
xt κ̃t2

−2Rt = θ, t = 0, . . . , T − 1,

T−1∑

t=0

Rt = Rtot,
(5.67)

minimizes the Lagrangian

η(RT−1
0 , θ) =

T−1∑

t=0

πtσ̂
2
xt J̃t(β̃t, κ̃t, Rt) + θ

(
T−1∑

t=0

Rt −Rtot
)

.

The proof of Corollary 5.6.2 follows the proof of Lemma 5.4.6, since the system
of equations (5.67) is almost identical to (5.28), besides the weighting factor πt.
The imposed approximations and the simplifications are expected to cause perfor-
mance degradation. In many cases, we can choose one of the above approximations
to compute a simple solution. However, which one of the two approximations is
closer to the true solution is not easy to answer. In the best situation the both ap-
proximations perform so close that they result in exactly the same rate allocation.
Otherwise, listed below are some observations that can us to choose between σ2

xlowt

and σ2
xup
t

:

1. In the absence of channel errors, the influence of control is increased with the
magnitude of the system parameter a. If |a| ≫ 1, then the performance is
close to Jlow.

2. For an error-free channel, if |a| ≪ 1, then the performance is dominated by
the plant’s dynamics. Consequently, Jlow and Jup are rather close.

3. A noisy communication channel has a variety of negative impacts on the
system. If the rate is low or the crossover probability of the channel is high,
only cautious control actions are suitable, thus the resulting performance
might be far from the optimal-controlled scenario. In those cases the true
system will perform more closely to Jup.
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5.7 Exhaustive Search

As explained in Section 5.5, the exact solution to the optimal bit-rate allocation
problem over a noisy channel is difficult to derive. Given this difficulty, we proposed
a rate allocation method developed based on a number of approximations and
simplifications, and consequently, performance degradation is expected.

However, we know that for discrete problems, the globally optimal solution can
always be found by examining all possible cases, which is commonly referred to
as the exhaustive search. For the reason of completeness, this section is devoted to
a brief discussion of designing rate allocations by testing all possible cases. Espe-
cially, we will present a search order which is reasonably efficient in practice. This
search algorithm is developed for situations when the optimal rate allocation is
monotonously decreasing, which is rather common for stable closed-loop systems.
First, for ease of presentation, we define the search set,

RT,Rtot =

{

RT−1
0 :

T−1∑

t=0

Rt ≤ Rtot, Rt∈Z+

}

.

A constrained monotonously decreasing rate allocation has Rt ≥Rs, for all t < s,
RT−1

0 ∈RT,Rtot . Next, let us establish certain rules that are used in the forthcom-
ing comparisons of the rate allocations. Consider two rate allocations, the integer
sequences RT−1

0 (1)∈RT,Rtot and RT−1
0 (2)∈RT,Rtot , for a fixed Rtot.

1. First, the sequence RT−1
0 (1) is said to be larger than the sequence RT−1

0 (2), if

smin∑

t=0

Rt(1) >

smin∑

t=0

Rt(2), (5.68)

where,

smin , min
s

{
s∑

t=0

Rt(1) 6=
s∑

t=0

Rt(2)

}

. (5.69)

In other words, smin is the smallest integer s at which the two sequences differ
(or the first time the two sequences differ). The smallest sequence, by our
definition, has the mostly uniform rate allocation. In view of some additional
properties, the smallest sequence has:

a) The smallest maximum instantaneous rate, i.e.,

min
R
T−1
0 ∈RT,Rtot

{max {R0, R1, . . . , RT−1}}.

b) The smallest difference between the maximum and minimum rates, i.e.,

min
R
T−1
0 ∈RT,Rtot

{max {R0, R1, . . . , RT−1} −min {R0, R1, . . . , RT−1}}.
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Algorithm 5.7.1 Bit allocation by Exhaustive Search

1. Set the minimum cost Jmin = E {Jtot (0)}, where 0 is a vector of zeros.
Set the existing best rate allocation Rmin to 0.

2. For R0, . . . , RT−1∈{0, . . . , Rtot},
2.a. If the rate constraint

∑T−1
t=0 Rt ≤ Rtot is fulfilled, compute the expected

cost E
{
Jtot(R

T−1
0 )

}
.

2.b. If E
{
Jtot(R

T−1
0 )

}
<Jmin, replace the exiting minimum cost Jmin and

the existing best rate allocation Rmin by E
{
Jtot(R

T−1
0 )

}
and RT−1

0 .

Algorithm 5.7.2 Bit allocation by Binary Search

1. Let Rmax be the largest value Rt can take.
2. Start with setting t = 0. For k = 0, . . . , Rmax,

2a. Construct two rate allocations as follows:
(i) Let the both allocations have R0 =k;
(ii) Among all the feasible sequences RT−1

1 , which fulfill the rate constraint,
select the largest and the smallest sequences according to (5.68)–(5.69).

2b. Compute E
{
Jtot(R

T−1
0 )

}
for the selected two rate allocations.

Denote Jmin0 (k) the cost associated to the rate allocation with the smallest
RT−1

1 , and Jmax0 (k) the largest.
3. Assign R0 =arg mink

{
min

(
Jmax0 (k), Jmin0 (k)

)}
.

4. Let t= t+1. For k=1, . . . , Rt−1,
4a. Construct two rate allocations which both have Rt−1

0 and Rt=k.
They are assigned the largest and the smallest sequences among the
feasible sequences RT−1

t+1 .
4b. Compute E

{
Jtot(R

T−1
0 )

}
for the two rate allocations, and denote

them Jmint (Rt−1
0 , k) and Jmaxt (Rt−1

0 , k).
4c. Assign Rt=arg mink {min (Jt

max(Rt−1
0 , k), J

min
t (Rt−1

0 , k))}.
5. If t=T−1, then stop, otherwise go to Step 5.

2. On the other hand, we say that the allocation RT−1
0 (1) performs better than

the allocation RT−1
0 (2), meaning that

E
{
Jtot

(
RT−1

0 (1)
)}
< E

{
Jtot

(
RT−1

0 (2)
)}
,

where E
{
Jtot(R

T−1
0 )

}
is the overall cost that we want to minimize. The cost

E
{
Jtot(R

T−1
0 )

}
can either be calculated according to certain analytical ex-

pression, or simulated numerically.

A regular exhaustive search can be simply implemented as T loops, as described
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in Algorithm 5.7.1. Let all T parameters, R0, . . . , RT−1, take on values from 0 to
Rtot. If the sum of the instantaneous rates does not exceed Rtot, then the expected
cost E

{
Jtot(R

T−1
0 )

}
will be calculated, either analytically or numerically. If the

expected cost E
{
Jtot(R

T−1
0 )

}
is smaller than the existing minimum Jmin, then

replace the existing minimum and store the corresponding rate allocation as the
best allocation up to now.

Owing to the fact that the horizon T and the total rate Rtot are both finite
numbers, the globally optimal rate allocation can always be found, by an exhaustive
search over all RTtot sequences. Also, it is worth mentioning that when the channel
is error-free, the total bit-rate constraint in Algorithm 5.7.1 can be replaced by
∑T−1
t=0 Rt=Rtot. Clearly, the search set given by the rate constraint

∑T−1
t=0 Rt=Rtot

is considerably smaller than the original search set in
∑T−1
t=0 Rt≤Rtot. The reduction

of the search space is because in the error-free case increasing data rate always yields
less distortion. On the other hand, in the presence of channel errors, the situation
becomes more complicated. It may happen that increasing data rate does more
harm than good. Therefore, we should indeed search among all sequences which
fulfill

∑T−1
t=0 Rt≤Rtot. Obviously, as T and Rtot increase, a full search according to

Algorithm 5.7.1 becomes impractical, since there are RTtot combinations to test.
For this reason, we present an alternative search method in Algorithm 5.7.2

which is fairly efficient in practice. As a matter of fact, what we suggest is a binary
search with a special search order. Moreover, we introduce Rmax to provide a flex-
ility of varying the size of the search set. We can increase or decrease the search set
by adjusting Rmax.

5.8 Practical Considerations

This section is devoted to several considerations regarding the implementation of
the rate allocation algorithms developed in Section 5.4 and Section 5.5. In Sec-
tion 5.8.1, we deal with the non-negativity and integer constraints imposed on
RT−1

0 . In Section 5.8.2, performance degradation cased by various approximations
and simplifications are discussed.

5.8.1 Non-negativity and Integer Constraint

In this subsection we deal with the assumption of Theorem 5.4.4 and Theorem 5.5.7
that the rate Rt is allowed to be negative and real numbers. In practice, Rt is of
course a non-negative integer. As regards the classical rate allocation problems,
there are many works dealing with the non-negativity and integer constraints, e.g.,
[FZ05b]. It is beyond our intention to engage in this issue here. In this section, we
briefly present the solutions that are used in our numerical experiments.

First, we should mention that the solutions to the system of equations in The-
orem 5.4.4 and Theorem 5.5.7 might contain negative rates. We deal with the
problem of negative rates as follows. Set the negative rates to 0. Then, exclude the
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instantaneous costs associated with the negative rates from the overall cost function
and resolve the optimization problem following Theorem 5.4.4 or Theorem 5.5.7.
Repeat the procedure until all negative rates are settled.

The solution given by Theorem 5.4.4 and Theorem 5.5.7 are real-valued rates.
In the simplest case, we can handle the integer constraint by applying the rule,

R̃t = ⌈Rt⌋, t = 0, . . . , T − 1,

where ⌈·⌋ is taken to mean rounding to the nearest integer, and Rt is a solution
given by Theorem 5.4.4 or Theorem 5.5.7. This operation might violate the total
bit-rate constraint (5.5). In many cases the deviation is however only a few bits,
mostly only one single bit. Hence, it brings up an interesting question, namely, for
a given rate allocation R̃T−1

0 , which bit is the least significant one we can exclude?
The answer to the state estimation problem (cf., Problem 5.4.1) is rather straight-
forward, attributed to the fact that E

{
x2
t

}
is not affected by the communication

system. In that case, we are looking for the time t̂ satisfying

t̂=arg min
t

{

Ĵt
(
βt, κt, R̃t−1

)
−Ĵt

(
βt, κt, R̃t

)}

,

with the instantaneous cost Ĵt(βt, κt, R̃t)=βt(1−(1−ǫ)R̃t)+κt2−2R̃t . Since the cost
Ĵt(βt, κt, R̃t) does not depend on past R̃t−1

0 , the additional bit at t only has impact
on the current cost E

{
Jt(R̃t)

}
. The new rate allocation R̄T−1

0 follows simply the
rule {

R̄t = R̃t, t 6= t̂,
R̄t = R̃t − 1, t = t̂.

(5.70)

Finding the least significant bit in a state feedback control system is a more chal-
lenging task. To compare the influence of each Rt on the total cost, it is not enough
to consider only their impact on the current time instant. We should also take into
account their impact on all future states. In that case we are looking for t̂ which is

t̂=arg min
t

{
T−1∑

s=t+1

Js
(
R̃t−1

0 ,R̃t−1, R̃st+1

)
+Jt

(
R̃t−1

0 ,R̃t−1
)
−
T−1∑

s=t

Js
(
R̃s0
)

}

, (5.71)

where Jt, t=0, . . . , T−1, is the instantaneous cost given by (5.54). In other words,
we seek the least significant bit which minimally increases the overall expected cost.
The new rate allocation is then finalized by (5.70).

Based on the preceding discussion, we can remove the least significant bit by
means of (5.71). If there are several bits to discard, we can successively adopt (5.71)
to exclude one bit at a time. However, we should keep in mind that the successive
deduction does not ensure the optimal solution, resembling the well known fact that
an optimal control over a finite horizon is not necessarily also optimal in terms of
the instantaneous cost.
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Conversely, the analogues problem of adding the most significant bit can be
solved by finding the following t̂,

t̂=arg max
t

{
T−1∑

s=t

Js
(
R̃s0
)
−
T−1∑

s=t+1

Js
(
R̃t−1

0 ,R̃t−1, R̃st+1

)
−Jt

(
R̃t−1

0 ,R̃t−1
)

}

,

which maximally reduces the overall expected cost.
Next, we present a more sophisticate method by formulating the rounding as

a binary optimization problem. The rounded rate R̃t is related to the real-valued
rate Rt as

R̃t = bt⌈Rt⌉+ (1− bt)⌊Rt⌋, bt ∈ {0, 1}, t = 0, . . . , T − 1,

where ⌈·⌉ denotes the rounding upwards to the nearest integer, and ⌊·⌋ denotes the
rounding downwards to the nearest integer. We optimize the rounding by searching
for the binary sequence bT−1

0 which minimizes the overall cost Jtot(R̃
T−1
0 ),

min
b
T−1
0

E
{
Jtot

(
R̃T−1

0

)}
,

s. t.

T−1∑

t=0

R̃t ≤ Rtot.
(5.72)

A solution to the problem (5.72) can always be obtained by exhaustive search or
combinatorial algorithms [PS98].

5.8.2 Performance Degradation

In Sections 5.4–5.7 we have suggested several methods to optimize rate allocation for
state estimation and state feedback control over finite-rate noisy channels. In order
to formulate useful overall objective functions, different levels of approximations
and simplifications are introduced. In this subsection, a few remarks are given on
the impacts of the diverse approximations and simplifications on the quality of the
solutions. Before starting the discussion, it is worth mentioning that even though
the absolute accuracy of the estimate of the overall cost is flawed, the proposed
algorithms may still be able to provide a satisfactory solution, because what really
matters is often the ratios among the costs at all time instants.

We start with the remark on the Lagrangian-based method. First, since the
primal function is formulated based on several approximations and simplifications,
even though we can find a solution to the relaxed optimization problem, the solution
is not necessarily optimal for the original problem. Second, despite the performance
degradation caused by all approximations and simplifications, what we can say
about the solution to the Lagrangian dual problem is closely related to the objective
function. If the objective function is convex, then given the linear constraint (5.5),
the strong duality applies if the solution {RT−1

0 , θ} fulfills the Kaursh–Kuhn–Tucker
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(KKT) condition [BV04]. On the other hand, if the objective function is non-convex,
the KKT condition is in many cases only a necessary condition for strong duality.
In general, the convexity does not hold for the rate allocation problem discussed in
this chapter. For example, consider the objective function of the state estimation
problem from Section 5.4. It is a sum of quasi-convex functions of the form

βt(1− (1 − ǫ)Rt) + κt2
−2Rt , 0 < βt <∞, 0 < κt <∞.

The quasi-convexity is commonly not preserved by summation. In Figure 5.6, the
typical behavior of the overall cost function is demonstrated by a simple example
with the overall cost

β1(1 − (1− ǫ)R1 ) + κ12−2R1 + β2(1− (1 − ǫ)R2) + κ22−2R2 . (5.73)

The quasi-convexity is verified by the sub-level sets. In particular, Figure 5.6 shows
that the quasi-convexity can be violated by increasing the crossover probability ǫ
or the rate Rt. It is worth mentioning that the rate constraint is an inequality in
our minimization problem. Therefore, an optimal solution can be ensured by the
Lagrangian-based method if we are able to find the subset of {RT−1

0 :0≤Rt<∞, ∀t}
that not only embodies the optimal solution but also formulates a convex optimiza-
tion problem. Because of the property of Ĵt, we could show that our optimization
problems have a global minimum, and if the global minimum does not violate the
rate constraint, then it is the solution to the rate constrained optimization problem.
On the other hand, if the global minimum violates the rate constraint, a convex
optimization problem is formulated and solved by strong duality.

Next, we discuss the high-rate approximation of the MSE. First, even though the
high-rate assumption requires that the pdf of the source is approximately constant
over one quantization cell, however, the quantization works fairly well in practice for
low rates as much as 3, 4 bits. On the other hand, the accuracy of the quantization
decreases when the rate approaches 0. That is to say, at low rates the proposed rate
allocation algorithm does not work as well as in the high-rate region, attributed to
all approximations made in the derivation of the high-rate expression (5.11). The
worst case occurs at Rt=0, where the estimation errors given by (5.15) and (5.17)
are even worse than E

{
x2
t

}
=σ2
x, obtained by setting dt=0.

Finally, the Gaussian approximation becomes flawed as the rate decreases. The
problem becomes more serious for unstable systems because errors accumulate as
time goes on. However, the Gaussian process noise in the system plays a role in
alleviating the conflict between the model and the true system. As the rate increases,
the problem of accuracy is quickly solved.

5.9 Numerical Experiments

In this section, we present the numerical experiments conducted to evaluate the
performance of the proposed bit-rate allocation algorithms.
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Figure 5.6: The impact ofRt and ǫ on the quasi-convexity of the cost function (5.73).
The quasi-convexity can be violated by increasing the crossover probability ǫ or the
rate Rt.
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Let us first address a few issues common for all experiments in this section. In
general, we optimize the rate allocation according to the algorithms proposed in
Section 5.4 or Section 5.5, and then assess their performance by means of numerical
simulations. For state feedback control problems, the optimized rate allocation is
obtained by applying Theorem 5.5.7 and the binary rounding algorithm described
in Section 5.8. More specifically, we optimize the rate allocation for state feedback
control with respect to the objective function (5.54) of Problem 5.5.6, the overall
performance is on the other hand evaluated in terms of the objective function (5.4)
of Problem 5.2.4. Consequently, performance degradation caused by various approx-
imations and simplifications is expected. Likewise, for state estimation problems,
the optimized rate allocation is referred to as the sequence RT−1

0 obtained by ap-
plying Theorem 5.4.4 and the binary rounding algorithm described in Section 5.8.

Throughout this section, the initial-state and the process noise are zero-mean
Gaussian with variances σ2

x0
and σ2

v , respectively. For the exposition of the basic
design concept and procedure, we choose to use a time-varying uniform quantizer
for which the quantizer range is related to the estimated signal variance as νt =
4σ̂xt . At the same time, we also use this quantizer to expose the importance of
a carefully designed coding–controller. As revealed later, this simple quantizer is
far from optimal in view of the efficiency of communications. Besides the high-rate
approximation, we derive the instantaneous cost (5.66) also based on the following
simplifications. First, xt is assumed to be zero-mean Gaussian. Second, the high-rate
approximation (5.16) is adopted, particularly assuming that the distortion caused
by the signals outside the support of the quantizer is negligible. Finally, (5.50)
and (5.53) are utilized, where we let Γ(ǫ) be a linear function heuristically obtained
by numerical experiments. Actually, the exact value of Γ(ǫ) is not influent since a
multiplicative constant of the cost function does not change the optimal solution.

Roughly speaking, since xt is assumed to be zero-mean Gaussian, the rate allo-
cation becomes meaningful if the state variance varies significantly over time. For
example we can use the difference of σ2

x0
and σ2

xT−1
to measure the variation. If

the variation is considerably large, a non-uniform allocation can gain by exploiting
the flexibility of adjusting quantizers according to the statistical knowledge of the
state. Otherwise, an even distribution of the bit-rates is expected to work satisfac-
torily. Unfortunately, the system is affected by a number of parameters: the system
dynamic a, the relative weight ρ, the variances σ2

x0
, σ2
v , the total bit-rate budget

Rtot, and the crossover probability ǫ, etc. Even if we know a great deal about the
impact of each parameter separately, when all of them influence simultaneously, it
becomes difficult to predict the system behavior. Listed below are some situations
where σ2

x0
and σ2

xT−1
could differ considerably in magnitude.

1. When the system parameter a is apart from 1. Note that the system is highly
stable when |a| ≪ 1, or highly unstable when |a| ≫ 1.

2. When the process noise is on average small compared with the initial-state.
For large-valued process noise, the system converges to a high steady-state
level.
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Rate allocation Rtot

RA1 8 8 8 8 8 8 8 8 8 8 80

RA2 7 7 7 7 7 7 7 7 7 7 70

RA3 6 6 6 6 6 6 6 6 6 6 60

RA4 5 5 5 5 5 5 5 5 5 5 50

RA5 4 4 4 4 4 4 4 4 4 4 40

RA6 3 3 3 3 3 3 3 3 3 3 30

RA7 2 2 2 2 2 2 2 2 2 2 20

RA8 1 1 1 1 1 1 1 1 1 1 10

RA9 8 8 8 6 0 0 0 0 0 0 30

RA10 7 7 7 7 2 0 0 0 0 0 30

RA11 6 6 6 6 6 0 0 0 0 0 30

RA12 5 3 3 3 3 3 3 3 2 2 30

RA13 5 4 3 3 3 3 3 2 2 2 30

RA14 5 4 4 3 3 3 2 2 2 2 30

Table 5.1: Various rate allocations used in Figure 5.7 and Figure 5.8. RA12 is
the optimized rate allocation for the state feedback control problem and RA14

is the optimized rate allocation for the state estimation problem. The others are
arbitrarily selected rate allocations.

3. When the crossover probability of the channel is small. A high crossover prob-
ability favors conservative control actions and consequently slows down the
convergence rate.

4. When the penalty on the control input is mild. A large-valued ρ corresponds
to a hard power constraint on the control input, which leads to a slow con-
vergence rate.

First we demonstrate the performance of the proposed rate allocation scheme by
comparing it with some arbitrarily selected allocations. The system parameters are
chosen in the interest of demonstrating non-uniform rate allocation. In particular,
the system parameters are: a= 0.5, ρ= 0.1, T = 10, Rtot= 30, ǫ= 0.001, σ2

x0
= 10,

and σ2
v=0.1. As explained in the beginning of this section, a time-varying uniform

quantizer is adopted and the quantizer range is specified by the estimated variances
of the states.

Figure 5.7 shows the performance of state feedback control systems. The perfor-
mance measure used to derive the rate allocation is (5.66), while the performance
measure used to verify the rate allocation is (5.54). The simulated costs are ob-
tained by averaging over 100 IA’s and each IA 150 000 samples. In Table 5.1, all
the 14 rate allocations are listed. The allocation RA12 is obtained by applying the
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Figure 5.7: A performance comparison among various rate allocations for state
feedback control. Allocations marked with a diamond do not satisfy the total rate
constraint.
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proposed optimization algorithm from Theorem 5.5.7 and the binary rounding al-
gorithm from Section 5.8. Concerning the optimized allocation RA12, Rt is fairly
evenly distributed over t. Compared with the uniform allocation RA6, we see that
our method gives an evident gain.

The uniform allocations RA1–RA8 have a time-invariant instantaneous rate,
varying from 8 bits to 1 bit. In fact, based on our analysis, β̃t = β̃, κ̃t = κ̃, and
the solution to the unconstraint problem, Problem 5.5.5, is R⋆t = 5, ∀t. This is
consistent with the simulation result that RA4 is even superior to allocations with
a higher total rate. In the presence of the channel errors, more bits can sometimes
do more harm than good. However, RA4 does not satisfy the total rate constraint,
and therefore, the system of equations (5.61) is solved, which yields RA12.

The allocations RA9–RA13 are used to represent the strategy that more bits are
assigned to the initial-states. This strategy is not efficient in the current example,
because, as discussed previously, the additional bits exceeding the critical point,
R⋆= 5, do more harm than good. Furthermore, the degradation caused by reduc-
ing one bit at a lower rate is more significant than the improvement along with
increasing one bit at a higher rate. As a simple example, the degradation caused
by using 1 bit instead of 2 is more serious than the improvement caused by using
5 bits instead of 4.

In Figure 5.8, we demonstrate the simulation results corresponding to state feed-
back control for the state estimation problem. Here, the optimized rate allocation
is obtained by applying Theorem 5.4.4 and the binary rounding algorithm. The
involved system parameters are the same as in Figure 5.7. The performance for
the same 14 allocations, RA1–RA14 as in Figure 5.7, are depicted. In particular,
RA4 is still the global optimum which solves the unconstrained optimization prob-
lem; while RA14 is the optimized rate allocation for state estimation. Performance
in Figure 5.8 is measured by the objective function of Problem 5.4.1, and it is ob-
tained by averaging over 100 IA’s and each IA 150 000 samples. Compared with the
uniform allocation RA6, we see that our method gives an evident gain. Note that,
here RA14 outperforms RA12, which is the optimized allocation for state feedback
control. An explanation for the gain of RA14 is that without control action the
trajectory approaches 0 slowly, therefore it requires more bits in the initial-states.

The next example is pursued to demonstrate the impact of ρ. As mentioned
previously, ρ regulates the power of control inputs. More precisely, on average the
magnitude of the control input decreases as ρ increases. In other words, a large ρ
yields on average small-valued control inputs, consequently, a slow state response
and a high steady-state level. This experiment uses mostly the same system param-
eters as previous experiments, i.e., a= 0.5, T = 10, Rtot = 30, ǫ= 0.001, σ2

x0
= 10,

σ2
v = 0.1, and the time-varying uniform quantizer. In Figure 5.9, the rate alloca-

tions, optimized according to Theorem 5.5.7, are demonstrated for several ρ-values.
Based on our analysis, the global minimum to the rate unconstrained problem,
according to Lemma 5.5.13, is R⋆t = R⋆ = 5, ∀t, irrespective of ρ. This is consis-
tent with Figure 5.9(a)–(d) that there is no Rt larger than 5. When ρ is small,
for example ρ=0.1, large-valued control inputs are allowed and the steady state is
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quickly reached. As ρ increases, only small-valued control inputs are allowed and
it takes longer time for the system to reach the steady state. This explains the
results in Figure 5.9(b)–(c) that more bits are needed in the initial-states when ρ is
large. The rate allocation in Figure 5.9(d) is obtained by solving Problem 5.4.3 for
state estimation, where Theorem 5.4.4 is used together with the binary rounding
algorithm. Interestingly, the optimized rate allocation in this case is the same as
when ρ= 10, cf., Figure 5.9(c). It is a reasonable observation, since, when ρ= 10,
first, the control inputs are extremely small and have hardly impact on the state
evolution; second, πt is nearly constant over time. As a result, Problem 5.5.6 for
state control becomes almost identical to Problem 5.4.3 for state estimation. The
simulated instantaneous costs and the control inputs for ρ=0.1 and ρ=10 are de-
picted in Figure 5.10. As expected, the instantaneous cost for ρ=10 is remarkably
higher than the instantaneous cost for ρ= 0.1. Moreover, when ρ= 10, the system
performs similarly to the case without any control.

In Figure 5.11, the impact of the parameter ǫ is studied, by fixing the other
parameters and only varying ǫ. In particular, the system parameters are: T = 10,
Rtot=30, ρ=1, σ2

x0
=10 and σ2

v=0.1. Applying Theorem 5.5.7, the optimized rate
allocation for ǫ= 0.001 and ǫ= 0.1 are RA13 and RA7, respectively. At ǫ= 0.001,
the global minimum to the unconstrained problem, according to Lemma 5.5.13, is
R⋆t = 5, ∀t, which means the rate constraint is violated at the global minimum.
On the other hand, at ǫ= 0.1, the global minimum is Rt = 2, ∀t, so that the rate
constraint is fulfilled. Recall that the quantizer range is fixed irrespective of the
rate, a reduction in the rate leads to larger quantization errors, but it might result
in more robust codewords against transmission errors. As a matter of fact, beyond
a certain rate, the harm caused by transmission errors is much more serious than
the reduction of quantization error along with an additional bit. In other words,
the “additional bits” will do harm than good, as demonstrated in Figure 5.11.
In the figure, the simulated instantaneous costs and the control inputs obtained
by using RA13 and RA7 at ǫ = 0.001 and ǫ = 0.1, are depicted. At ǫ = 0.001,
for Rt < R⋆ = 5, we can always improve the performance by increasing Rt, and
therefore, RA13 outperforms RA7. At ǫ = 0.1, the situation is different. When
Rt> 2, the performance is degraded by increasing the rate, which is consistent to
the simulation result in Figure 5.11.

In Section 5.2, we have posed Problem 5.2.4 to assign totally Rtot bits optimally
to T time units. In fact, the solutions to the optimal rate allocation problem have
partly answered the question the other way round. That is to say how much data it
is truly needed to achieve a certain system performance, and the limitation of the
system’s performance is exposed. In the absence of channel errors, increasing the
data rate typically means more accurate information, consequently, a better control
performance. This is true even though the encoder–decoder is not optimal to the
system. Unfortunately, in the presence of channel errors, the situation is compli-
cated. The channel error has several negative impacts on the system performance.
First of all, if the encoder–controller is not optimized, increasing the data rate does
not necessarily improve the system performance. We can easily find examples in
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Figure 5.11: A performance comparison with respect to ǫ.
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which enhancing the data rate does more harm than good. Moreover, the improve-
ment given by the rate is significantly reduced if the crossover probability of the
channel is high. It is worth noticing that the solution to the unconstraint problem
can be considered as a measure of the quality of the quantizer. In particular, for
optimal quantizers, the solution should be at R=∞. In other words, by optimizing
the encoder–decoder pair, the solution of Lemma 5.5.13 is moved towards ∞ to
enhance the efficiency of the available communication resources.

As discussed in Section 5.8, performance degradation is expected due to the
various simplifications and approximations. Experiments were pursued to compare
the proposed rate allocation scheme with more than 100 other allocations which
fulfill the rate constraint, using the same system parameters as for Figure 5.9. We
observed that the optimized allocation is among the best allocations and the per-
formance is satisfactory. In Figure 5.12, a comparison of the pdf’s of the estimated
xt and the true xt is depicted, for x1 and x2. This experiment used as well the same
system parameters as Figure 5.9, i.e., a=0.5, T =10, Rtot=30, ǫ=0.001, σ2

x0
=10,

σ2
v=0.1, and the time-varying uniform quantizer. The comparison is carried out for

three ρ values: ρ= 0.1, ρ= 1 and ρ= 10. As explained previously, for large-valued
ρ, the influence of control is moderate. Therefore the Gaussian assumption is more
correct. On the other hand, for small ρ, the influence of control is significant, which
has reduced the Gaussian assumption of the state xt.

Finally, we mention here that the results in this chapter are also useful when
formulating new interesting rate allocation problems with diverse communication
constraints. Problem 5.2.4 is formulated that the cost of communication is implicitly
considered by the number of total bits Rtot. An interesting variation could be to
take into account the number of communications into the objective function. Below
we show one simple example that the problem is formulated for periodic control.

Example 5.9.1. Periodic Control
Consider a linear plant as described in Section 5.2.1 and the following periodic

control law. We reduce the communications between the sensor and controller by not
transmitting the state measurement as frequently as every time unit. Let ts specify
the time duration (or the number of time units) between two transmissions that the
sensor at each t either transmits the measurement using R bits, or stays silent,

Rt =

{

R, t = k(ts + 1),

0, t 6= k(ts + 1), k ∈ Z
+.

The number of transmissions Ntr is related to the horizon T and the samplings
interval ts as

Ntr =

{ ⌊
T
ts+1

⌋

+ 1, T ≥ ts + 1,

1, T < ts + 1.

The time-invariant instantaneous rate R is related to the total bit-rate Rtot and the
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Figure 5.12: The pdf’s of the estimated xt and the true xt.
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number of transmissions as

R =

⌊
Rtot
Ntr

⌋

. (5.74)

The total rate constraint
∑T−1
t=0 Rt ≤ Rtot is always fulfilled given (5.74). At the

controller, a hybrid control law is adopted

ut =

{

ℓtdt, t = k(ts + 1),

0, t 6= k(ts + 1), k ∈ Z
+,

(5.75)

i.e., only when receiving a measurement, ut= ℓtdt, with ℓt as given in (5.7); while
ut=0 otherwise. In short, the optimization problem is that given a linear plant (5.1),
a discrete memoryless channel, a memoryless encoder–decoder (5.2)–(5.3), a control
law (5.75), and a total bit-rate budget Rtot, find the sampling rate ts and the channel
rate R that minimize an objective function that involves xt, ut and Ntr. Even though
a solution based on testing different ts is straightforward, while how to formulate a
useful cost function that takes into account the communication cost is nontrivial.

5.10 Summary

In this chapter, we formulated a rate allocation problem to assign totally Rtot bits
optimally to T time units for control over noisy channels. First, we approximated the
overall distortion function by means of high-rate quantization theory. Second, we
showed that the unconstrained optimization problem has a global minimum, which
solves the rate allocation problem if such a global minimum does not violate the rate
constraint. On the other hand, if the global minimum violates the rate constraint, we
solved the rate constrained optimization problem by means of Lagrangian duality
for non-convex non-linear problems. Finally, numerical simulations showed good
performance of the proposed rate allocation scheme. In the presence of the channel
errors, more bits can sometimes do more harm than good, the encoder–controller
mapping is therefore instrumental to achieve satisfactory overall performance when
the communication resources are limited. How to optimize the rate allocation and
the encoder–controller mappings jointly is a challenging problem for future research.

5.A High-Rate Approximation of MSE

Here we briefly review some useful results on high-rate approximation of the mean
square error distortion. More detail about this topic is referred to e.g., [ZM94,
MR06]. For brevity, we drop the time index throughout this section. As depicted in
Figure 5.2, let the source signal x, with a pdf p(x), be transmitted to the destination
via a BSC with a crossover probability ǫ. Each transmission randomly selects an
IA and revealed to both the encoder and decoder. At the encoder, the coded index
i is produced based on x, and at the decoder, the channel output j will be mapped
to one of 2R values in the codebook {d(0), . . . , d(2R−1)}, with R referred to as the
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rate. Let d(i) be taken to denote the reconstruction value chosen by the encoder,
and d(j) is the true decoded value. Using randomized IA, the symbol transition
probability function is given by (5.8), i.e.,

P(j| i) =

{

α(R), j 6= i,
1− (2R − 1)α(R), j = i,

α(R) ,
1− (1− ǫ)R

2R − 1
.

As shown in (5.9), the mean squared estimation error of x with respect to d is

E
{

(x− d)2
}

=

2R−1∑

l=0

∫

x

2R−1∑

k=0

P(j = l| i = k)(x− d(l))2p(x)dx.

First, the source pdf at high-rate is approximately constant over one quantization
cell, i.e., p(x) ≈ p(x= d(k)), for all x ∈ S(k), where S(k) , {x : i= k} is the kth

quantization cell. Hence, we can approximate the MSE as

E
{

(x− d)2
}
≈

2R−1∑

k=0

p(x = d(k))

2R−1∑

l=0

P(j = l| i = k)
∫

x

(x− d(l))2dx. (5.76)

Second, since the error e=x−d(i) is typically a small number at high-rate, with d(i)
denoting the reconstruction chosen by the encoder, a Taylor expansion of (x−d(j))2

gives

(x− d(j))2 = (d(i) + e− d(j))2

= (d(i) − d(j))2 + d1(d(i), d(j))e+
1

2
d2(d(i), d(j))e2 +O(|e|3),

(5.77)
where d1(d(i), d(j)) and d2(d(i), d(j)) are defined as

d1(d(i), d(j)) ,
∂(x− d(j))2

∂x

∣
∣
∣
∣
x=d(i)

,

d2(d(i), d(j)) ,
∂2(x− d(j))2

∂x2

∣
∣
∣
∣
x=d(i)

.

(5.78)

Substituting (5.77)–(5.78) into (5.76) and neglecting O(|e|3) terms, it yields

E
{

(x − d)2
}
≈

2R−1∑

k=0

p(d(k))

2R−1∑

l=0

P(j = l| i = k)

×
∫

e

(

(d(k)− d(l))2 + d1(d(k), d(l))e+
1

2
d2(d(k), d(l))e2

)

de.

(5.79)
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Third, the point density at high-rate is λ(x) = 1/(2RV (S(k))), where V (S(k)) de-
notes the volume of S(k). Based on the above discussions, [MR06] showed that (5.79)
can be approximated by the following expression,

E
{

(x− d)2
}
≈
∫

x

Jxp(x)dx, Jx , 2Rα(R)

∫

y

(x−y)2λ(y)dy + 2−2RḠλ−2(x).

The authors showed also that for a zero-mean source signal and a quantizer of 2R

cells, we can approximate the MSE as

E
{

(x− d)2
}
≈ 2Rα(R)σ2

x + 2Rα(R)

∫

y

y2λ(y)dy + Ḡ2−2R

∫

x

λ−2(x)p(x)dx,

(5.80)
cf., (5.10). For the detail about the derivations is referred to [MR06]. In this chapter,
we simplify (5.80) further by using 2Rα(R) ≈ 1− (1− ǫ)R. Following (5.11), define
Ĵ(β, κ, ǫ) as

Ĵ(β, κ, ǫ) , β(1 − (1− ǫ)R) + κ2−2R, (5.81)

where, β and κ are given by

β , σ2
x +

∫

y

y2λ(y)dy,

κ , Ḡ

∫

x

λ−2(x)p(x)dx, Ḡ ,
G−2

3
.

5.B High-rate Approximation for the Gaussian Case

Consider a zero-mean Gaussian source and a source-optimized encoder, we approx-
imate Ĵ(β, κ, ǫ) according to (5.81),

Ĵt(β, κ,R)=(1−(1−ǫ)R)σ2
x+(1−(1−ǫ)R)

∫

y

y2λ(y)dy

︸ ︷︷ ︸

I

+Ḡ2−2R

∫

x

λ−2(x)p(x)dx

︸ ︷︷ ︸

II

.

(5.82)
Recall, the point density function for a scala source-optimized quantizer,

λ(x) =
(p(x))

1
3

∫ ∞

−∞

(p(x))
1
3 dx

.
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Let us first calculate
∫∞

−∞ y
2λ(y)dy in part I of (5.82),

∫ ∞

−∞

y2λ(y)dy =

∫ ∞

−∞

y2







1
√

2πσ2
x

e
− y

2

2σ2
x







1
3

dy

∫ ∞

−∞







1
√

2πσ2
x

e
− y

2

2σ2
x







1
3

dy

=
(6πσ2

x)
1
2

(2πσ2
x)

1
6 · 2 · 1

6σ2
x

· (2πσ
2
x)

1
6

(6πσ2
x)

1
2

= 3σ2
x. (5.83)

We have used the relation
∫ ∞

−∞

x2e−ax
2

dx = 2

∫ ∞

0

x2e−ax
2

dx =
1

2a

√
π

a
.

Let us move on to part II of (5.82),

Ḡ

∫

x

λ−2(x)p(x)dx =
1

12

(∫ ∞

−∞

(p(x))
1
3 dx

)3

=
1

12








∫ ∞

−∞







1
√

2πσ2
x

e
− x

2

2σ2
x







1
3

dx








3

=
3

1
2 · 3 · 2πσ2

x

12
=

√
3π

2
︸ ︷︷ ︸

µ

σ2
x.

(5.84)

Combining (5.83) and (5.84), the distortion Ĵt is given by

Ĵt = 4σ2
x(1− (1− ǫ)R) + µσ2

x2
−2R.

5.C Proof of Lemma 5.5.13

Proof. According to Lemma 5.5.11, Jt(R
t
0) can be written as

Jt(R
t
0) =

1∑

b0=0

· · ·
1∑

bt−1=0

W (b0, . . . , bt−1)

(
t−1∏

s=0

(
J̃s(β̃s, κ̃s, Rs)

)bs

)

J̃t(β̃t, κ̃t, Rt).
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The coefficient W (b0, . . . , bt−1), independent of Rt−1
0 , is defined as

W (b0, . . . , bt−1) , πtB̄

(
t−1∏

s=s̄+1

B̄s

)

,

where bt−1
0 , πt, B̄, B̄s and s̄ are as specified in Theorem 5.5.7. Taking the first

order derivative of Jt(R
t
0) with respect to Rk, it gives

∂

∂Rk
Jt(R

t
0) =

∂J̃k
∂Rk

(β̃k, κ̃k, Rk)





1∑

b0=0

· · ·
1∑

bk=1

· · ·
1∑

bt−1=0

W (b0, . . . , bt−1)

×
t−1∏

s=0,s6=k

(
J̃s(β̃s, κ̃s, Rs)

)bs
J̃t(β̃t, κ̃t, Rt)



 , k < t,

∂

∂Rt
Jt(R

t
0) =

∂J̃t
∂Rt

(β̃t, κ̃t, Rt)





1∑

b0=0

· · ·
1∑

bk=1

· · ·
1∑

bt−1=0

W (b0, . . . , bt−1)

×
t−1∏

s=0

(
J̃s(β̃s, κ̃s, Rs)

)bs

)

,

(5.85)

where the sum-terms are positive. Note that ∂Jt(Rt0)/∂Rk=0, for k>t. Since (5.85)
applies for all t, it follows that at the critical point

∂

∂Rk

T−1∑

t=0

Jt(R
t
0) = 0 ⇔ ∂J̃k

∂Rk
(β̃k, κ̃k, R

⋆
k) = 0.

Computing the second order derivatives, implies

∂2Jt(R
t
0)

∂R2
k

=
∂2J̃k
∂R2
k

(β̃k, κ̃k, Rk)





1∑

b0=0

· · ·
1∑

bk=1

· · ·
1∑

bt−1=0

W (b0, . . . , bt−1)

×





t−1∏

s=0,s6=k

(
J̃s(β̃s, κ̃s, Rs)

)bs



 J̃t(β̃t, κ̃t, Rt)



 , k < t,

∂2Jt(R
t
0)

∂Rk∂Rl
=
∂J̃k
∂Rk

(β̃k, κ̃k, Rk)
∂J̃l
∂Rl

(β̃l, κ̃l, Rl)





1∑

b0=0

. . .

1∑

bk=1

· · ·
1∑

bt−1=0

W (b0, . . . , bt−1)

×





t−1∏

s=0,s6=k,l

(
J̃s(β̃s, κ̃s, Rs)

)bs



 J̃t(β̃t, κ̃t, Rt)



 , k, l < t, k 6= l,

∂2Jt(R
t
0)

∂R2
t

=
∂2J̃t
∂R2
t

(β̃t, κ̃t, Rt)





1∑

b0=0

· · ·
1∑

bk=1

· · ·
1∑

bt−1=0

W (b0, . . . , bt−1)
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×
(
t−1∏

s=0

(
J̃s(β̃s, κ̃s, Rs)

)bs

))

,

∂2Jt(R
t
0)

∂Rt∂Rl
=
∂J̃t
∂Rt

(β̃t, κ̃t, Rt)
∂J̃l
∂Rl

(β̃l, κ̃l, Rl)





1∑

b0=0

. . .

1∑

bk=1

· · ·
1∑

bt−1=0

W (b0, . . . , bt−1)

×





t−1∏

s=0,s6=l

(
J̃s(β̃s, κ̃s, Rs)

)bs







 , l < t.

Note that when k or l > t, the second order derivative is 0. At the critical point,
∂J̃k/∂Rk=0 and ∂2J̃k/∂R

2
k>0, hence, all elements at the diagonal of the Hessian

matrix are positive. We can therefore conclude that the Hessian matrix,

H(R⋆T−1
0 )=










∂2

∂R2
0

∑T−1
t=0 Jt 0 . . . 0

0 ∂2

∂R2
1

∑T−1
t=0 Jt . . . 0

...
...

. . .
...

0 0 . . . ∂2

∂R2
T−1

∑T−1
t=0 Jt










,

is positive definite and the critical point is a global minimum.



Chapter 6

Coding–Control for the Gaussian Channel

6.1 Introduction

In Chapter 3, an iterative method is developed to optimize encoder–controller
mappings for feedback control over finite-input finite-output channels. Here, by
a finite-input channel we mean that the channel input has a finite alphabet.

This terminology will also be used for the channel output. In the present chapter,
we extend the system model in Chapter 2 to include infinite-output channels. More
precisely, we investigate how the generalization to infinite-output channels affects
the optimization of the encoder–controller mappings, theoretically and practically,
by studying one special type of infinite-output channels, namely, the binary Gaus-
sian channel (BGC). In communication engineering, the BGC is a common channel
model for situations where digital signals are corrupted by additive Gaussian noise.
Beside the applicability, we choose to study the BGC also because it can provide
structural and functional insights of the solution, by means of instructive and rel-
atively simple calculations.

The rest of this chapter is organized as follows. In Section 6.2 the model of the
extended system is described and modifications due to the generalization to infinite-
output channels are specified. Section 6.3 is devoted mainly to controller design. We
start by discussing the optimal controller which exploits all past channel outputs.
However, due to the computational complexity and the memory demand, the above-
mentioned controller is in general not practically implementable. In practice, certain
approximations and simplifications have to be imposed. After exposing the recursive
structure of the optimal controller, we propose a low-complexity controller which
can take advantage of both the soft and hard information of channel outputs. Here
in this chapter, we refer to a soft channel output as a real-valued channel output,
while a hard channel output to an integer-valued channel output. Thereafter, a
brief discussion of the encoder design is included. Finally, numerical simulations are
carried out to demonstrate the performance of the various coding–control schemes
presented in Section 6.3. It should be observed that the main difference among
the various controllers studied in this chapter is the different levels of the past

169
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Plant
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zt

Sensor
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Figure 6.1: A general system for feedback control over an infinite-output channel.
The dashed line indicates potential SI from the controller to the encoder.

information they can exploit.

6.2 Problem Formulation

In this section, we introduce an extended version of the control system described
in Chapter 2 by considering infinite-output channels. Here, infinite-output channels
are a special case of finite-output channels where we allow the output alphabet
to be of infinite, or even uncountable, size. Therefore, we will mostly discuss the
modifications brought by the extension, taking the system from Chapter 2 as a
reference. In the meantime, system components which are not affected by the ex-
tension retain the same form, and the reader is referred to Chapter 2 for their
detailed descriptions.

In the most general case, we consider a control system with a communication
channel as depicted in Figure 6.1. The multi-variable linear plant is governed by
the same equation system as (2.1), i.e.,

xt+1 = Axt +But + vt,

yt = Cxt + et,

where xt ∈Rn, ut ∈Rm, yt ∈Rp, are the state, the control, and the measurement,
respectively. The matrices A∈Rn×n, B∈Rn×m, C∈Rp×n, are known, where (A,C)
is state observable and (A,B) is state controllable. The process noise vt ∈Rn and
the measurement noise et∈Rp are modeled as i.i.d. zero-mean Gaussian processes.
They are mutually independent of the initial-state x0∈Rn, which is an i.i.d. zero-
mean Gaussian vector.
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The memory-based time-varying encoder takes the previous measurements and
potential SI as input. In particular, the mapping is described by the function,

it = ft
(
ytte , z

t−1
0

)
, te = t−Me, Me ∈ {0, . . . , t}, (6.1)

where it ∈LI = {0, . . . , LI−1}, LI ∈N, is the integer index, and Me specifies the
encoder memory of past measurements, cf., (2.2). In this chapter, we define the
side-information zt at the encoder to be

zt = Zt(rt) ,

where Zt is a deterministic and memoryless function, and rt is the soft channel
output which will be specified later. Accordingly, zt = rt, if full SI is available;
while, zt = 0, if there is no SI at the encoder. Between the extremes, there are a
variety of cases with incomplete SI. Let the memoryless channel have the input
variable it and output rt, defined by

rt = Et(it) , (6.2)

where Et is a random memoryless mapping. Note that, conditioned on the index
it, the mapping to rt is independent of all past events. The channel output (6.2),
rt ∈RRI , is a real-valued vector which differs from the integer output (2.3) from
Chapter 2. As commonly used in literature, we refer to a soft channel output as a
real-valued channel output, and a hard channel output to an integer-valued channel
output. Consequently, we refer to a soft controller (or a soft-information-based
controller) as a controller which exploits only soft channel outputs. Likewise, we
refer to a hard controller (or a hard-information-based controller) as a controller
which exploits only hard channel outputs. As an example of (6.2), throughout this
chapter we consider the special case of the binary Gaussian channel. As mentioned
in the beginning of this chapter, the BGC is also chosen in the interest of illustrating
the basic principles using insightful and simple calculations.

Next, we describe the operation of the BGC in this chapter by first specifying
the channel input. At time t, based on zt−1

0 , the history of the past SI, the coded
index it∈LI is mapped into bt, a binary codeword of RI bits. More specifically,

bt(it, z
t−1
0 ) =

[

b
[1]
t

(
it, z

t−1
0

)
b

[2]
t

(
it, z

t−1
0

)
. . . b

[RI ]
t

(
it, z

t−1
0

)
]

, (6.3)

where, b[k]t
(
it, z

t−1
0

)
, k ∈ {1,. . ., RI}, represents a binary bit. Here, the notation

b
[k]
t

(
it, z

t−1
0

)
, or the like, works as follows. The subscript t indicates that the vector

b is a time-varying entity. The superscript k in the square bracket indicates that
this binary bit is the kth element of the vector b. Finally, in the round bracket, we
describe the dependence of b[k]t on the current channel input it and SI, zt−1

0 , i.e.,
b

[k]
t (l, zt−1

0 )=b
[k]
t (it= l, z

t−1
0 ). Terms in the round bracket will be left out if they are

not relevant to the context.



172 Coding–Control for the Gaussian Channel

The BGC produces a real-valued output vector rt ∈ R
RI such that the kth

element, r[k]t , k∈{1, . . . , RI}, is governed by

r
[k]
t = b

[k]
t + w

[k]
t . (6.4)

The additive noise w[k]
t is i.i.d. zero-mean Gaussian, with a finite time-invariant

variance σ2
w. Clearly, the channel has a finite input alphabet, but an infinite output

alphabet, LI 6= LJ .
At the receiver side, we consider a controller that causally utilizes the entire

history of past channel outputs rt0 to produce the control command,

ut = gt
(
rt0
)
. (6.5)

Note that the control ut is completely determined by the past channel outputs
rt0. Next, we introduce Problem 6.2.1 which specifies the problem studied in this
chapter.

Problem 6.2.1. Consider the system (2.1) and the channel (6.3)–(6.4), find the
encoder–controller mappings (6.1) and (6.5) which minimize the expected value
E {Jtot}, where

Jtot =

T∑

t=1

(
x′tVtxt + u′t−1Pt−1ut−1

)
.

The matrices Vt and Pt are symmetric and positive definite.

Throughout this chapter, we denote the conditional mean estimate of the state
xs, based on the history of the received vectors rt0,

x̆s|t , E
{
xs| rt0

}
, s ≤ t.

In the following, we use x̆t as a short notation for x̆t|t=E {xt| rt0}.

6.3 Controller Design

In this section, we are concerned with the controller design. We first show the opti-
mal controller derived based on the result from Chapter 3. Because of the complex-
ity, the implementation of the optimal controller is impossible. Given this difficulty,
several low-complexity controllers are presented, which are useful in practice.

Theoretically, the optimal encoder–controller from Chapter 3 has no special
restriction on the size of the alphabets of the channel input and output. Therefore,
the results from Chapter 3 apply straightforwardly to finite-input infinite-output
channels. As a direct result of Proposition 3.2.4 from Chapter 3, we present the
optimal controller in Proposition 6.3.1 below, for a fixed full SI open-loop encoder.
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Proposition 6.3.1. Consider an open-loop encoder system with a fixed open-loop
encoder f̄T−1

0 = {f̄t(ȳtte , rt−1
0 )}T−1

t=0 . Given the plant (2.1) and the memoryless chan-
nel (6.2), the controller ut=gt(rt0) that minimizes the LQ cost (2.10) is given by

ut = ℓtE
{
xt| rt0

}
. (6.6)

The linear control law ℓt can be recursively computed according to (3.6).

The proof of Proposition 6.3.1 follows from Proposition 3.2.4. Unfortunately, this
optimal controller (6.6) is difficult to compute in practice. In the first place, there
is no closed-form expression for (6.6). In the second place, we will find ourselves
confronted by a crucial dimensionality problem, if we attempt to compute (6.6)
numerically. As a result, to perform an iterative training as proposed in Chapter 3,
is even less possible. Moreover, owing to the requirement on SI feedback channels,
full SI is obviously an unrealistic assumption in the context of BGC. Despite this
fact, we will still study the full SI scenario for the following reasons. First, by having
access to full SI, the encoder can perfectly deduce the past controls and the encoder
complexity is significantly reduced. Second, based on the results from Chapter 3 we
know that locally optimal solutions can be obtained for certain full SI scenarios.
Finally, full SI achieves the best performance compared with all levels of partial SI.
Given the above considerations, we in the next step study the optimal control (6.6)
for full SI cases. In particular, (6.6) is discussed in terms of a recursive structure,
which is very useful to the design of practical controllers. As a matter of fact,
although the recursive calculation is not practically implementable, it will guide
us to design practical controllers with realistic information patterns. Thereafter,
we will in Section 6.3 propose several practical encoder–controller designs which
exploit different levels of channel output information.

6.3.1 Soft-Information-Based Controller

In contrast to a finite-output channel, to implement the optimal control (6.6) as
a look-up table is certainly no longer practically possible, even for a small T . By
observing that (6.6) is an estimator-based controller, the Hadamard-based decoding
techniques can be used. The Hadamard transform has been shown to be very useful
in representing functions that map integers to real values. Concerning decoding real-
valued channel outputs, this method elegantly exposes the connection between the
estimation of a source symbol and the estimation of individual bits. For a detailed
description of the Hadamard-based soft decoding, we refer the reader to [Sko99a]
and references therein.

Following [Sko99a], we briefly describe the implementation of the controller (6.6)
in terms of Hadamard matrices. We start by elaborating E {xt| rt0}, where rt0 is a
fixed sequence of channel outputs. Especially, we focus on the recursive structure
of E {xt| rt0} which appears to be very useful to the implementation of efficient
controllers. Based on the system model described in Section 6.2 and Bayes’ rule,
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we can write E {xt| rt0} as follows,

E
{
xt| rt0

}
=

LI−1∑

l=0

P
(
it= l| rt0

)
E
{
xt| it = l, rt−1

0

}
(6.7)

=

∑LI−1
l=0 P

(
it= l| rt−1

0

)
p
(
rt| it= l, rt−1

0

)
E
{
xt| it = l, rt−1

0

}

∑LI−1
k=0 P

(
it=k| rt−1

0

)
p
(
rt| it=k, rt−1

0

)

=

∑LI−1
l=0 p(rt| it= l)P

(
it= l| rt−1

0

)
E
{
xt| it = l, rt−1

0

}

∑LI−1
k=0 p(rt| it=k)P

(
it=k| rt−1

0

) .

Note that, because of the assumption of a memoryless channel (6.2), conditioned
on the coded index it, the current channel output rt is independent of the past
channel outputs rt−1

0 . As a matter of fact, the major challenge of (6.7) lies in the
terms E

{
xt| it, rt−1

0

}
and P( it| rt−1

0 ), due to the lack of efficient methods to calculate
or store them. On the other hand, the term p(rt| it) can be computed efficiently,
because it is a Gaussian pdf. In what follows we briefly describe the recursive
calculation of p(xt|rt0) given p(xt−1|rt−1

0 ).
Again consider (6.7). First, the pdf p(rt| it) is specified by the channel. Second,

the pmf P( it| rt−1
0 ) is specified by the encoder mapping ft and p(xt| rt−1

0 ), which is
related to p(xt−1| rt−1

0 ) as

p
(
xt| rt−1

0

)
= p
(
axt−1 + ut−1 + vt−1| rt−1

0

)
. (6.8)

The computation of (6.8) is straightforward, since ut−1 is deterministic given rt−1
0 ,

and vt−1 is independent of xt−1 and ut−1. Finally, E
{
xt| it, rt−1

0

}
is computed by

using p{xt| it, rt−1
0 }, which can be expressed as

p
(
xt| it = l, rt−1

0

)
=

p
(
xt| rt−1

0

)
P
(
it = l|xt, rt−1

0

)

∫

xt
p
(
xt| rt−1

0

)
P
(
it = l|xt, rt−1

0

)
dxt
,

where the pdf p(xt| rt−1
0 ) is related to p(xt−1| rt−1

0 ) as shown in (6.8), and the pmf
P( it= l|xt, rt−1

0 ) is specified by the encoder mapping ft. Above, we have shown the
recursive derivation of p(xt| rt0) based on p(xt−1| rt−1

0 ).
However, a closed-form expression of p(xt−1| rt−1

0 ) is extremely hard to derive;
and moreover, to store p(xt−1| rt−1

0 ) is practically unrealistic because of the dimen-
sionality problem.

At this moment let us ignore the dimensionality problem of E
{
xt| it, rt−1

0

}
and

P( it| rt−1
0 ), and assume that the terms are available when they are needed. Fol-

lowing [Sko99a], we show another way to view the impact of the current chan-
nel output rt by rewriting E {xt| rt0} in terms of Hadamard matrices. In the first
place, we construct a matrix C̄t(r

t−1
0 ), which carries a priori information about rt,

since the lth column of C̄t(rt−1
0 ), denoted by ct(l, rt−1

0 ), is the conditional centroid
E
{
xt| it= l, rt−1

0

}
, i.e.,

ct
(
l, rt−1

0

)
= E

{
xt| it= l, rt−1

0

}
, l ∈ LI . (6.9)
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The matrix C̄t(r
t−1
0 ) can be written as a product of two matrices (cf., Section 1.4),

C̄t
(
rt−1

0

)
= T̄t

(
rt−1

0

)
Ht
(
rt−1

0

)
, (6.10)

where the Hadamard matrix Ht(r
t−1
0 ) has the lth column, ht(l, r

t−1
0 ), l∈LI , formed

by the binary codeword
[

b
[RI ]
t

(
it= l, r

t−1
0

)
b

[RI−1]
t

(
it= l, r

t−1
0

)
. . . b

[1]
t

(
it= l, r

t−1
0

)
]

,

to which the coded index it(r
t−1
0 ) is mapped, cf., (6.3). More precisely, the column

ht(l, r
t−1
0 ) is computed as follows,

ht
(
it = l, rt−1

0

)
=

[

1

b
[RI ]
t

(
it = l, rt−1

0

)

]

⊗ · · · ⊗
[

1

b
[1]
t

(
it= l, r

t−1
0

)

]

, (6.11)

where the symbol ⊗ denotes the Kronecker product. Back to (6.10), given C̄t(r
t−1
0 )

and Ht(rt−1
0 ), we can compute the matrix T̄t(rt−1

0 ), which we refer it to as the
encoding matrix, since it specifies the relation between the encoded index it and
the centroid ct. Note that each sequence rt−1

0 has an associated encoding matrix
T̄t(r

t−1
0 ). The encoding matrix T̄t(rt−1

0 ) is also instrumental to the decoding process,
which can be realized by rewriting (6.7) as

E
{
xt| rt0

}
= T̄t

(
rt−1

0

)
∑LI−1
l=0 p(rt| it= l)P

(
it= l| rt−1

0

)
ht
(
l, rt−1

0

)

∑LI−1
k=0 p(rt| it=k)P

(
it=k| rt−1

0

)

︸ ︷︷ ︸

ĥt(rt0)

= T̄t
(
rt−1

0

)
ĥt
(
rt0
)
.

(6.12)

Notice that the current channel output rt only affects the estimate ĥt(rt0), but
not the encoding matrix T̄t(rt−1

0 ). Following Theorem 1 from [Sko99a], we introduce
the following lemma.

Lemma 6.3.2. The term ĥt(rt0) can be computed according to

ĥt
(
rt0
)

=
[
m′ht

(
rt−1

0

)
· p̂t
(
rt0
)]−1
Rhtht

(
rt−1

0

)
p̂t
(
rt0
)
, (6.13)

where the terms Rhtht(r
t−1
0 ), mht(r

t−1
0 ), and p̂t(rt0) are defined as,

Rhtht(r
t−1
0 ) ,

LI−1∑

l=0

P
(
it= l| rt−1

0

)
ht
(
l, rt−1

0

)
ht
(
l, rt−1

0

)′
(6.14)

mht(r
t−1
0 ) ,

LI−1∑

l=0

P
(
it= l| rt−1

0

)
ht
(
l, rt−1

0

)
(6.15)

p̂t
(
rt0
)

, E

{

ht
(
rt−1

0

)
∣
∣
∣rt,P

(
it = l| rt−1

0

)
=

1

LI
, ∀l
}

. (6.16)
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Here, p̂t(rt0) in (6.16) is the a posteriori expectation of ht(r
t−1
0 ), conditioned on

the occurrence that all indices in LI are equally likely. The proof of Lemma 6.3.2
can be found in Appendix 6.A. Note that, we can write the term p̂t(rt0) as

p̂t
(
rt0
)

, E

{

ht
(
rt−1

0

)∣
∣ rt,P

(
it=k| rt−1

0

)
=

1

LI
, ∀k
}

=

1

LI

LI−1∑

k=0

ht
(
k, rt−1

0

)
p(rt| it=k)

1

LI

LI−1∑

m=0

p(rt| it=m)

.

It should be observed that p̂t(rt0) is the only term in (6.14)–(6.16) which is affected
by the current channel output rt. According to (6.16), the binary bits b[k]t (rt−1

0 ),
k∈{1, . . . , RI} are statically independent, because of the fact that the conditional
pdf’s P( it= l| rt−1

0 ) are equal, irrespective of l∈LI . Together with the assumption
of memoryless channels, we are able to compute p̂t(rt0) by individually estimating
each bit b̂[k]t (rt−1

0 , rt), k∈{1, . . . , RI}. In fact, p̂t(rt0) can be calculated according to

p̂t
(
rt0
)

=

[

1

b̂
[RI ]
t

(

rt−1
0 , r

[RI ]
t

)

]

⊗ · · · ⊗
[

1

b̂
[1]
t

(

rt−1
0 , r

[1]
t

)

]

,

where b̂[k]t (rt−1
0 , r

[k]
t ) is defined as

E

{

b
[k]
t

∣
∣
∣ rt−1

0 , r
[k]
t ,P

(

b
[k]
t = 1

)

= P
(

b
[k]
t = 0

)

=
1

2

}

. (6.17)

Notice that, conditioned on the transmitted codeword bt, the received codeword rt
is independent of all past outputs rt−1

0 . Therefore, b̂[k]t (rt−1
0 , r

[k]
t ) = b̂

[k]
t (r

[k]
t ), where

b̂
[k]
t (r

[k]
t ) is simply

b̂
[k]
t

(

r
[k]
t

)

=E
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b
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t

∣
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(
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)

= P
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1

2

}

=
e
r

[k]
t

σ2
w − e−

r
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t

σ2
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e
r
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t

σ2
w + e

−
r

[k]
t

σ2
w

= tanh

(

r
[k]
t

σ2
w

)

.

(6.18)

Above, we have shown that the Hadamard framework can be used to implement
an efficient soft controller. Especially, it is worth noticing that ĥt(rt0) in (6.12)
can be viewed as a channel decoder, while T̄t(r

t−1
0 ) functions as a source decoder.

However, the terms E
{
xt| it, rt−1

0

}
in (6.9) and P( it| rt−1

0 ) in (6.12) are obstacles to
the implementation of the Hadamard-based soft controller. First, it is exceedingly
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Figure 6.2: Three types of controllers: (a) the controller gt(jt0) utilizes only hard
information; (b) the controller gt(rt) utilizes only the latest soft channel output; (c)
the controller gt(rt, j

t−1
0 ) utilizes both soft and hard information.

difficult to derive closed-form expressions for them. Second, it is neither possible to
compute them numerically nor to implement them as look-up tables, as done for
the finite-output channels in Chapter 3. This is attributed to the dimensionality
of rt. Third, it is also unrealistic to feedback to the encoder full SI since this
would require an infinite-resolution feedback channel. Given the above challenges,
in order to proceed, we will in the next step replace E

{
xt| it, rt−1

0

}
and P( it| rt−1

0 ) by
approximations of lower complexity. The remaining part of this section is therefore
devoted to some practical encoder–controllers for BGC constructed based on the
results of the soft-information-based controller (6.12).

6.3.2 Hard-Information-Based Controller

Recall the signal flow through the channel: the encoded index it is first mapped into
a binary codeword bt. Then, antipodal signaling is utilized to transmit the binary
codeword bit-by-bit. The information-carrying signal is deteriorated by additive
Gaussian noise when passing through the BGC channel, where the channel output
is a vector of real values. Unlike the estimator-based controller (6.12), we will in
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this subsection describe a detector-based controller which operates on the hard
information of channel outputs. In short, the controller works as follows. First, let
a binary decision be made on the real-valued channel output according to

r̂
[k]
t =

{

1, r
[k]
t > 0,

−1, r
[k]
t ≤ 0,

where, r[k]t is the kth element of the channel output vector rt. As commonly ad-
dressed in the literature, we refer to this binary decision as a hard decision. Cor-
respondingly, a decision based on the real-valued channel output rt, is referred to
as a soft decision. The binary codeword r̂t is then mapped to a so-called received
index jt∈LI , of the same finite alphabet as the channel input. Finally the control
command is derived based on all received indices, i.e., ut=gt(jt0).

In fact, the BGC and the hard decision can be regarded as a combined chan-
nel, operating approximately as a binary symmetric channel. The main advan-
tages in employing a hard-information-based controller are: (i) it is practically
implementable because of the low complexity, and (ii), the results of the itera-
tive training method from Chapter 3 can be applied directly. Of course, since the
hard-information-based controller has not taken into consideration all information
carried by channel outputs, such a solution is expected to cause a degradation in
system performance.

6.3.3 Combined Soft-Hard Controller

As stated previously, a straightforward implementation of the controller (6.6) is
practically impossible. On the other hand, completely relying on hard decisions can
result in serious performance degradation, especially when the channel is highly
noisy. Therefore, we are motivated to improve the hard-information-based controller
by additionally exploiting certain soft information of the channel outputs. More
precisely, let the controller to be on the form gt(rt, zt−1

0 ), which takes as input the
current channel output rt and the past SI, zt−1

0 . The entire history of SI zt−1
0 can be

viewed as a low-rate approximation of the channel outputs rt−1
0 . Only exploiting rt

and zt−1
0 , we follow the structure of the soft controller (6.12) and adopt the following

controller

gt
(
rt, z

t−1
0

)
= ℓtE

{
xt| rt, zt−1

0

}
= ℓtT̄t

(
zt−1

0

)
E
{
ht
(

zt−1
0

)∣
∣ rt
}
, (6.19)

where the encoding matrix T̄t(zt−1
0 ) solves the equation,

C̄t
(
zt−1

0

)
= T̄t

(
zt−1

0

)
Ht
(
zt−1

0

)
.

Here, the matrix C̄t(z
t−1
0 ) consists of all conditional centroids E

{
xt| it, zt−1

0

}
. The

lth column of C̄t(zt−1
0 ), denoted by ct(l, zt−1

0 ), is

ct
(
l, zt−1

0

)
= E

{
xt| it= l, zt−1

0

}
.
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Denoted by ht(l, z
t−1
0 ), the lth column of the Hadamard matrix Ht(z

t−1
0 ) is formed

in a similar manner as (6.11), with bt(it= l, r
t−1
0 ) replaced by bt(it= l, z

t−1
0 ), l∈LI .

In order to complete (6.19), we also need E
{
ht(z

t−1
0 )
∣
∣ rt
}

, which can be obtained
as follows

E
{
ht
(
zt−1

0

)∣
∣ rt
}

=ĥt(z
t−1
0 , rt)

=
[
m′ht(z

t−1
0 ) · p̂t

(
rt, z

t−1
0

)]−1
Rhtht(z

t−1
0 )p̂t

(
rt, z

t−1
0

)
,

with Rhtht(z
t−1
0 ) and mht(z

t−1
0 ) defined as

Rhtht
(
zt−1

0

)
,

LI−1∑

l=0

P
(
it= l| zt−1

0

)
ht
(
l, zt−1

0

)
ht
(
l, zt−1

0

)′
, (6.20)

mht
(
zt−1

0

)
,

LI−1∑

l=0

P
(
it= l| zt−1

0

)
ht
(
l, zt−1

0

)
. (6.21)

Finally, it is straightforward to verify that p̂t(rt, z
t−1
0 ) can still be computed only

using b̂[k]t (r
[k]
t ), as shown by (6.17)–(6.18). In practice, a candidate of zt is the index

jt given by the binary decisions {r̂[k]t }, k ∈ {1, . . . , RI}, which will be studied by
numerical examples in Section 6.5.

In the extreme case that there is no SI at the encoder, a simple practical con-
troller is

gt(rt) = ℓtE {xt| rt} = ℓtT̄tE {ht| rt} ,
where T̄t satisfies the equation C̄t = T̄tHt. The matrix C̄t is constructed by the
conditional centroid E {xt| it= l}, l∈LI , and the matrix Ht has its lth column ht(l)
formed by bt(l), the binary codeword associated to it= l. Observe that, at each t
there is only one encoding matrix, T̄t. Finally, we compute the vector E {ht| rt}
according to

E {ht| rt} =
[
m′ht · p̂t (rt)

]−1
Rhtht p̂t (rt) ,

where Rhtht and mht are given by

Rhtht ,

LI−1∑

l=0

P (it= l)ht(l)ht(l)
′
,

mht ,

LI−1∑

l=0

P (it= l)ht(l),

and p̂t(rt) is still fully determined by b̂[k]t (r
[k]
t ), as given (6.18).

6.4 System Design

In Section 6.3, we have introduced a number of practical controllers among which
the major difference lies in their accessible information. Regarding the optimiza-
tion of encoder mappings, it is generally not possible to implement a similar version
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Algorithm 6.4.1 Encoder–Controller Design Algorithm for BGC

1. Initialize the hard-decision-based encoder–controller mappings fT−1
0 and gT−1

0 .
2. Optimize hard-decision-based encoder–controller pair according to Figure 3.3.
3. Fixing the trained encoder, replace the hard-decision-based controller with a

combined controller, according to (6.19).

of (3.8) from Chapter 3, mainly because of the facts: (i) it is impractical to feed-
back to the encoder full SI due to the unrealistic bandwidth requirement of the
SI feedback channel, and (ii), it is impractical to optimize an encoder exploiting
soft information due to the complexity limitation. Given the above difficulties, we
consider only practical encoders which receive hard-information as SI about past
channel outputs.

Based on the above discussion concerning the encoder and controller, we pro-
pose Algorithm 6.4.1, which provides practical designs of encoder–controllers for
the BGC. In short, the optimization is performed in two steps: First, train a hard-
information-based encoder–controller according to Figure 3.3 from Chapter 3. Then,
replace the hard-information-based controller by a combined controller (6.19) which
exploits both the soft and hard information about the past channel outputs. Cer-
tainly, training according to Algorithm 6.4.1 can improve upon the performance
with respect to the hard-information-based controller. Although we are not able
to quantify the optimality of Algorithm 6.4.1, the algorithm works satisfactorily in
practice, as shown in the next section.

6.5 Numerical Examples

This section presents the numerical experiments conducted to study the perfor-
mance of the various controllers described in Section 6.3. The impact of soft and
hard information on the overall system performance is investigated. We also study
the controllers in terms of σ2

w and Pt, the noise variance and the weighting factor of
the control input, respectively. To focus on demonstrating the basic concept, in the
experiments a scalar plant is considered whereMe=0, i.e., at each t only the latest
measurement is encoded and transmitted to the controller over the binary Gaussian
channel. The linear plant has A=0.9 and B=C=1. The initial-state, process noise
and measurement noise are zero-mean Gaussian with variances σ2

x0
=5, σ2

vt =1 and
σ2
e=1, respectively. In the objective function, T =4 and Vt=1. Finally, the rate RI

is 2, i.e., 2 binary bits per state measurement.
In Figure 6.3, performance of three controllers are depicted with respect to the

increasing noise variance σ2
w , for two different Pt values, namely Pt=1 and Pt=5.

The first controller, ut=ℓtE {xt| jt0}, referred to as the hard-information-based con-
troller, is restricted to only knowing the hard-information. The second controller,
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Figure 6.3: The system performance by using the trained controllers: gt(jt0), gt(rt),
gt
(
rt, j

t−1
0

)
, for Pt= 1 and Pt= 5. The cost J̄tot is derived by normalizing E {Jtot}

with the cost obtained without any control.
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ut=ℓtE {xt| rt}, referred to as the memoryless soft-information-based controller, is
limited by not having access to memory. The third controller, ut=ℓtE

{
xt| rt, jt−1

0

}
,

referred to as the combined controller, exploits both the soft information of the cur-
rent measurement and hard information of old measurements. For each Pt, there is
a common encoder for all the three controllers. This encoder, designed according to
CCS 4.6.4, as described in Chapter 4, is memoryless time-varying. Since the globally
optimal solution is unknown, we take the special case of no control action (ut=0)
as a reference system. The performance measure J̄tot is obtained by normalizing
E {Jtot} with the reference case where ut=0.

First, we see in Figure 6.3 that the combined controller always outperforms the
other two controllers, evidently. Second, when the noise variance σ2

w is small and
the weighting factor Pt is large, the hard-information-based controller is superior
to the memoryless soft-information-based controller. For low-level channel noise,
there is a minor difference between the soft bit and the hard bit. Hence, the hard-
information-based controller can gain by having access to memory. On the other
hand, when the channel becomes noisy, soft outputs carry considerably more infor-
mation than hard bits, which explains why the memoryless soft-information-based
controller is superior for large-valued σ2

w. A large-valued Pt indicates a demanding
power constraint on control inputs, which results in small-valued controls and slow
converge to the steady state. Owing to the access to memory, there is an evident
performance gain by using the hard-information-based controller, compared with
using a memoryless soft-information-based controller. While, when Pt is small, the
steady state is reached quickly that the significance of memory is reduced.

Figure 6.4 compares the performance of a trained encoder with time-invariant
uniform encoders, for Pt= 1 and Pt= 5. The variance of channel noise is σ2

w= 0.5.
The other system parameters are the same as in Figure 6.3. The horizonal line is
obtained by training the encoder according to Figure 3.3. The other three curves in
the figure are obtained by employing time-invariant uniform encoders where the step
length is shown on the x-axis. As expected, the time-varying encoder outperforms
the uniform encoders. Especially, if the uniform encoder is chosen improperly, it
may cause severe consequences.

6.6 Summary

This chapter studied how the generalization to infinite-output channels affected the
optimization of the encoder–controller theoretically and practically. From a practi-
cal point of view, the impact appeared not only in the training stage, but also in how
to implement the trained encoder–controller pair. The challenge is that the trained
encoder–controller can no longer be implemented as a simple look-up table. To get
more insight to the optimal controller, the Hadamard-based soft controller which
fully exploited the channel outputs was introduced. However, we can not implement
the soft-information-based controller in practice due to the complexity and memory
demands. Given this difficulty, a combined encoder–controller which exploited both
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Figure 6.4: The system performance by using a time-varying (TimVar) encoder,
trained according to Algorithm 6.4.1, or time-invariant (TimInv) uniform encoders,
for Pt=1 and Pt=5. The cost J̄tot is derived by normalizing E {Jtot} with the cost
obtained without any control.
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the hard and soft information of the channel outputs were proposed. Monte Carlo
simulations showed that the proposed scheme has good performance compared to
the controllers which only used hard-information or ignored the information carried
in the memory.
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6.A Proof of Lemma 6.3.2

Proof. Here, we briefly show the derivation of (6.14)–(6.16). According to (6.7),
ĥt(r

t
0) is given by

ĥt
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In what follows, we show that ĥt(rt0) can also be written as
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In the first place, consider the numerator of (6.23),
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where δl,n is the delta function, defined as

δl,n ,

{
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Here, we have used the special property of the Hadamard matrix [Sko99a]:
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In the second place, we treat the denominator of (6.23) in a similar way,
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Finally, dividing both the numerator and denominator of (6.23) by the normaliza-
tion factor
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Now we can easily identify the terms from (6.13)–(6.16).



Chapter 7

Conclusions and Future Research

7.1 Concluding Remarks

In this thesis we have discussed various fundamental aspects of wireless net-
worked control systems. Because of the importance and popularity of industrial
wireless networking, research on designing closed-loop systems for control using

measurement feedback over imperfect communication channels has received increas-
ing attention. It can be claimed, however, that the research area is still in its infancy,
and it evolves rapidly. As explained in the introduction chapter, considerable efforts
have been devoted to various stability issues for quantized control systems. This
thesis, on the other hand, focuses mainly on the optimization of the overall system
performance. In particular, a stochastic control problem was formulated and several
aspects of the design and analysis of encoder–controllers for control over low-rate
noisy channels were studied. To deal with one of the most fundamental problems
in control systems, namely how to make the best use of the feedback information
for the future evolution, the encoder and controller are required to perform efficient
estimation and control using a few bits per sensor measurement. Because of the
complex relation to all past and future events, optimal estimation and control are
difficult tasks.

In the main part of the thesis we studied the problem of optimizing the encoder–
controller jointly, by using an iterative training approach. The basic principle is to
alternate between the optimization of the encoder mappings and the controller
mappings. For the special case of full SI, we showed that the optimal controller is
a CE controller. For the general case of partial SI, we proposed an iterative design
approach based on constraining the controller to be a CE controller. The major
drawback of the proposed training approach is the computational complexity. To
seek a good compromise between computational effort and efficient controls, various
low-complexity encoder–controllers were proposed.

In the second part of the thesis, we studied the optimization of the rate allocation
over time, another method to overcome the limited communication resources and
to achieve better performance. We investigated how to allocate communication
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rates both in the scenario of state estimation as well as for state feedback control.
A solution based on high-rate quantization theory and Lagrangian duality was
proposed, which gives a good performance compared to arbitrarily selected rate
allocations.

In the final part of the thesis, we extended the design of encoder–controllers for
channels of finite alphabets to include infinite-output channels. Optimizing for this
class of channels increases the controller complexity substantially. The recursive
structure of the optimal controller was exposed and a combined encoder–controller
was proposed which exploited both the soft and hard information of the channel
outputs.

7.2 Future Research

Below we discuss a few specific problems suggested for future research.

Iterative Design

The iterative encoder–controller design proposed in Chapter 3 has been shown to
result in satisfactory performance. However, there is still much work to be done
before the iterative design method is fully understood. First of all, theoretical re-
sults on the convergence properties and the optimality of the training method are
important questions which need to be further investigated. The trade-off relation
between the overall performance and the computational effort, such as the size of
the sample set, and the number of iterations, should to be clarified.

Low-Complexity High-Performance Encoder–Controllers

The major drawback of the training-based approach is the heavy computational
burden. Based on the discussions from Chapter 3, it is clear that the separation
property is a desired feature, since it can reduce the overall optimization complexity
significantly. There is no doubt that for most systems, the separation principle does
not apply. Thus, we believe that it is important to find useful suboptimal solutions,
which may or may not exploit the separation property. Seeking suboptimal solutions
opens up a broad spectra of research themes, both theoretical and practical. In
Chapter 4, an empirical study of several low-complexity encoder–controllers was
conducted. Analysis of the performance degradation of those schemes still needs to
be carried out.

As a theoretical foundation, it is of great importance to understand the signifi-
cance of the variety of the system parameters, such as SI, encoder–controller mem-
ories etc. Especially there is a need to clarify the interactive relations among those
factors. Moreover, from a practical point of view, encoder–controllers with finite
memories should be considered. The synthesis and analysis of complexity-reduced
coding–control schemes are certainly topics deserving considerable research efforts.
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Unstable Plant

Without any control action, unstable poles will result in unbounded state trajecto-
ries and lead to unbounded estimation errors. In the literature, concerning stabiliz-
ing unstable plants over noisy channels, relatively little work has been performed
so far. It can be claimed that we in this thesis considered both stable and unstable
plants, since our performance criterion uses a finite horizon. It should be observed,
however, that even for stable plants, many conventional controllers will fail to sta-
bilize the closed-loop system over noisy channels. In the case of strictly unstable
plants, the situation becomes more critical. In the thesis, we have demonstrated
numerically that it is possible to stabilize unstable plants over noisy channels. How-
ever, there is of course a need to perform a more thorough stability analysis in the
case of control over noisy links. How to optimize the overall system performance,
while imposing a stability requirement over an infinite horizon is a challenging
problem.

Distributed Network

Our study of quantized control systems is motivated by the challenges of control over
wireless networked systems, given limited communication resources. Clearly, besides
the problem of optimizing the performance for each individual plant, another ma-
jor challenge is to coordinate all distributed control nodes to provide a satisfactory
overall performance. In a networked system, it can happen that several plants are
communicating simultaneously which may give congestion and interference. How to
design communication protocols that minimize congestion and interference prob-
lems, and how to handle the congestion and interference when they are present,
are issues which deserve thorough investigations. Regarding the resource allocation
issues, how to distribute communication resources among multiple control nodes,
and how to adopt to the varying demands of the control nodes, are also interesting
problems. Finally, it has been shown that combining measurements from several
distributed nodes has the potential to provide more accurate estimation about the
objects a network is monitoring. How to apply the advances in distributed sensing
and data fusion techniques to networked control problems also need to be carefully
investigated.
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[VV95] S. Vembu and S. Verdú. The source-channel separation theorem re-
visited. IEEE Transactions on Information Theory, vol.41(1), January
1995.

[WB97] W. S. Wong and R. W. Brockett. Systems with finite communica-
tion bandwidth constraints - part I: state estimation problem. IEEE
Transactions on Automatic Control, 42(9), September 1997.

[WB99] W. S. Wong and R. W. Brockett. Systems with finite communication
bandwidth constraints - part II: Stabilization with limited information
feedback. IEEE Transactions on Automatic Control, 44(9), September
1999.

[Wic95] S. B. Wicker. Error control systems for digital communication and
storage. Prentice-Hall, Inc., 1995.

[Wid61] B. Widrow. Statistical analysis of amplitude-quantized sampled-data
systems. Amer. Inst. Elect. Eng., Pt.II (Appl. Ind.), pages 555–568,
1961.



Bibliography 203

[Wit71] H. S. Witsenhausen. Separation of estimation and control for discrete
time systems. In Proc. of the IEEE, volume 59, pages 1557–1566,
November 1971.

[WKL96] B. Widrow, I. Kollár, and M. Liu. Statistical theory of quantization.
IEEE Transactions on Instrumentation and Measurement, 45(2), April
1996.

[WPJ+07] E. Witrant, G. P. Park, M. Johansson, C. Fischione, and K. H. Jo-
hansson. Predictive control over wireless multi-hop networks. In IEEE
International Conference on Control Applications, pages 1037–1042,
2007.

[WW81] H. Van De Water and J. C. Willems. The certainty equivalence property
in stochastic control theory. IEEE Transactions on Automatic Control,
vol.26(5), October 1981.

[XJH+05] L. Xiao, M. Johansson, H. Hindi, S. Boyd, and A. Goldsmith. Joint op-
timization of wireless communication and networked control systems.
Chapter in Switching and Learning, Springer Lecture Notes in Com-
puter Science 3355, pages 248–272, September 2005.

[Xu05] Q. Xu. Anytime capacity of the AWGN+erasure channel with feedback.
Technical report, University of California at Berkeley, Berkeley, 2005.

[YB04] S. Yüksel and T. Basar. Minimum rate coding for state estimation over
noiseless channels. In Proc. of the 43rd IEEE Conference on Decision
and Control, December 2004.

[YKT07] S. Yang, A. Kavčić, and S. Tatikonda. On the feedback capacity of
power-constrained Gaussian noise channels with memory. IEEE Trans-
actions on Information Theory, 53(3):929–954, 2007.

[ZG90] K. Zeger and A. Gersho. Pseudo-Gray coding. IEEE Transactions on
Communications, vol.38(12):2147–2158, 1990.

[ZL08] H. Zhu and K. J. R. Liu. Resource Allocation for Wireless Networks:
Basics, Techniques, and Applications. Cambridge University Press.,
2008.

[ZM94] K. Zeger and V. Manzella. Asymptotic bounds on optimal noisy chan-
nel quantization via random coding. IEEE Transactions on Informa-
tion Theory, 40(6), November 1994.


