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Abstract

Analysis, design and implementation of cooperative control strategies for multi-robot
systems under communication constraints is the topic of this thesis. Motivated by a
rapidly growing number of applications with networked robots and other vehicles, fun-
damental limits on the achievable collaborative behavior are studied for large teams of
autonomous agents. In particular, a problem is researched in detail in which the group
of agents is supposed to agree on a common state without any centralized coordina-
tion. Due to the dynamics of the individual agents and their varying connectivity, this
problem is an extension of the classical consensus problem in computer science. It cap-
tures a crucial component of many desirable features of multi-robot systems, such as
formation, flocking, rendezvous, synchronizing and covering.

Analytical bounds on the convergence rate to consensus are derived for several sys-
tem configurations. It is shown that static communication networks that exhibit partic-
ular symmetries yield slow convergence, if the connectivity of each agent does not scale
with the total number of agents. On the other hand, some randomly varying networks
allow fast convergence even if the connectivity is low. It is furthermore argued that if
the data being exchanged between the agents are quantized, it may heavily degrade the
performance. The extent to which certain quantization schemes are more suitable than
others is quantified through relations between the number of agents and the required
total network bit rate.

The design of distributed coordination and estimation schemes based on the con-
sensus algorithm is presented. A receding horizon coordination strategy utilizing sub-
gradient optimization is developed. Robustness and implementation aspects are dis-
cussed. A new collaborative estimation method is also proposed.

The implementation of multi-robot control systems is difficult due to the high sys-
tem complexity. In the final part of this thesis, a hierarchical control architecture appro-
priate for a class of coordination tasks is therefore suggested. It allows a formal verifica-
tion of the correctness of the implemented control algorithms.
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1
INTRODUCTION

Over the past decade, the advent of networked control systems has begun to challenge
the design and analysis methods in control theory. Examples of such systems are found
in ad-hoc sensor networks, swarms of cooperative mobile robots and power distribution
grids. Indeed, the presence of a communication network, linking the different compo-
nents of the system, adds new levels of complexity to the control problem. The facts that
communication links have intrinsic limitations and that few components of the system
can directly communicate require the design of control strategies that can cope with
such constraints and are decentralized. Mathematical models that capture both control
and communication aspects are particularly important in systems where the control ob-
jective requires active coordination among the components. Typical examples of such
control tasks are formation maintaining, where robots need to keep specific relative dis-
tances, or monitoring of a geographical area, by measuring the temperature or humidity
of the area, or exploration.

As is typical for many complex systems, when building mathematical models one
needs to tradeoff tractability and accuracy. However, for systems comprising commu-
nicating robots, vehicles, or sensors, the difficulty of finding good tradeoffs is enhanced
by the fact that control and communication theory have little in common. In control
theory one is concerned with designing control laws such that a given control objective
is achieved, possibly minimizing some performance index. In contrast communication
theory is studying a reliable way of transmitting information from a source to a desti-
nation, without considering what the information represents and if it will be reused at
the source. For example, in a digital communication system one might consider rather
complicated channel models so that a suitable quantization scheme (coding) can be

1
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(a) A school of fish. The fish swim in a cluster to
improve safety from predators.

(b) A flock of birds. Notice the “V” shape of the
formation. In this way each bird can save energy
from drag reduction.

Figure 1.1: Coordination in nature. (Courtesy of Harun Yahya International, http://www.

harunyahya.com/).

designed for reliable transmission of data. From a control perspective however, a con-
trol design based on a detailed model of, for example, the robots might be useless in the
presence of quantized information.

The main contribution of this thesis is the development of analytical tools and de-
sign methods for the coordination of multi-robot control systems under communica-
tion constraints. These tools are used to answer questions on the stability and per-
formance of coordination algorithms in presence of limited network connectivity and
quantization. In the first part of the thesis we will be mostly considering simplified mod-
els of the robot dynamics and communication networks, but detailed enough to capture
important interactions. In the last part of the thesis we will propose and discuss a pos-
sible way for handling the complexity of a real system. In particular we will propose a
layered architecture that, because of its modularity, allows detailed layer models with-
out that the complexity of the overall system is exploding. For specific classes of coordi-
nation strategies we will show that the proposed architecture allows formal verification
of the correctness of the implemented control algorithms.

The remainder of this chapter is organized as follows. In the next section we mo-
tivate why systems of multiple robots and sensors are of interest. In Section 1.2 some
relevant application scenarios will be presented. In Section 1.3 we will formulate a bit
more in detail the type of problems we are going to present in the thesis. Related work
are summarized in Section 1.4. In Section 1.5 the contributions and the outline of the
thesis will be presented.

http://www.harunyahya.com/
http://www.harunyahya.com/
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(a) (b)

Figure 1.2: Examples of multi-agents tasks. On the left two groups of robots are engaged
in a formation maintaining task. Active communication is indicated with arrows. On
the right agents cooperate for tracking a moving vehicle. Each agent has limited sens-
ing capabilities. Exchanging information the multi-agent system can obtain a precise
estimate of the vehicle position.

1.1 Multi-agent systems

Coordination among interacting agents with a common group behavior is not only a re-
cent engineering problem, but it is something that happens everyday in nature. Typical
examples of such systems are schools of fish as shown in Figure 1.1(a), where fish swim
in clusters in order to improve safety against predators or flocks of birds that are formed
for improving the aerodynamic efficiency of the single birds in the flock, as it appears
from the “V” shape of the flock in Figure 1.1(b). With agent we denote any system with
sensing, computing and communicating capabilities, such as a robot, a sensor, etc. The
interest in multi-agents systems has grown in the last decade, mostly because a group
of collaborating agents can often deal with tasks that are difficult, or even impossible, to
be accomplished by an individual agent. A team of agents typically provides flexibility,
redundancy and efficiency beyond what is possible with single agents. Having several
agents deployed often means that they can be flexibly organized into groups performing
tasks at different locations. Robustness is ensured by the numerousness of the group, if
an agent fails the other can continue the task. Having many agents rather than one can
allow to perform tasks in a faster and more precise way. Figures 1.2(a) and 1.2(b) show
multi-agent systems employed in two cooperative tasks. In the first example, agents are
split in different groups performing different tasks. The communication network (line
with arrows) allows the exchange of critical information for the task execution and to
coordinate the different groups. In the second example agents with limited sensor ca-
pabilities (only bearing measurements) are used to estimate the position and follow a
moving vehicle. Interagent communication enables a precise reconstruction of the ve-
hicle position, which would never be possible using a single agent.
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1.2 Motivating applications

We consider here two realistic scenarios where multi-agents system could be used.

Search and rescue operations

The problem of search and rescue is a typical application where the flexibility and re-
dundancy of a multi-robot system would be peculiar for a successful mission. Recently
robots have been used during the rescue operations of a Russian submarine trapped in
the Pacific Ocean [CNN 2005]. In future applications we can foresee the use of collabo-
rating autonomous robots in such missions.

Let us discuss a scenario as shown in Figure 1.3. A team of autonomous underwa-
ter vehicles (AUVs) is deployed in order to localize a wreck. The AUVs can communi-
cate (dashed lines) with each other and with buoys using an acoustic modem. The de-
ployed buoys are also used for localization of the underwater vehicle. An autonomous
surface vessel (ASV) can receive data from the underwater vehicles and send them back
to the remote station. The ASV works also as gateway to some unmanned aerial vehicles
(UAVs). The UAVs give an approximate position of the wreck from aerial view of the area.
An accurate localization of the wreck can be achieved with an active communication of
measurements and a precise motion coordination of the AUVs. After some time they
will reach a consensus on the position of the wreck which they communicate to the ASV
through the buoys.

In the scenario there are heterogeneous agents (AUVs, ASVs and UAVs) that need to
communicate and coordinate their tasks. The challenge is on the design of coordination
strategies, but also on a modular architecture that allows us to handle heterogeneity.

Hazard prevention

An interesting application of multi-agent systems is the monitoring of hazards in spe-
cific geographical areas, such as natural parks and forests. In a recent report from the
United Nation Environment Program [UNEP 2003] it it reported that every year wild-
land fires burn an area the size of Australia with consequences on deforestation and
climate change. The possibility of having a multi-agent system, comprised of both sta-
tionary and moving sensors, placed on a large area would allow an alarm to be raised as
soon as an hazard occurs and an effective prevention could be carried out by continu-
ous temperature and humidity monitoring.

Figure 1.4 shows an example of such a scenario. A network of nodes (sensors with
communication capabilities) and robots are deployed over a large area in order to detect
a fire. Internode communication of temperature data allows the nodes to determine the
location of the fire and propagate such information through the network to the nodes
that are closer to a long-range communication antenna, which forward the alarm. Mo-
bile robots are used to interact with the environment, for example, moving toward the
fire to gather more detailed information or even for an extinguishing operation. Impor-



1.3. Problem formulation 5

Remote station
Buoy

Buoy

AUV

AUV

AUV
Wreck

ASV

UAV
UAV

Figure 1.3: Search and rescue scenario. Heterogenous autonomous vehicles deployed
for the rescue operation of a wreck.

tant in this scenario is that the sensors would reach a fast agreement on the position of
the hazard from different measurements, so that a prompt action can be undertaken.

1.3 Problem formulation

A fundamental role in a problem of coordination is the definition and management of
shared information among the agents. In cooperative control problems the shared in-
formation may take the form of relative positions or velocity information, as it could
be in a search and rescue task, or an environment map, as in a hazard prevention sce-
nario. A cooperative control strategy is effective if each agent is able to take advantage
of the information received, so that the team of agents is able to carry out the coopera-
tive task in an efficient and robust way, for example completing the task with minimum
energy consumption and being able to respond to unanticipated situations or changes
in the environment. A direct consequence of the assumption that shared information is
a necessary to achieve coordination in an efficient way is that cooperation requires the
group of agents to reach consensus on the coordination data. In other words, agent’s
state must asymptotically approach a common value. This is the case, for example, in
the two scenarios we discussed previously, where the consensus on the position of a
wreck, in the first case, and of a fire, in the second, is critical for the accomplishment of
the task.

The mathematical formulation of such cooperative control strategies yields to the
consensus or state-agreement problem. The consensus problem can be stated as fol-
lows. Let xi represent the information state of vehicle i , i.e., the information needed to
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Sensor

Antenna

Satellite

ForestFire

Figure 1.4: Hazard prevention scenario. A wireless sensor network is deployed over a
large area in order to detect possible fires. Moving sensors (as the wheeled robot in the
figure) are used for more detailed information and first aid operations.

coordinate the agents. The consensus dynamics is

xi (t +1) =
N∑

i=1

αi , j (t ) x j (t )

where N is the number of agents. The consensus problem is then to choose the control
laws αi , j (t ), at each time instance t , such that the information state xi (t ) of all vehi-
cles converge to the same value, called the consensus point. If αi , j = 0 agent j is not
communicating with agent i . The scalars αi , j define the arc set of a graph with vertexes
corresponding to the agents. There is an arc between vertex j and vertex i if and only
if αi , j is nonzero. Thus the graph is a model of the communication network linking the
agents.

We associate to the consensus dynamics a cost function, in order to measure the
control performance of a given control strategy. In this context, an interesting problem
is the characterization of the relationship between control and communication. More
precisely, given a communication network, specified by the connectivity of each vertex,
that is, the number of neighbors of each agent, determine the values of αi , j that guar-
antee convergence and that the cost function is minimized. This will be the focus of
Chapter 3. Since agents interacts via a digital communication network, where the infor-
mation is quantized to cope with bandwidth limitations, an interesting problem is to
study the consensus problem in this setting. In particular the problem is to determine
αi , j so that converge of the state to the consensus point is guaranteed. Quantization and
consensus are discussed in Chapter 4.
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An interesting question is on the choice of the consensus point. In particular, a de-
sign problem is that of determining the values αi , j , for a given communication network,
so that a cost function that depends on the consensus point is minimized. In Chapter 5
we will consider such problem. The generality of the consensus, allows also to con-
sider problems related to collaborative estimation. Extending the consensus problem
to a stochastic setting we can choose as performance the variance of the estimate. The
problem is then to design αi , j , for a given communication network, so that a distributed
minimum variance estimator is obtained. This problem is tackled in Chapter 6.

One of the main limitations of the consensus problem is that the dynamics consid-
ered are typically too simple to model complex agents, as vehicles or robots. Indeed mo-
bile robots are generally nonholonomic mechanical systems, roughly speaking systems
that cannot move in an arbitrary direction in their configuration space. Also the effect of
data exchange over a network are not restricted to limited connectivity or quantization,
but data losses and delays should also be considered. Thus one needs either to consider
more complex models, with the risk that the overall problem becomes difficult to be
tackled formally or providing a framework that could handle such complexity. In this
context the problem is that of designing an architecture which allows the implementa-
tion of coordination algorithms for more realistic scenarios. The architecture needs to
be flexible, modular and it should be possible to verify the correctness of the algorithms
implemented. More precisely, the architecture needs to fulfill a set of specifications that
describes the class of coordination algorithms that can be correctly implemented. In
Chapter 7 we propose and discuss such architecture.

1.4 Related work

A brief review of related work within the area of multi-agent control will be presented
here. The discussion is focused on the recent literature in the area of control. More de-
tails will be given in relation to the contribution in each chapter.

Many frameworks and mathematical models have been proposed over the past years
in order to solve coordination problems for multiple robots. Recent examples include
virtual potential functions [Leonard and Fiorelli 2001; Tanner et al. 2005], Voronoi par-
titions [Cortés et al. 2004b; Lindhé et al. 2005], graphs [Olfati-Saber et al. 2003; Tanner
et al. 2005], probabilistic methods [Hespanha et al. 1999; Vidal et al. 2002; Speranzon
and Johansson 2003], model predictive control [Dunbar and Murray 2005; Borrelli et al.
2005]. In some of these frameworks the communication among the different agents is
explicitly considered, in others the data exchange is assumed to be perfect.

A coordination problem, in which the communication is modelled as a graph, is
the consensus problem. In the classical framework, each agent shares its information
with other agents inside a predefined neighborhood, namely the agents are modelled as
omnidirectional antennas with a short reliable communication range [Jadbabaie et al.
2003; Olfati-Saber and Murray 2004; Cortés et al. 2004a]. In this case the communica-
tion is modelled as a disc graph. When such communication is available among moving
agents, the network topology changes with the position of the agents. The overall dy-
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namical system exhibits a quite complex behavior that is hard to analyze. One of the dif-
ficulties is that connectivity properties of the communication network are, in general,
not guaranteed to be preserved under dynamical constraints. Simplified models have
been proposed in [Jadbabaie et al. 2003; Olfati-Saber and Murray 2004; Ren and Beard
2005] where the authors consider switching systems in which, anyway, the switching
rule does not dependent on the position of the agents. With such models they are able
to derive sufficient conditions for state agreement. In [Tanner et al. 2003] the authors use
tools from non-smooth analysis to design a control strategy that leads to agreement and
allows the vehicle to avoid collisions. Robustness to communication link failure [Cortés
et al. 2004a] and the effects of time delays [Olfati-Saber and Murray 2004] have been
also considered. The consensus problem with time-invariant communication networks
have been studied in [Smith et al. 2005; Ferrari-Trecate et al. 2005]. Also randomly time-
varying networks have been analyzed recently in [Hatano and Mesbahi 2004].

In most of the frameworks the vehicles dynamic considered are rather simple, such
as a first or second order model [Leonard and Fiorelli 2001; Jadbabaie et al. 2003; Spe-
ranzon and Johansson 2003; Olfati-Saber and Murray 2004; Tanner et al. 2005]. More
complex dynamics are considered, for example, in in [Egerstedt and Hu 2001; Ren and
Beard 2004; Dunbar and Murray 2005; Borrelli et al. 2005], however the communica-
tion among the vehicle is assumed to be perfect. A way of dealing with the increasing
complexity of a system where the agents are described by nonlinear differential equa-
tions is that of considering hierarchical control structures [Godbole et al. 1994; Varaiya
2000; Koo and Sastry 2002; Campbell et al. 2003; Mazo et al. 2004]. The main advan-
tage of a hierarchical control structure is its flexibility, modularity that can be used to
tackle rather complex problems. Moreover verification analysis can be carried out on
such systems [Lygeros et al. 1996]. On the other hand there are few examples where
such architecture has been used in for modelling multi-agent systems with communi-
cation capabilities and in particular to model communication limitations such as data
losses.

1.5 Outline of the thesis and contributions

The main contribution of the thesis is given in five chapters. The material is organized
as follows

Chapter 3 and 4 Analysis of consensus coordination under communication
constraints, in particular, connectivity and quantization.

Chapter 5 and 6 Design of consensus coordination strategies for control and
estimation.

Chapter 7 Implementation of coordination strategies for multi-agent
systems through a hierarchical control architecture.

In more detail, the outline of the thesis is as follows.
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Chapter 2: Mathematical background

In this chapter some mathematical concepts used throughout the thesis are reviewed.
The main objective of the chapter is to show that for a Markov chain defined on a finite
Abelian group is possible to bound the convergence rate by the Fourier transform of the
probability measure that defines the chain. We present results from harmonic analysis
and Markov chains on finite Abelian groups.

Chapter 3: Consensus coordination under limited communication

In this chapter the consensus problem is introduced together with a model for the com-
munication network linking the agents. An optimization problem based on the essential
spectral radius of the closed loop state transition matrix is considered. Such cost func-
tion is a measure of the convergence rate to the consensus. Under some suitable con-
straints, it captures the tradeoffs between connectivity of the communication network
and control performance. Restricting to doubly stochastic matrices compatible with
time-invariant communication networks with symmetries, we compute a tight bound
on the essential spectral radius. It is shown that the convergence rate to the consen-
sus decreases as the number of agents increases if the connectivity is kept constant. An
analysis of the performance in time-varying communication graphs is also carried out.
Averaging over classes of graphs, it is shown that the convergence rate is much higher
compared to time-invariant communication graphs. The content of this chapter will
appear in

R. Carli, F. Fagnani, M. Focoso, A. Speranzon and S. Zampieri. Symmetries in the
Coordinated Consensus Problem. In P.J. Antsaklis and P. Tabuada, Ed., NESC: Net-
worked Embedded Sensing and Control, Lecture Notes in Control and Informa-
tion Sciences, Springer, 2006. To appear.

and partially also in

R. Carli, F. Fagnani, A. Speranzon and S. Zampieri. Communication Constraints in
Coordinated Consensus Problems. In Proceedings of American Control Confer-
ence, 2006. To appear.

R. Carli, F. Fagnani, A. Speranzon and S. Zampieri. Communication Constraints
in the State Agreement Problem. Internal Report 32, Department of Mathematics,
Politecnico di Torino. Submitted for journal publication, 2005.

Chapter 4: Quantization in consensus coordination

Data exchange over digital communication channels requires quantization. In this chap-
ter we analyze the effects of quantized data exchange in the consensus problem. Con-
sidering a weaker concept of consensus, with respect to the one introduced in the previ-
ous chapter, we analyze various control strategies for solving the problem. We consider
the effect of two quantization schemes: uniform and logarithmic. Scenarios where data
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are either uniformly or logarithmically or uniformly and logarithmically quantized are
analyzed. A comparison between the different scenarios is made considering the total
amount of data that is circulating in the network at each time instance. The results of
the first part of this chapter have been extended from the papers

K. H. Johansson, A. Speranzon and S. Zampieri. On Quantization and Communi-
cation Topologies in Multi-vehicle Rendezvous. In Proceedings of 16th IFAC World
Congress, 2005.

F. Fagnani and K. H. Johansson and A. Speranzon and S. Zampieri. On Multi-
vehicle Rendezvous under Quantized Communication. In Proceedings of Inter-
national Symposium on Mathematical Theory of Networks and Systems, 2004.

The second part is based on the following two papers

R. Carli, F. Fagnani, A. Speranzon and S. Zampieri. Communication constraints
in coordinated consensus problems. In Proceedings of American Control Confer-
ence, 2006. To appear.

R. Carli, F. Fagnani, A. Speranzon and S. Zampieri. Communication Constraints
in the State Agreement Problem. Internal Report 32, Department of Mathematics,
Politecnico di Torino. Submitted to for journal publication, 2005.

Chapter 5: Model predictive consensus

A finite time horizon consensus problem where the consensus point is negotiated by the
agents is considered in this chapter. The control action is computed solving a receding
horizon optimization problem. Distributed implementation is obtained through primal
decomposition techniques and incremental subgradient methods. We show that, for
particular communication networks, the problem can be efficiently solved by a multi-
agent system. In the end of the chapter some extensions to cases when noise and limited
data rate affects the system are presented. The results of this work will appear as

B. Johansson, A. Speranzon, M. Johansson, and K. H. Johansson. Distributed Model
Predictive Consensus. In Proceedings of International Symposium on Mathemat-
ical Theory of Networks and Systems, 2006. To appear.

Chapter 6: Collaborative estimation

The consensus algorithm is used in this chapter to design a minimum variance esti-
mator. The problem is to estimate a time-varying signal measured by the agents. Each
agent builds an estimate from estimates and measurements received by neighboring
agents. Such information is weighted so that the variance of the estimate at each agent
is minimized, maintaining global stability of the estimator. The time-varying weights are
computed online through a distributed filter. Simulation results show improvements of
performance compared to other methods proposed in the literature. This chapter is par-
tially based on
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A. Speranzon, C. Fischione and K. H. Johansson. Distributed and Collaborative
Estimation over Wireless Sensor Networks. Submitted to IEEE Conference on De-
cision and Control, 2006.

B. Johansson, A. Speranzon, M. Johansson, and K. H. Johansson. Distributed Model
Predictive Consensus. In Proceedings of International Symposium on Mathemat-
ical Theory of Networks and Systems, 2006. To appear.

Chapter 7: Hierarchical coordination architecture

Implementation of coordination strategies for multi-agent systems is addressed in this
chapter. proposing a hierarchical coordination architecture. A control architecture com-
posed of three-layer systems connected in a network is proposed. Event-driven coor-
dination strategies are mapped onto the top layer, which provides waypoints for the
agents. The maneuver that an agent needs to perform in order to reach its waypoint is
generated by the two lower layers. The middle layer maps commands from the top layer
to a finite set of maneuvers. The execution of each maneuver is done at the bottom layer
which generates and tracks suitable trajectories. Issues related to the verification of the
architecture with respect to a given overall specification is considered. Part of the results
has been presented as

J. Silva and A. Speranzon and J. Borges de Sousa and K. H. Johansson. Hierarchical
Search Strategy for a Team of Autonomous Vehicles. In Proceedings of the 5th IFAC
Symposium on Intelligent Autonomous Vehicles, 2004.

J. Borges de Sousa, K. H. Johansson, A. Speranzon, and J. Silva. A Control Archi-
tecture for Multiple Submarines in Coordinated Search Missions. In Proceedings
of 16th IFAC World Congress, 2005.

The chapter is based on

J. Borges de Sousa, K. H. Johansson, J. Silva and A. Speranzon. A Verified Hierarchi-
cal Control Architecture for Coordinated Multi-Vehicle Operations. International
Journal of Adaptive Control and Signal Processing, 2006. Special issue on autono-
mous adaptive control of vehicles. To appear.

Chapter 8: Conclusions and future work

This chapter summarizes the results of the thesis and concludes by suggesting possible
future extensions to the presented work.

Contributions by the author

The present thesis is a monograph. It is partially based on papers written with co-authors.
In the joint papers the author has actively contributed both to the development of the
theory as well as the paper writing.
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1.6 Other publications

The author of the thesis has been co-author of other publications in the field of robotics
and automatic control, which have influenced the contents of this thesis. The publica-
tion include the following:

M. Mazo, A. Speranzon, K. H. Johansson and X. Hu: “Multi-robot Tracking of a
Moving Object Using Directional Sensors". IEEE International Conference on Ro-
botics and Automation, 2004.

E. Pagello, A. D’Angelo, C. Ferrari, R. Polesel, R. Rosati and A. Speranzon: “Emer-
gent Behaviors of a Robot Team Performing Cooperative Tasks". Advanced Ro-

botics, Vol. 15, No. 1, 3-20, 2003.

A. Speranzon and K. H. Johansson: “On Some Communication Schemes for Dis-
tributed Pursuit-Evasion Games”. In Proceedings of IEEE Conference on Decision
and Control, 2003.

C. Altafini, A. Speranzon and K. H. Johansson: “Hybrid Control of a Truck and
Trailer Vehicle". In Hybrid Systems: Computation and Control, C.J. Tomlin and
M.R. Greenstreet, Ed. - Lecture Notes in Computer Science, Springer-Verlag. 2002.

P. de Pascalis, M. Ferraresso, M. Lorenzetti, A. Modolo, M. Peluso, R. Polesel, R.
Rosati, N. Scattolin, A. Speranzon and W. Zanette: “Golem Team in Middle-Sized
Robots League". In RoboCup-2000: Robot Soccer World Cup IV, P. Stone, T. Balch,
and G. Kraetszchmar, Ed. - Springer-Verlag, Berlin, 2001.

C. Altafini, A. Speranzon and B. Wahlberg: “A Feedback Control Scheme for Re-
versing a Truck and Trailer Vehicle". IEEE Transactions on Robotics and Automa-

tion, 2001.

R. Polesel, R. Rosati, A. Speranzon, C. Ferrari and E. Pagello: “Using Collision Avoid-
ance Algorithms for Designing Multi-robot Emergent Behaviors".
IEEE/RSJ International Conference on Intelligent Robots and Systems, 2000.
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MATHEMATICAL BACKGROUND

2.1 Introduction

In this chapter we introduce the mathematical framework upon which the results pre-
sented in the next chapters of the thesis are based. The main objective is to present
a bound on the mixing rate of finite Markov chains when the chain is defined on fi-
nite Abelian groups. The presentation is based on [Diaconis 1988; Aldous and Fill 200X;
Fraleigh 1998; Behrends 1999; Terras 1999; Bremaud 2001; Saloff-Coste 2004]. All the
proofs of the results presented here are taken from the previous list of references.

2.2 Harmonic analysis on finite groups

The main objective of this section is that of reviewing some concepts on harmonic anal-
ysis on finite groups.

2.2.1 Finite Abelian groups

We start by recalling the definition of a finite Abelian group.

Definition 2.1 A finite Abelian group G of order N , is a set G of cardinality |G| = N , closed

under a binary operation +, such that the following axioms are satisfied1

1In the following we will use |.| to denote both the cardinality of a set and the absolute value operator.

13



14 Chapter 2. Mathematical background

(i) (Associativity) For all g ,h,ℓ ∈G, we have that

(g +h)+ℓ= g + (h +ℓ) .

(ii) (Commutativity) The binary operation + is commutative, for any g ,h ∈ G if we

have that g +h = h + g .

(iii) (Neutral element) There is a neutral element e ∈G such that for all g ∈G

g +e = g ,

In the following we will indicate with 0 such element.

(iv) (Inverse element) Corresponding to each g ∈G there is an element g ′ ∈G such that

g + g ′ = 0,

In the following we will indicate such element with −g .

From now on when we refer to a group we will implicitly consider finite Abelian groups.
We will assume the operation to be the addition if not otherwise stated.

Example 2.1 Let us consider the set ZN = {0,1, . . . , N −1}. If we consider as binary oper-
ation the addition modulo N , all the previous axioms are satisfied, and thus it represents
a finite Abelian group. ♦

Let G and H be two Abelian groups. The two groups, in general, need not to be finite. An
homomorphism is a map ϕ : G → H satisfying

ϕ(g +h) =ϕ(g )+ϕ(h)

with g ∈ G and h ∈ H . An homomorphism that is bijective is called isomorphism. Two
Abelian groups are isomorphic if there is an isomorphism between them. Isomorphic
groups are regarded as “equal”from a structural or group-theoretic point of view, even
though their elements might be quite different kinds of object. In the following we will
write G ∼= H to denote that G is isomorphic to H .

Example 2.2 Let us consider the finite additive group Z4 = {0,1,2,3} and the binary
group B = {00,01,10,11} with operation the 2-bits binary sum. If we consider the map

ϕ : G → H : g 7→ϕ(g ) = binary2(g )

where binary2(g ) is the binary representation in two bits of the integer g , then we see
immediately that it is an isomorphism. Thus G ∼= H . ♦

Given a finite group G a subgroup H of G is a subset of G that also forms a group under
the same binary operation +.
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Example 2.3 Let us consider Z8, and let H = {0,4} ⊂Z8. It is easy to see that H is also a
group with respect to the addition modulo eight. ♦

Given a finite group G let us consider a subset S of the group. Then 〈S〉, the subgroup
generated by S, is the smallest subgroup of G containing every element of S. Equiva-
lently, 〈S〉 is the subgroup of all elements of G that can be expressed as the finite product
of elements in S and their inverses.

Example 2.4 Let us consider the group

Z3 ×Z3 = {(0,0), (0,1), (0,2), (1,0), (2,0), (1,1), (1,2), (2,1)} .

Let consider S = {(0,0)}. It is clear that 〈S〉 = S is a subgroup of G . Let us consider S =
{(0,0), (0,1)} then we see that S ⊂ 〈S〉 = {(0,0), (0,1), (0,2)} is smallest subgroup of G con-
taining S. ♦

If G = 〈S〉, then we say S generates G ; and the elements in S are called generators or
group generators.

Example 2.5 Let us consider again group Z3 ×Z3. Then we see that if we choose S =
{(0,0), (0,1), (1,0)} then 〈S〉 =G . ♦

Definition 2.2 An finite Abelian group G is called cyclic group if its elements are all of the

form kg for k ∈Z for some fixed g ∈G. The element g is called the generator of the group

G, and we will write that 〈g 〉 =G.

It turns out that a finite cyclic group is a group generated by a single element. In a finite
cyclic group of order N , the generator satisfies N g = 0, and N is the smallest positive
integer with this property, and N is called the order of the generator. Thus the order of
the generator is equal to the order of the group (even if the sense of the word “order” is
different). It is then easy to see that any two finite cyclic groups of the same order are
isomorphic.

Example 2.6 Let us consider the group Z4. Then we have that

〈1〉 = 〈3〉 =Z4 .

Notice that 〈2〉 = {0,2} which, clearly, is not Z4. The group Z4 is the called the cyclic
group of the integers modulo four. ♦

The direct sum G⊕H of two Abelian groups G and H is the set of all ordered pairs (g ,h),
with g ∈G and h ∈ H . If we define the following addition operation

(g1,h1)+ (g2,h2) = (g1 + g2,h1 +h2)

then it is easy to see that G ⊕H is an Abelian group whose neutral element is (0,0) and
the inverse of (g ,h) is (−g ,−h). The definition of direct sum is easily extended to more
than two Abelian groups.

We then have the following fundamental result.
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Theorem 2.1 (Fundamental theorem of finite Abelian groups) Let G be a finite Abelian

group. There exist cyclic groups Zq1 ,Zq2 , . . . ,Zqr of orders q1, q2, . . . , qr > 1, respectively,

where the qi are prime powers, for 1 É i É r , such that

G ∼=Zq1 ⊕Zq2 ⊕·· ·⊕Zqr .

Thus G is isomorphic to the direct sum of cyclic groups.

Example 2.7 Let us consider the group Z6 = {0,1,2,3,4,5}. Using the previous theorem
we have that

Z6
∼=Z2 ⊕Z3 .

Indeed, let us consider the following map

ϕ :Z2 ⊕Z3 →Z6 : (g ,h) 7→ (3g +2h)mod6,

with g ∈Z2 and h ∈Z3. It is easy to see that ϕ is an isomorphism, and thus Z6
∼=Z2⊕Z3.

♦

2.2.2 Group characters

Let G an finite Abelian group of order N . We can define the character of the group G as
follows.

Definition 2.3 A character of G is a homomorphismχ : G →C× whereC× =C\{0}, which

maps G to the non-zero multiplicative group of complex numbers.

Since χ is a homomorphism then have that

χ(g +h) =χ(g )χ(h) , g ,h ∈G .

In particular, we have that

χ(g )N =χ(N g ) =χ(0) = 1, g ∈G ,

and so the values of χ are the N th roots of the unity. Notice moreover that

χ(−g ) =χ(g )−1 =χ(g )

where the bar indicates the complex conjugate. The character defined by

χ(g ) = 1, ∀g ∈G ,

is called the trivial (or principal) character of the group G . All the others are called non-
trivial characters.
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Example 2.8 Consider the group ZN . We have that the characters of ZN are

χℓ : g 7→ exp

(
i 2π

ℓ

N
g

)
,

with ℓ = 0, . . . , N −1 and g ∈ZN . It is easy to see that the trivial character of the group
ZN is χ0(g ). ♦

The characters of a finite Abelian group have many properties. We summarize here
some important facts.

Proposition 2.1 For any nontrivial character χ of G,
∑

g∈G

χ(g ) = 0.

Proof. Let h ∈G be that χ(h) 6= 1, h is not a trivial character of G . Let L =
∑

g∈G χ(g ) with
χ non trivial, then we have

χ(h) L =
∑

g∈G

χ(h)χ(g ) =
∑

g∈G

χ(h + g ) = L .

We then have
L(χ(h)−1) = 0

which implies L = 0 since χ(h) 6= 0. This concludes the proof. ä
Let us now denote Ĝ the set of all characters. Let us define the following operation be-
tween two characters, χ and ϕ, of a group G

(χϕ)(g ) =χ(g )ϕ(g ) . (2.1)

It is easy to see that this set forms an Abelian group under the operation defined by (2.1).
The conjugation represent the inversion in the group Ĝ . The group of the characters Ĝ

is called the dual group of G .

Proposition 2.2 Let χ and ϕ be two characters of the group G. Then we have

∑

g∈G

χ(g )ϕ(g ) =
{

N if χ=ϕ

0 otherwise .

Proof. If χ = ϕ then this follows from the fact that χ(g ) = χ(g )−1. If χ 6= ϕ, then χϕ is a
nontrivial character of G and using Proposition 2.1 the result follows. ä

Example 2.9 Consider the group ZN . The characters of the group are

χℓ(g ) = exp(i 2π
ℓ

N
g )

ℓ= 0, . . . , N −1 and g ∈ZN . Then the dual group of ZN is

ẐN = {χ0, . . . ,χN−1} .
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♦

Lemma 2.1 ẐN
∼=ZN .

Proof. Since ZN is a cyclic group then 〈1〉 = ZN . The characters of ZN then have the
form

χℓ(k) = exp

(
i 2π

ℓ

N
k

)

where k ∈Z, ℓ= 0, . . . , N −1. But this shows that χ1 is a generator of ẐN . Since two cyclic
groups of the same order are isomorphic then we can conclude. ä

Lemma 2.2 If the group G is expressed as direct sum, namely G =G1 ⊕G2 and ϕi : Gi →
C× is a character of Gi , i = 1,2, then χ=ϕ1 ⊕ϕ2, defined as

χ(g1, g2) =ϕ1(g1)ϕ2(g2) , (2.2)

is a character of G. Moreover, all characters of G are of this form. Thus we have that

Ĝ ∼= Ĝ1 ⊕Ĝ2 .

Proof. It is easy to show that χ is a character of G since it defines an homomorphism
between G and C××C× and

χ(g +h) =χ((g1, g2)+ (h1,h2)) =χ(g1 +h1, g2 +h2) =ϕ(g1 +h1)ϕ(g2 +h2)

=ϕ(g1)ϕ(h1)ϕ(g2)ϕ(h2) =ϕ(g1 + g2)ϕ(h1 +h2) =ϕ(g )ϕ(h)

where we used the fact that ϕi is a character of Gi . It is clear that Ĝ1 ⊕ Ĝ2 → Ĝ defined
by (2.2) is injective. We need to show then that if we consider χ((̃g1), g2) =χ(g1, g2) then
ϕ1(g̃1) =ϕ1(g1). It follows that

0 =χ(g̃1, g2)−χ(g1, g2) =ϕ(g̃1)ϕ2(g2)−ϕ(g1)ϕ2(g2) =ϕ2(g2)
(
ϕ(g̃1)−ϕ(g1)

)
.

Since ϕ2(g2) = 0 then it follows that ϕ(g̃1) = ϕ(g1) as we wanted. Let us now consider
χ ∈ Ĝ . Then the restriction ϕi = χ|Gi

is a character of Gi , and it easy to verify that χ =
ϕ1 ⊕ϕ2. ä

Theorem 2.2 For arbitrary finite Abelian groups Ĝ ∼=G.

Proof. From Theorem 2.1 we have that G ∼=Zq1 ⊕·· ·⊕Zqr . We know that Ẑqi
∼=Zqi

by

Lemma 2.1. From Lemma 2.2 follows that the direct sum Ĝ ∼= ẐN1 ⊕·· ·⊕ ẐNk
∼=G . ä

Let CG denote the space of functions f : G →C. This represents an N -dimensional lin-
ear space over C. We introduce an inner product over this space

〈 f1, f2〉 =
1

N

∑

g∈G

f1(g ) f2(g ) , f1, f2 ∈CG .

We then have the following result.
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Theorem 2.3 The elements of the set Ĝ forms an orthonormal basis in CG .

Proof. Orthogonality follows directly from Lemma 2.2. Completeness follows from that
G ∼= Ĝ , which implies that |Ĝ| = N = dimCG .

ä
Let χ0, . . . ,χN−1 be the characters of G = {g0, . . . , gN−1}. We can then consider the follow-
ing matrix

[C ]i j =χi (g j )

which is called the character table of G .

2.2.3 Fourier transform on groups

We now introduce the Fourier transform of functions defined on an Abelian group G .

Definition 2.4 Let f : G →C be any function. We define the Fourier transform f̂ : Ĝ →C

of f by

f̂ (χ) =
∑

g∈G

f (g )χ(g ) , χ ∈ Ĝ . (2.3)

Example 2.10 Let us consider again the group ZN . The characters, as we seen before,
are given by

χℓ(g ) = e i 2π
N ℓg , g ∈ZN , ℓ= 0, . . . , N −1.

The correspondence ℓ→χℓ yields an explicit isomorphism between ZN and ẐN . Given
any function f :ZN →C, its Fourier transform is given by

f̂ (χℓ) =
N−1∑
g=0

f (g )e−i 2π
N ℓg .

♦

This transformation is easily inverted, and we define the inverse Fourier transform as
follows

f =
1

N

∑

χ∈Ĝ

f̂ (χ)χ(g ) , g ∈G . (2.4)

An important fact about the Fourier transform is that it is an isometry with respect to a
(suitably normalized) L2-norm. Indeed we have the following result.

Theorem 2.4 (Plancherel’s formula) For any f1, f2 ∈CG ,

〈 f̂1, f̂2〉 = N〈 f1, f2〉 .



20 Chapter 2. Mathematical background

Proof. Let us define the following vectors

f1 =( f1(g0), . . . , f1(gN−1))) f2 =( f2(g0), . . . , f2(gN−1))

f̂1 =( f̂1(χ0), . . . , f̂1(χN−1))) f̂2 =( f̂2(χ0), . . . , f̂2(χN−1)) .

Let C be the character table of G . Then we have that f̂1 = f1C and f̂2 = f2C , and thus

〈 f̂1, f̂2〉 =
1

N
f̂1 f̂2

∗ =
1

N
f1CC∗ f ∗

2 = f1 f ∗
2 = N〈 f1, f2〉 ,

where we used the fact that CC∗ = N · I , and where the start indicates the transpose and
complex conjugation operator.

ä

Corollary 2.1 (Parceval’s formula) For any f ∈CG ,

〈 f̂ , f̂ 〉 = N〈 f , f 〉 .

2.3 Convergence rates of Markov chains

We first recall her some definition and properties of finite Markov chains.
A Markov chain consists of

• a non-empty finite set S, called the state space,

• a stochastic matrix [P ]i j = p j ,i , with i , j ∈ S such that p j ,i Ê 0 and
∑

i∈S p j ,i = 1
for all j . The matrix P is called the transition matrix of the Markov chain2 and the
element pi j is the probability of jumping from state i to state j .

Let us assume that |S| = N , then given an initial probability vector ζ(0) = (ζ(0)
1 , . . . ,ζ(0)

N
)T

we have that for any k > 0 the probability vector ζ(k) is given by

ζ(k) = P kζ(0) .

We can rewrite the previous equation in a iterative form

ζ(k+1) = Pζ(k) , ζ(0) = (ζ(0)
1 , . . . ,ζ(0)

N
)T .

A column vector ζeq is said to be an equilibrium distribution if it satisfies

ζeq = P ζeq .

2Notice that we have decided to associate to the element (i , j ) of the matrix P the number p j ,i . This
notation allows to consider column vectors instead of row vectors.
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Definition 2.5 A Markov chain with state space S = {0, . . . , N − 1} and with transition

probability P is said to be irreducible if for all i , j ∈ S we can find an n such that [P n]i , j >
0.

Let us denote with gcd{a1, . . . , ar } the greatest common divisor of a1, a2, . . . , ar . We can
then define the period of a state i of the chain as

d(i ) = gcd{n Ê 1 : [P n]i ,i > 0} ,

namely it is the greatest common divisor of the set of times the chain returns to the
initial state i . The we have the following definition.

Definition 2.6 A Markov chain is aperiodic if for all states i it holds d(i ) = 1.

A very important result is the following.

Theorem 2.5 (Existence and uniqueness of the equilibrium distribution) For any irre-

ducible and aperiodic Markov chain there is always a unique equilibrium distribution.

Proof. See [Bremaud 2001] for details.
ä

Example 2.11 Let us consider the following Markov chain with state space S = {0,1} and
transition matrix

P =
1

2

(
1 1
1 1

)
.

We see that the matrix P has all elements non-zero and this its powers are all non-zero.
Thus the chain is irreducible. Notice that

d(i ) = gcd{1,2,3, . . . ,n} , i = 0,1,

and thus d(i ) = 1 for all i . This implies that the chain is also aperiodic. This could be
easily seen noticing from each state there is a non-zero probability of jumping to the
same state. Its equilibrium distribution then exists and is unique

ζeq =
(

1

2
,

1

2

)T

.

♦

A consequence of the previous facts (see [Bremaud 2001] for details) are that the pow-
ers P k of the transition matrix P converge componentwise to a stochastic matrix W in
which all the columns are equal. Moreover a column, ζ, of W is the unique vector such
that ζ= P ζ, which then is the equilibrium distribution.
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2.3.1 Markov chain on Abelian groups

Let us now assume that state space S is a finite Abelian group G . Every probability mea-
sure π : G → [0,1] gives rise to a Markov chain with state space G if we define the transi-
tion probabilities as

Pg ,h =π(g −h) , g ,h ∈G . (2.5)

The matrix P is then the transition matrix of the Markov chain. As before we denote
with peq the equilibrium probability. The resulting chain is aperiodic and irreducible if
and only if there is a k such that every element of G can be written as the product of k

elements of suppπ= {g |π(g ) > 0}, that is 〈suppπ〉 =G . In this case it turns out that, with
the transition probabilities of a Markov chain given as in (2.5), the matrix P is doubly
stochastic, and thus the unique equilibrium distribution is the uniform distribution.

Example 2.12 Let us consider the group ZN . Let us consider the uniform measure,
namely we have that

π(0) =π(1) =π(−1) = 1/3

The corresponding transition matrix is given by

P =




1/3 1/3 0 0 · · · 0 0 1/3
1/3 1/3 1/3 0 · · · 0 0 0

0 1/3 1/3 1/3 · · · 0 0 0
...

...
...

... · · ·
...

...
...

1/3 0 0 0 · · · 0 1/3 1/3




.

Notice that the transition matrix P is doubly stochastic. ♦

2.3.2 Bounds on the total variation distance

Given two probability measures on G , π1 and π2, we define the total variation distance

between π1 and π2 the following quantity

‖π1 −π2‖var = max
A⊂G

‖π1(A)−π2(A)‖ .

It is possible to show [Behrends 1999] that the total variation can be also written as

‖π1 −π2‖var =
1

2

∑

g∈G

|π1(g )−π2(g )| .

The total variation distance is then a measure of how much π1 is closed to π2.
We now show that is possible to bound the total variation distance with the L2-norm

of the Fourier transform of the probability measures.
Let π be a probability measure as in (2.5). We can then compute the Fourier trans-

form as in (2.3) obtaining
π̂ : Ĝ →C : χ 7→

∑

g∈G

π(g )χ(g )
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Proposition 2.3 Let π, π1 and π2 be probability measures on the group G, and let U be

the uniform measure.

(i) π=U if and only π̂(χ) is one for the trivial character and zero otherwise.

(ii) The variation distance ‖π1−π2‖var can be estimated by (
∑

χ∈Ĝ |π̂1(χ)−π̂2(χ)|2)1/2/2
In particular

‖π1 −U‖var É
1

2

(
∑

χ6=χ0

|π̂1(χ)|2
)1/2

.

Proof. (i) The Fourier transform of U is Û (χ) =
∑

g χ(g )U (g ) =
∑

g χ(g )/N , and this sum
is 1 if χ 6= χ0 and 0 otherwise, by proposition 2.1. Since the map π 7→ π̂ is bijective then
the previous fact happens only for the uniform measure. (ii) For the measure π1 and π2

the Plancherel formula has the form

1

N

∑
g

N 2|π1(g )−π2(g )|2 =
∑
χ
|π̂1(χ)− π̂2(χ)|2 .

Relating the L1-norm to the L2-norm we have

4‖π1 −π2‖2
var =

(∑
g

|π1(g )−π2(g )|
)2 É N

∑
g

|π1(g )−π2(g )|2 =
∑
χ
|π̂1(χ)− π̂2(χ)|2

where we used the fact that (
∑N

j=1 a j )2 É N
∑N

j=1 a2
j

for a j ∈R to obtain the first inequal-

ity, and we used Parceval’s formula to obtain the last equality. The second part of (ii)
follows from (i) and the first part of (ii).

ä
The main result here is that we transformed the problem of determining determining
how close a probability measure π1 is to the uniform measure to the problem of deter-
mining how small are the π̂(χ) for all nontrivial characters of the group G .

Let us now do a further step that will be useful in the next section. Let us consider
the problem of bounding the total variation distance after k steps, that is ‖π(k) −U‖var.

We need to study the evolution of the chain. Let, as before, π be the probability mea-
sure on G . Assume that we start from the state g . The next state will be g +h′ with prob-
ability π(h′), as it follows from (2.5). From g +h′ we continue to (g +h′)+h′′ accordingly
to π, with h′ and h′′ chosen independently. We thus have that the of the transition g +h,
where h = h′+h′′ is simply

∑
h′ π(h′)π(h −h′). This motivates the following definition.

Definition 2.7 Let π1 and π2 be probability measures on G. We define the convolution as

(π1 ∗π2)(h) =
∑

h′
π(h′)π(h −h′) .

Moreover in the special case that π1 =π2 =π we define π(2) =π∗π and recursively π(k) =
π(k−1) ∗π.
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Thus now the problem of determining how fast the chain converges to the equilibrium
is equivalent to the question of how fast π(k) converges to the uniform measure. We have
the following result.

Theorem 2.6 For probability measures π1 and π2 on G, the Fourier transform of the con-

volution π1∗π2 is just the product of the functions π̂1 and π̂2. In particular it follows that,

for any probability π the Fourier transform of π(k) is the k-th power of π̂.

Proof. Let χ be arbitrary then we have that

àπ1 ∗π2(χ) =
∑

g∈G

(π1 ∗π2)(g )χ(g ) =
∑

g∈G

(
∑

h

π1(h)π2(g −h)

)
χ(g )

=
∑

g ,h∈G

π1(h)π2(g −h)χ(g +h −h) =
∑

h,ℓ∈G

π1(h)χ(h)π2(ℓ)χ(ℓ)

= π̂1(χ)π̂2(χ) .

where the first equality follows from the definition of Fourier transform, the second from
the definition of convolution and the forth from the definition of character. ä
We thus have that the size of ‖π(k) −U‖var solely depends on the size of the numbers
π̂(χ) for the nontrivial characters χ.

2.3.3 Convergence to the equilibrium

We can now relate the total variation distance of a probability measure π from the uni-
form measure, and the spectral properties of the transition matrix of an irreducible and
aperiodic Markov chain defined on Abelian group.

We know that

‖π−U‖var =
1

2

∑

g∈G

∣∣∣∣π(g )−
1

N

∣∣∣∣ .

From (2.5) we know that Pr,s =π(r − s), and thus we have that

1

2

∑

g∈G

∣∣∣∣π(g )−
1

N

∣∣∣∣=
1

2

∑

g∈G

∣∣∣∣π(g +h −h)−
1

N

∣∣∣∣=
1

2

∑

g∈G

∣∣∣∣Pg+h,h −
1

N

∣∣∣∣=
1

2

∑

g∈G

∣∣∣∣Pg ,h −
1

N

∣∣∣∣ ,

∀h ∈G . Let us denote

‖P −U‖var =
1

2

∑

g∈G

∣∣∣∣Pg ,h −
1

N

∣∣∣∣ ,

then, using Theorem 2.3 and Theorem 2.6, we have that

‖P k −U‖2
var É

1

2

∑

χ6=χ0

|π̂(χ)|2k

thus it is clear the role of maxχ6=χ0 |π̂(χ)| that representees the convergence rate of the
chain to the equilibrium.
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We can relate the numbers π̂(χ) spectral properties of P . Indeed, the transition ma-
trix P can be interpreted as a linear function from CG to itself simply considering, for
f ∈CG ,

(P f )(g ) =
∑

h∈G

Pg ,h f (h) .

We then have that for every χ ∈ Ĝ

(Pχ)(g ) =
∑

h∈G

Pg ,hχ(h) =
∑

h∈G

π(g −h)χ(h) =
∑

h∈G

π(h)χ(h)χ(g ) = π̂(χ)χ(g ) ,

where we used (2.5) and the definition of character. This shows that χ is an eigenfunc-
tion of P with eigenvalue π̂(χ). Since the characters form an orthonormal basis, see The-
orem 2.3, then P is diagonalizable and its spectrum is given by

σ(P ) = {π̂(χ)|χ ∈ Ĝ} .
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CONSENSUS COORDINATION UNDER LIMITED

COMMUNICATION

In this chapter we consider a particular class of coordination problems where a team
of agents need to reach an agreement over some shared variables. This type of coor-
dination problems arise as a fundamental issue in many applications such as search-
and-rescue operations [Vidal et al. 2002; Speranzon and Johansson 2003], collaborative
map building and exploration [Fox et al. 2000; Burgard et al. 2005], optimal coverage
problems [Cortés et al. 2004c], collaborative flocking and formation maintaining con-
trol [Olfati-Saber and Murray 2004; Tanner et al. 2005] and problems of synchroniza-
tion [Strogatz 2000; Marodi et al. 2002; Lin et al. 2005]. A mathematical formulation of
this type of problems was proposed in [Jadbabaie et al. 2003; Olfati-Saber and Murray
2004], and known in the literature as consensus.

In this chapter we are interested to characterize the relationship between the amount
of information exchanged by the agents and the achievable control performance. In or-
der to do this we model the communication network by a directed graph, in which each
arc represents information transmission from one agent to another one. We then con-
sider the connectivity of each agent with its neighbors as a measure of the amount of
information exchanged and relate it to the control performance measured as the con-
vergence speed to the consensus. The main result shows that time-invariant communi-
cation networks that exhibit particular symmetries are shown to yield slow convergence
if the amount of information exchanged does not scale with the number of agents. On
the other randomly time-varying communication networks allow very fast convergence
rates, even if the connectivity is very low. The analysis of the problem can be formalized

27



28 Chapter 3. Consensus coordination under limited communication

if we consider a simplified model of the system to be controlled. In particular, as in [Jad-
babaie et al. 2003; Olfati-Saber and Murray 2004; Cortés et al. 2004a], we assume that
the agents are described by a first order model.

3.1 Outline

The chapter is organized as follows. In Section 3.2 we formally define the consensus
problem. In particular we restrict to linear state feedbacks. We then introduce an opti-
mal control problem where the cost function is related to the convergence rate to the
barycenter of the initial position of the agents. Under some assumptions, described in
Sections 3.2 and 3.3, it turns out that a weighted directed communication graphs, for
which the adjacency matrix is doubly stochastic guarantee consensus, with a degree of
efficiency that is related to the spectral properties of the matrix. The communication
graphs can also be interpreted as Markov chains and thus convergence rate can be re-
lated to the mixing rate as we have discussed in Chapter 2. Communication graphs with
symmetries impose a structure on the doubly stochastic matrices so that their spectral
properties have important characteristics. In particular we will restrict to Cayley graphs
defined on Abelian groups. In this case results from Chapter 2 can be applied in order
to derive a bound on the convergence rate to the consensus. In Section 3.4, we derive
a bound that is a function of the number of agents and the incoming arcs in each ver-
tex. The main result shows that, if we impose symmetries on the communication graph
and we keep the number of incoming arcs in each vertex bounded, then the conver-
gence rate degrades as the number of agents increases. Moreover, we derive a bound for
the convergence rate and show that the bound is tight. The idea of imposing symme-
tries on the communication graph is not new [D’Andrea and Dullerud 2003; Recht and
D’Andrea 2004; Smith et al. 2005]. In [Smith et al. 2005], for example, the authors show
that, for problem similar to consensus, symmetries allow to obtain better performance
if the number of incoming arcs on each vertex increases. In this chapter we extend this
type of results to a broader class of graphs with symmetries.

In Section 3.5 we consider stochastically time-varying communication graphs. In
these strategies the graph is chosen randomly at each time step over a family of graphs
with the constraint that the number of incoming arcs in each vertex is constant. A mean
square analysis shows that, in this way, we can improve the convergence rate obtained
with fixed communication graph. This fact continue to hold true even if the random
choice is restricted to families of Cayley graphs. In this case, compared to time-invariant
solutions, symmetries yield very good performance.

3.2 Consensus problems

Consider N > 1 identical agents whose dynamics are described by the following discrete
time state equations

x+
i = xi +ui i = 1, . . . , N ,
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where xi ∈R is the state of the i -th agent, x+
i

represents the updated state and ui ∈R is
the control input. More compactly we can write

x+ = x +u , (3.1)

where x,u ∈RN . The consensus problem is to design a feedback control law

u = K x, K ∈RN×N

yielding the consensus of the states, namely a control such that all the xi ’s become equal
asymptotically. More precisely, our objective is to obtain K such that, for any initial con-
dition x(0) ∈RN , the closed loop system

x+ = (I +K )x , (3.2)

yields
lim

t→∞
x(t ) =α1 (3.3)

where 1= (1, . . . ,1)T and where α is a scalar depending on x(0) and K .

3.2.1 Time-invariant communication graphs

The fact that in the matrix K the element in position i , j is different from zero, means
that the agent i needs the state of the agent j in order to compute its feedback action.
This implies that we need to communicate the state x j from the agent j to the agent i . In
this context, a good description of the information flow required by a specific feedback
K is given by the directed graph GK with set of vertices {1, . . . , N } in which there is an arc
from j to i whenever in the feedback matrix K the element Ki j 6= 0. The graph GK is said
to be the communication graph associated with K . Conversely, given any directed graph
G with set of vertices {1, . . . , N }, we say that a feedback K is compatible with G if GK is
a subgraph of G (we will use the notation GK ⊆G ). We say that the consensus problem
is solvable on a graph G if there exists a feedback K compatible with G and solving the
consensus problem. From now on we assume that G contains all loops (i , i ) meaning
that each agent has access to its own state.

Notice that in the model of the communication subsystem, if two agents exchange
data from the initial time, they will maintain connectivity for all the successive times.
Although this type of assumption could be acceptable in a system where the agents are
connected through a wired communication network, one could argue that this is more
difficult to realize in a system where agents are mobile robots. To capture more realistic
scenarios the communication network could be modelled by proximity graphs [Jarom-
czyk and Toussaint 1992], where two agents are neighbors if their relative position is less
then a given threshold. This approach has been considered in [Jadbabaie et al. 2003;
Tanner et al. 2003; Cortés et al. 2004a] where stability is studied, but the overall con-
nectivity of the graph is not clearly addressed. In the following we consider the simpli-
fied communication model introduced previously, which allows a formal analysis of the
tradeoffs between coordination and connectivity.
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3.2.2 Convergence rate to consensus

In order to unveil these tradeoffs we associate to the consensus problem a performance
index. The simplest index is the exponential rate of convergence to the agreement. From
an intuitive point of view such index is a suitable one since if agents can communicate
with many teammates the consensus should be reached faster. For example, if the com-
munication graph is a full graph each agent can move to the consensus point in one
step. Notice however that the choice K =−I would yield the fastest convergence rate to
the consensus with no communication. In this case, however, the consensus point is al-
ways zero. Thus nonzero initial states having equal components, that is, the agents have
already reached consensus, would require to steer the agents state to zero. Any effective
feedback matrices K must then ensure that nonzero states having equal components
correspond to equilibrium points of the closed loop system, because in this case no
control action is necessary. This happens if and only if

K1= 0. (3.4)

From now on we thus impose this condition on K . Then, it is easy to see that the state
agreement problem is solved if and only if all the eigenvalues of I +K are strictly inside
the unit circle except for a single eigenvalue in 1. Under this condition the convergence
rate can be defined as

ρ(I +K ) = max{|λ| : λ ∈σ(I +K ) \ {1}} (3.5)

which is called the essential spectral radius of I +K . An interesting particular case that
has been considered in the literature corresponds to situation in which we restrict to
controllers yielding the agreement at the barycenter of the initial states. We call these
control laws barycentric controllers. It is easy to see that K is a barycentric controller if
and only if

1
T K = 0. (3.6)

Notice that this condition is automatically true for symmetric matrices K satisfying (3.4).
From this choice of performance we can formulate the following control problem.

Given N agents communicating over a network modelled by the communication
graph G , find a matrix K satisfying (3.4) and (3.6) such that GK ⊆ G and minimizing
ρ(I +K ).

Remark 3.1

When we are dealing with barycentric controllers it is meaningful to consider the dis-
placement from the barycenter

∆(t ) = x(t )−
(

1

N
1

T x(0)

)
1 . (3.7)

It is immediate to check that, if K satisfies condition (3.4) then ∆(t ) satisfies the closed
loop equation

∆
+ = (I +K )∆ . (3.8)
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Moreover, if K also satisfies condition (3.6), then

∆(t ) = x(t )−
(

1

N
1

T x(t )

)
1 .

Notice finally that the initial conditions ∆(0) are such that

1
T
∆(0) = 0. (3.9)

Hence the asymptotic behavior of our state agreement problem can equivalently be
studied by looking at the evolution (3.8) on the hyperplane characterized by the con-
dition (3.9). Thus the index ρ(I +K ) seems appropriate for analyzing how performance
is related to the communication effort associated to a graph.

3.3 Solvable consensus problems

If we restrict to control laws K making I +K a matrix with all elements nonnegative,
condition (3.4) imposes that I +K is a stochastic matrix and conditions (3.4) and (3.6)
impose that I +K is doubly stochastic. This means that all the rows and columns sum
to one. Since the spectral structure of stochastic and doubly stochastic matrices is well
known, this observation allows to understand what conditions on the graph will ensure
the solvability of the consensus problem. We need to recall some notation and results
on directed graphs [Godsil and Royle 2001; Diestel 2005].

Fix a directed graph G with set of vertices V and set of arcs E ⊆V ×V . The adjacency
matrix A is a binary square matrix indexed by the elements in V defined by letting Ai j =
1 if and only (i , j ) ∈ E . Define the in-degree of a vertex j as indeg( j ) =

∑
i Ai j and the out-

degree of a vertex i as outdeg(i ) =
∑

j Ai j . Vertices with out-degree equal to 0 are called
sinks. A graph is called in-regular (out-regular) of degree k if each vertex has in-degree
(out-degree) equal to k. A path in G consists of a sequence of vertices i1i2 . . . . . . ir such
that (iℓ, iℓ+1) ∈ E for every ℓ= 1, . . . ,r −1; i1 (ir ) is said to be the initial (terminal) vertex
of the path. A cycle is a path in which the initial and the terminal vertices coincide. A
vertex i is said to be connected to vertex j if there exists a path with initial vertex i and
terminal vertex j . A directed graph is said to be connected if, given any pair of vertices
i and j , either i is connected to j or j is connected to i . A directed graph is said to be
strongly connected if, given any pair of vertices i and j , i is connected to j .

Given any directed graph G we can consider its strongly connected components,
namely strongly connected subgraphs Gk , k = 1, . . . , s, for a suitable s ∈ N, with set of
vertices Vk ⊆ V and set of arcs Ek = E ∩ (Vk ×Vk ) such that the sets Vk form a partition
of V . The various components may have connections among each other. We define an-
other directed graph TG with set of vertices {1, . . . , s} such that there is an arc from h to
k if there is an arc in G from a vertex in Vk to a vertex in Vh . It can be shown that TG

is a graph without cycles. The following proposition is a straightforward consequence
of a standard result on limiting distributions for stochastic matrices [Gantmacher 1959,
pages 88, 95].
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Proposition 3.1 Let G be a directed graph and assume that G contains all loops (i , i ).

The following conditions are equivalent:

(i) The consensus problem is solvable on G .

(ii) TG is connected and has only one sink vertex.

Moreover, if the conditions are satisfied, any K such that

(a) I +K is stochastic and Ki i 6= −1 for i = 1, . . . ,n,

(b) GK =G ,

solves the consensus problem.

When the graph G satisfies the properties of Proposition 3.1, a particularly simple so-
lution of the consensus problem can be obtained by defining a matrix P ∈ RN×N as
follows

Pi j =





1

indeg(i )
if i → j

0 otherwise

and by letting K = P − I . In this case the closed loop dynamics have the following form

x+
i = xi +

1

indeg(i )

∑

j 6=i

( j ,i )∈E

(x j −xi ) . (3.10)

Again in case we restrict to K such that I +K is nonnegative, we can relate the existence
of barycentric controllers to the structure of the graph by means of a standard result on
stochastic matrices.

Proposition 3.2 Let G be a directed graph and assume that G contains all loops (i , i ).

The following conditions are equivalent:

(i) The barycentric consensus problem is solvable on G .

(ii) G is strongly connected.

Moreover, if the above conditions are satisfied, any K such that I +K is doubly stochastic,

GK =G and Ki i 6= −1 for every i = 1, . . . ,n solves the barycentric consensus problem.

Notice that in the special case when (i , j ) ∈ E if and only if ( j , i ) ∈ E , it follows that
we can find solutions K to the consensus problem that are symmetric and that therefore
are automatically doubly stochastic. One example is given by (3.10).

When P is a stochastic matrix, it can be regarded as the transition matrix of a fi-
nite Markov chain. The problem of minimizing the essential spectral radius ρ(P ) is thus
equivalent of maximizing the spectral gap of the Markov chain, 1−ρ(P ), which is, for a
general Markov chain, a hard problem [Aldous and Fill 200X; Behrends 1999]. Recently
some very effective algorithms have been proposed for this maximization limited, how-
ever, to the case in which P is a symmetric matrix [Boyd et al. 2004].
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3.4 Symmetries in communication graphs

The analysis of the consensus problem and the corresponding controller synthesis be-
comes more treatable if we limit our search to graphs G and matrices K that exhibit
symmetries. We will show, however, that these symmetries limit the achievable perfor-
mance in terms of convergence rate.

In order to treat symmetries on a graph G in a general setting, we introduce the con-
cept of Cayley graph defined on Abelian groups [Babai 1979; Alon and Roichman 1994].
Let G be a finite Abelian group of order |G| = N , and let S be a subset of G containing the
zero element, see Section 2.2. The Cayley graph G (G ,S) is the directed graph with vertex
set G and arc set

E =
{
(g ,h) : h − g ∈ S

}
.

Notice that a Cayley graph is always in-regular, namely the in-degree of each vertex is
equal to |S|. If S is such that −S = S we say that S is inverse-closed. In this case the graph
obtained is undirected.

Symmetries can be introduced also on matrices. A matrix P ∈RN×N is said to be a
Cayley matrix over the group G if

Pi , j = Pi+h, j+h ∀ i , j ,h ∈G .

It is clear that for a Cayley matrix P there exists a function π : G → R such that Pi , j =
π(i − j ). The function π is called the generator of the Cayley matrix P . Notice that, if
π and π′ are generators of the Cayley matrices P and P ′ respectively, then π+π′ is the
generator of P+P ′ and π∗π′ is the generator of PP ′, where (π∗π′)(i ) =

∑
j∈G π( j )π′(i− j )

for all i ∈G . This shows that P and P ′ commute. Notice finally that, if P is a Cayley matrix
generated by π, then GP is a Cayley graph with S = {h ∈G : π(h) 6= 0}.

It is clear that the graph GP supporting a Cayley matrix P is a Cayley graph with

S = {i : π(i ) 6= 0}∪ {0} .

Since we are interested in doubly stochastic matrices we consider as generator function
π a probability measure. This, as we discussed in Section 2.3, is enough to guarantee
doubly stochasticity. In the following we will call such P a Cayley stochastic matrix. No-
tice that the requirement of strong connectivity of the graph, needed to solve the con-
sensus problem (see Proposition 3.2) is fulfilled if 〈S〉 =G , that is, S generates G . Indeed,
if this happens then the Markov chain represented by P is aperiodic and irreducible (see
Section 2.3.1) and this means that the Cayley graph is strongly connected. We consider
some examples.

Example 3.1 Among the multiple possible choices of π there is the uniform probabil-
ity distribution where π(g ) = 1/|S| for every g ∈ S. Let us consider again Example 2.12,
where we have considered the group ZN with the probability distribution

π(0) =π(1) =π(−1) = 1/3.
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(a) Example of the Cayley graph
G (Z9, {−1,0,1}). Notice that the graph
is undirected.

(b) Example of the Cayley graph G (Z3 ⊕
Z3, {(0,0), (0,1), (1,0)}). The graph is di-
rected.

Figure 3.1: Some examples of Cayley graphs. For clarity the we did not plot the self-loops.
(Pictures produced using “Group Explorer” by N. Charter [Carter 2005]).

The Cayley graph that corresponds to that example is the graph G (ZN ,S) where S =
{−1,0,1} and with uniform probability distribution. Notice that in this case S is inverse-
closed and thus the corresponding graph is undirected. In the particular case of N = 9,
we have that the Cayley matrix P is:

P =




1/3 1/3 0 0 0 0 0 0 0
0 1/3 1/3 0 0 0 0 0 0
0 0 1/3 1/3 0 0 0 0 0
0 0 0 1/3 1/3 0 0 0 0
0 0 0 0 1/3 1/3 0 0 0
0 0 0 0 0 1/3 1/3 0 0
0 0 0 0 0 0 1/3 1/3 0
0 0 0 0 0 0 0 1/3 1/3

1/3 0 0 0 0 0 0 0 1/3




.

Two types of symmetries that can be seen in the structure of P . The first is that the graph
is undirected and the second that the graph is circulant. Since 〈S〉 =G the Cayley graph
is strongly connected. This can be clearly seen in Figure 3.1(a) where it is shown the
Cayley graph G = (Z9, {−1,0,1}). ♦

Example 3.2 Let us consider the (non-cyclic) group Z3 ⊕Z3 and the subset S = {(0,0),
(1,0), (0,1)}. Notice that in this case the subset S is not inverse-closed and thus the Cay-
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ley graph G (Z3 ⊕Z3,S) is a directed graph. Let us consider the probability distribution

π(0,0) = 1/2 π(1,0) = 1/4 π(0,1) = 1/4.

The corresponding Cayley matrix in this case is given by

P =




1/2 0 1/4 0 0 0 1/4 0 0
1/4 1/2 0 0 0 0 0 1/4 0

0 1/4 1/2 0 0 0 0 0 1/4
1/4 0 0 1/2 0 1/4 0 0 0

0 1/4 0 1/4 1/2 0 0 0 0
0 0 1/4 0 1/4 1/2 0 0 0
0 0 0 1/4 0 0 1/2 0 1/4
0 0 0 0 1/4 0 1/4 1/2 0
0 0 0 0 0 1/4 0 1/4 1/2




.

Notice that in this case the matrix is not circulant but block circulant. ♦

Given a Cayley graph G we can define

ρ
Cayley
G

= min{ρ(P ) | P Cayley stochastic, GK ⊆G } .

We know from Section 3.3.3 that the spectrum of the matrix P is

σ(P ) = {π̂(χ)|χ ∈ Ĝ} .

Thus essential spectral radius is then given by

ρ(P ) = min
χ6=χ0

π̂(χ) , χ ∈ Ĝ .

Let us first consider some examples.

Example 3.3 Consider the group ZN and the Cayley graph G (ZN ,S), where S = {0,1}.
Consider the probability distribution π on S described by

π(0) = 1−k , π(1) = k .

where k ∈ [0,1]. The Fourier transform of π is

π̂(χℓ) =
∑

g∈S

χ(−g )π(g ) = 1−k +ke−i 2π
N ℓ , ℓ= 1, . . . , N −1.

In this case it can be shown that we have consensus if and only if 0 < k < 1 and that the
rate of convergence is

ρ(P ) = max
1ÉℓÉN−1

∣∣∣1−k +ke−i 2π
N ℓ

∣∣∣ .
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Hence, we have that

ρ
Cayley
G

= min
k

max
1ÉℓÉN−1

∣∣∣1−k +ke−i 2π
N ℓ

∣∣∣ .

The optimality is obtained when ℓ= 1 and k = 1/2 yielding

ρ
Cayley
G

=
(

1

2
+

1

2
cos

(
2π

N

)) 1
2

≃ 1−
π2

2

1

N 2

where the last approximation is meant holds for large N . ♦

Example 3.4 Consider the groupZN and the Cayley graph G (ZN ,S), where S = {−1,0,1}.
For the sake of simplicity we assume that N is even; similar results can be obtained for
odd N . Consider the probability distribution π on S described by

π(0) = k0 , π(1) = k1 , π(−1) = k−1 .

The Fourier transform of π is in this case given by

π̂(χℓ) =
∑

g∈S

χ(−g )π(g ) = k0 +k1e−i 2π
N ℓ+k−1e i 2π

N ℓ , ℓ= 1, . . . , N −1.

We thus have

ρ
Cayley
G

= min
(k0,k1,k−1)

max
1ÉℓÉN−1

∣∣∣k0 +k1e−i 2π
N ℓ+k−1e i 2π

N ℓ
∣∣∣ .

Symmetry and convexity arguments allow to conclude that a minimum is for sure of the
type k1 = k−1. The cost function then reduces to

ρ(P ) = max
k1

{∣∣∣∣1−2k1

(
1−cos

(
2π

N

))∣∣∣∣ , |1−4k1|
}

.

The minimum is achieved for

k0 =
1−cos

( 2π
N

)

3−cos
( 2π

N

) , k1 = k−1 =
1

3−cos
( 2π

N

)

and we have

ρ
Cayley
G

=
1+cos

( 2π
N

)

3−cos
( 2π

N

) ≃ 1−2π2 1

N 2
(3.11)

where the last approximation is holds for large N . ♦

Notice that in the first example the optimality is obtained when all the nonzero ele-
ments of π are equal. This is not a general feature since the same does not happen in the
second example in which however, the nonzero elements of π become equal asymptot-
ically as N →∞. Even this fact is not true in general. To see this it is enough to take the
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example in which the group is ZN and S = {0,±1,±2}. Through some rather long and
tedious computations it is possible to see that in this case the optimal coefficients are
such that k−2 = k2, k−1 = k1 and for N →∞ we have that k2 → 1/2, k1 → 0 and k0 → 0.

The case of communication exchange with two neighbors (Example 3.4) offers a bet-
ter performance compared to the case with one neighbor (Example 3.3). However, in

both cases ρ
Cayley
G

→ 1 for N →∞. This fact is more general: the essential spectral radius
of Abelian stochastic Cayley matrices will always converge to 1 if the in-degree in the
Cayley graph, associated to the matrices, is bounded. This is the content of next result.

Theorem 3.1 Let G be any finite Abelian group of order N and S ⊆ G be a subset con-

taining zero. Let moreover G be the Cayley graph associated with G and S. If |S| = ν+1,

then

ρ
Cayley

G
Ê 1−C N−2/ν , (3.12)

where C > 0 is a constant independent of G and S.

Proof. Proof in Appendix 3.A.
ä

Theorem 3.1 implies that, if we consider a sequence of Abelian Cayley graphs G (GN ,SN )
such that |GN | = N and |SN | grows slower then logarithmically in N and we consider a
sequence of Cayley stochastic matrices PN compatible with G (GN ,SN ), then, necessar-
ily, ρ(PN ) converges to 1. This fact was shown using a completely different approach
in [Alon and Roichman 1994].

Notice that in Example 3.4 we have that ν = 2 and we have an asymptotic behavior

ρ
Cayley
G

≃ 1−2π2N−2, while the lower bound of Theorem 3.1 is, in this case, 1−2π2N−1.
We can wonder whether it is possible to achieve the bound performance. In other words,
we would like to understand whether the lower bound we have just found is tight or not.
In the following we will show that this is the case.

Consider the group Zr
N

, with r ∈N and r Ê 1, and the Cayley graph G (Zr
N

,S), where
S = {0,e1, . . . ,er }, where e j is the j -th vector of the canonical basis of Rr . Consider the
probability distribution π on S described by

π(0) = k0 , π(e j ) = k j , ∀ j = 1, . . . ,r

with k j ≥ 0 and
∑r

j=0 k j = 1. The Fourier transform of π is

π̂(χℓ1 , . . . ,χℓr
) =

∑

g∈S

χ(−g )π(g ) = k0 +
r∑

j=1

k j e−i 2π
N ℓ j , ℓ j = 0,1, . . . , N −1, j = 1, . . . ,r .

We thus have

ρ
Cayley
G

= min
k j ≥0∑

k j =1

max
0Éℓ j ÉN−1

(ℓ1,...,ℓr ) 6=(0,...,0)

∣∣∣∣∣k0 +
r∑

j=1

k j e−i 2π
N ℓ j

∣∣∣∣∣ .
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Proposition 3.3 The above min-max is reached either by (ℓ1, . . . ,ℓr ) = (1, . . . ,1) or by

(ℓ1, . . . ,ℓr ) = (0, . . . ,1, . . . ,0) and k0 = k1 = . . . = kr = 1/(r +1), which yield

ρ
Cayley

G
=

(
1−

2r

(r +1)2

(
1−cos

2π

N

)) 1
2

≃ 1−
4π2r

(r +1)2

1

N 2

Proof. Proof in Appendix 3.B ä
From previous result we see that, by keeping N fixed and by varying r we obtain a se-
quence of controllers for which the rate of convergence tends to one logarithmically in
the number of agents an for which the degree of the associated graph grows logarithmi-
cally in the number of agents. The previous result is based on a Cayley graph over the
group Zr

N
. The same result can also be obtained considering a Cayley graph over the

cyclic group ZN . Indeed if we take ZN r and the subset

S = {0,1, N , N 2, . . . , N r−1} ,

we can construct a Cayley stochastic matrix with a essential spectral radius that is asymp-
totically equivalent to the one obtained in Proposition 3.3. More in general, it can be
proved that, if in the family of groups Zr

N
we maintain N fixed (prime) and we vary r ,

there exists a constant c < 1 such that for every r there exists Sr ⊆Zr
N

such that |Sr | ≃ cr

and such that
ρ(Pr ) É d < 1.

where Pr = |Sr |−1 Ar and where Ar is the adjacency matrices of the corresponding Cay-
ley graph. Such Cayley graphs are constructed using the theory of channel codes over
finite fields [Alon and Roichman 1994]. Extensions to non-prime N are likely to be pos-
sible considering the theory of group codes.

The question at this point is the following: Is the Cayley structure on the matrix or
the Cayley structure on the graph that prevents to obtain good performance? In other
words, do there exist stochastic matrices supported by Abelian Cayley graphs that ex-
hibit better performance than what imposed by the bound (3.12)? Notice that, in order
to make fair comparisons, we need to limit to doubly stochastic matrices. We conjecture
that for doubly stochastic matrices supported on Abelian Cayley graphs the bound (3.12)
continues to hold.

What about other graphs? An easy way to restrict to doubly stochastic matrices is
by imposing that they are symmetric and so that the corresponding graphs are undi-
rected. If A is the adjacency matrix of a ν-regular undirected graph, then, P = ν−1 A is
doubly stochastic. For these graphs, we recall a basic asymptotic lower bound by Alon
and Boppana [Alon 1986] on the second eigenvalue

liminf
N→+∞

ρ(P ) Ê
2
p
ν−1

ν
,

where the liminf is intended to be performed along the family of allν-regular undirected
graphs having N vertices.
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Ramanujan graphs (see [Murty 2003] and references therein) are those ν-regular
undirected graphs achieving the previous bound, namely such that ρ(P ) = 2ν−1

p
ν−1.

Hence, through these graphs, it would be possible to keep the essential spectral radius
bounded away from 1, while keeping the degree fixed. In fact, there are plenty of Ra-
manujan graphs (for instance any complete graph), but it is still an open problem if
for any N and ν there exists a Ramanujan graph with N vertices and degree ν. There
are only partial results in this direction. For example it is possible to prove that, if ν
is such that ν− 1 is the power of a prime, then there exist a sequence of Ramanujan
graphs with a growing number of vertices and of fixed degree ν. Moreover, when avail-
able, these constructions are quite complicated and the fact that they strictly depend
on the choice of particular number of vertices makes them not so interesting from our
point of view. However, it is interesting to notice that graphs behaving similarly to the
Ramanujan ones are not so unlikely. Indeed Friedman [Friedman 2004] showed that,
by averaging the essential spectral radius of the adjacency matrices A of all undirected
ν-regular Cayley graphs having N vertices, we obtain for P = ν−1 A

E(ρ(P )) É
2
p
ν−1

ν

(
1+

lnν/2
p
ν

+O

(
1
p
ν

))
+O

(
ν1/2 lnln N

ln N

)
.

Of course the previous bound has to be interpreted in an asymptotic sense for N →+∞
and ν→+∞. As a consequence we have in particular that, if we fix ν sufficiently large,
in the average, ρ(P ) will remain bounded away from 1 as N →+∞.

3.5 Time-varying communication graphs

We noticed in the previous section that controllers with symmetries behave quite poorly.
As suggested in the last part of the previous section, a way to overcome this difficulty is
to resort to Ramanujan graphs or to undirected regular graphs generated randomly. An
alternative way to solve this problem while maintaining the symmetry of the controllers
is by a time-varying strategy in which at every time instant the communication graph is
chosen randomly in a set of Cayley graphs. Such strategies yield a mean square conver-
gence rate that is higher and, more importantly, independent of the number of agents.

3.5.1 Cayley communication graphs

Fix an Abelian group G and a number ν< |G|. We consider a sequence of subsets St ⊆G

that are randomly generated in the following way.

Let αi (t ), i = 1, . . . ,ν, be ν independent sequences of independent random variables
taking value on G and uniformly distributed in such a set. We put

St = {α0(t ) = 0,α1(t ), . . . ,αν(t )} .

Notice that in St there might be repetitions and so its cardinality may be less than ν+1.
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Fix k0,k1, . . . ,kν ≥ 0 such that
∑

j k j = 1 consider the sequence of probability distri-
butions πt on G supported on the sequence of sets St defined as

πt (g ) =
{

k j if g =α j (t )
0 otherwise.

Let Pt be the stochastic Cayley matrix generated with πt . If we consider the feedback
matrix Kt = I −Pt , we obtain the closed loop system x(t +1) = Pt x(t ), which is a jump
Markov linear system [Fang and Loparo 2002; Bolzen et al. 2004]. The state x(t ) becomes
a random variable that evolves according to

x(t ) =
t∏

s=1
Ps x(0) ,

where x(0) is a random variable independent of the processes αi (t ).
We want to study the asymptotic behavior of x(t ). Since we are interested in con-

sensus, we consider the displacement from the barycenter ∆(t ) = x(t )− 1
N
11T x(0) =

(I − 1
N
χ0χ

∗
0 )x, which is governed by

∆(t ) =
t∏

s=1
Ps∆(0) ,

where ∆(0) is now a random variable taking values on RG such that <∆(0),χ0 >= 0 and
independent of the set of variables {αi (t )}. In this probabilistic context it is natural to
study the asymptotic behavior of E‖∆(t )‖2. We then obtain the following result.

Proposition 3.4

E‖∆(t )‖2 =
(

ν∑

j=0

k2
j

)t

E‖∆(0)‖2 .

Proof. The element (g ,h) of the Cayley stochastic matrix Pt generated by πt can be writ-
ten as

[Pt ]g ,h =πt (g −h) =
1

N

∑

χ∈Ĝ

π̂t (χ)χ(g −h)

where we have used the inverse Fourier transform (2.4). Thus

πt (g −h) =
1

N

∑

χ∈Ĝ

π̂t (χ)χ(g )χ(h) .

Thus we have that

Pt =
∑

χ∈Ĝ

π̂t (χ)N−1χχ∗ .
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Hence,
t∏

s=1
Ps =

∑

χ∈Ĝ

[ t∏
s=1

π̂s (χ)

]
N−1χχ∗ .

Let us study the average of the squared norm of the various eigenvalues.

E

[∣∣∣∣
t∏

s=1
π̂s (χ)

∣∣∣∣
2]

=
t∏

s=1
E

[∣∣π̂s (χ)
∣∣2

]
.

Since

π̂t (χ) = k0 +
ν∑

j=1

k jχ(−α j (t )) ,

we obtain

E

[∣∣π̂t (χ)
∣∣2

]
= k2

0 +
ν∑

j=1

k0k j

[
E

[
χ(α j (t ))

]
+E

[
χ(α j (t ))∗

]]

+
ν∑

j=1

ν∑

ℓ=1

k j kℓE
[
χ(α j (t ))χ(αℓ(t ))∗

]
. (3.13)

It is immediate to verify thatE[χ(α j (t ))] = 0 whenχ 6=χ0,E[χ(α j (t ))χ(αℓ(t ))∗] = 0 when
j 6= ℓ and E[|χ(α j (t ))|2] = 1. Substituting in (3.13) we then obtain

E

[∣∣π̂t (χ)
∣∣2

]
= k2

0 +
ν∑

j=1

k2
j =

ν∑

j=0

k2
j , ∀χ 6= 0.

We finally have

E‖∆(t )‖2 =
∑

χ6=χ0

E

[∣∣∣∣
t∏

s=1
π̂(χ)

∣∣∣∣
2]

1

N
E| <∆(0),χ> |2

=
(

ν∑

j=0

k2
j

)t
1

N

∑

χ6=χ0

E| <∆(0),χ> |2 =
(

ν∑

j=0

k2
j

)t

E‖∆(0)‖2 .

ä
Notice that

min

{
ν∑

j=0

k2
j

∣∣∣∣∣ k j Ê 0,
ν∑

j=1

k j = 1

}
=

1

ν+1

and it is obtained by choosing k j = 1/(ν+1) for all j . With such a choice we have thus
obtained the following mean convergence result

E‖∆(t )‖2 =
(

1

1+ν

)t

E‖∆(0)‖2 .

This performance is much better than what we had obtained for time-invariant strate-
gies, since in this case the rate of convergence is constant with respect to N .
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From an implementation point of view this strategy has an evident drawback: the same
random choice done at every time instance has to be done by all agents. This seems
to require a supervised communication of this information to every agent. A possible
way to overcome this limitation is by imposing that each agent uses the same pseudo-
random number generator starting from the same seed.

3.5.2 Bounded in-degree communication graphs

In this section we consider a time-varying strategy similar to the one presented in the
previous section. The difference is that here we do not limit the time-varying matrices
to be Cayley. We will see that this generalization does not lead to better performance.

In this case we assume that each agent receives the state of ν other agents chosen
randomly and independently. Because of this it can happen that the resulting commu-
nication graph has multiple arcs connecting the same pair of nodes.

Fix k0,k1, . . . ,kν ≥ 0 such that
∑

j k j = 1. The feedback matrix is in this case

Kt = (k0 −1)I +
ν∑

i=1

ki Ei (t )

where Ei (t ), i = 1, . . . ,ν, are ν independent sequences of independent random variables
taking values on the set of matrices

M = {E ∈ {0,1}N×N : E1=1}

and uniformly distributed in such a set. The set M is constituted by all matrices with
entries 0 or 1 which have exactly one 1 in each row. The closed loop system becomes
x(t +1) = Pt x(t ) where

Pt = k0I +
ν∑

i=1

ki Ei (t ) (3.14)

The state x(t ) becomes a random variable which evolves according

x(t ) =
t∏

s=1
Ps x(0) ,

where x(0) is a random variable independent of the processes Ei (t ).
Again, we want to study the asymptotic behavior of x(t ). Since the controllers we are

using are not necessarily barycentric, we can not longer use the variable ∆(t ) = x(t )−
N−111T x(0) to study convergence to the consensus point. However we can prove the
following result.

Theorem 3.2 There exists a scalar random variable α∗ such that

E‖x(t )−α∗
1‖2 ÉCρt

E‖(I −N−1
11

T )x(0)‖2 (3.15)

where

ρ = k2
0 +

N −1

N

ν∑

i=1

k2
i , C =

1−2k0 +
∑ν

i=1 k2
i

(1−ρ1/2)2
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Proof. Let Q(t ) =E[x(t )x(t )T ]. Notice that

Q+ =E[Pt xxT P T
t ] =E[E[Pt xxT P T

t |Pt ]]E[Pt QP T
t ] =

= k2
0Q +

ν∑

i=1

k0ki (E[QE T
i ]+E[Ei Q])+

ν∑

i , j=1

ki k jE[Ei QE T
j ]

= k2
0Q +

ν∑

i=1

k0ki (QE[E T
i ]+E[Ei ]Q)+

ν∑

i , j=1
i 6= j

ki k jE[Ei ]QE[E T
j ]+

ν∑

i=1

k2
i E[Ei QE T

i ]

Notice that E[Ei ] = N−111T . Moreover, for any M ∈RN×N it holds

E[E T
i MEi ] =

1

N
tr{M }I +

1

N 2
1

T M1(11T − I )

These relations imply that

Q+ =k2
0Q +

ν∑

i=1

k0ki (N−1
11

T Q +QN−1
11

T )+
ν∑

i=1

k2
i

(
N−1tr(Q)I +N−2

1
T Q1(11T − I )

)

+
ν∑

i , j=1
i 6= j

ki k j N−1
11

T QN−1
11

T .

Let us define w(t ) = tr(Q(t )) =E‖x(t )‖2 and s(t ) = N−11T Q(t )1. Notice that

w+ =k2
0 w +2

(
ν∑

i=1

k0ki

)
s +

(
ν∑

i=1

k2
i

)
w +




ν∑

i , j=1
i 6= j

ki k j


 s =

(
ν∑

i=0

k2
i

)
w +

(
1−

ν∑

i=0

k2
i

)
s

Moreover we have that

s+ =k2
0 s +2

(
ν∑

i=1

k0ki

)
s +

(
ν∑

i=1

k2
i

)(
1

N
w +

N −1

N
s

)
+




ν∑

i , j=1
i 6= j

ki k j


 s

=
(

1

N

ν∑

i=1

k2
i

)
w +

(
1−

1

N

ν∑

i=1

k2
i

)
s

The previous two relations can be summarized as follows

(
w+

s+

)
=




∑ν
i=0 k2

i
1−

∑ν
i=0 k2

i
1

N

∑ν
i=1 k2

i
1−

1

N

∑ν
i=1 k2

i




(
w

s

)
. (3.16)
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We want now to estimate E‖x(t +1)−x(t )‖2. Notice that

E‖x(t +1)−x(t )‖2 =trE(x(t +1)−x(t ))(x(t +1)−x(t ))T

=trQ(t +1)+ trQ(t )−2tr[(k0I + (1−k0)
1

N
11

T )Q(t )]

=w(t +1)+w(t )−2k0w(t )−2(1−k0)s(t )

=
(

ν∑

i=0

k2
i

)
w(t )+

(
1−

ν∑

i=0

k2
i

)
s +w(t )−2k0w(t )−2(1−k0)s(t )

=
(

1−2k0 +
ν∑

i=0

k2
i

)
(w(t )− s(t ))

Notice that, from equation (3.16) we can argue that

(w − s)+ =
(

k2
0 +

N −1

N

ν∑

i=1

k2
i

)
(w − s)

which implies that

w(t )− s(t ) =
(

k2
0 +

N −1

N

ν∑

i=1

k2
i

)t

(w(0)− s(0))

and so

E‖x(t +1)−x(t )‖2 =
(

1−2k0 +
ν∑

i=0

k2
i

)
ρt (w(0)− s(0))

where

ρ = k2
0 +

N −1

N

ν∑

i=1

k2
i

Standard arguments on complete metrics show that the exponential convergence of
the previous sequence implies that x(t ) must converge to some random variable x∗ in
the L2-norm (E‖ ·‖2)1/2. Indeed we have that,

(E‖x(t )−x∗‖2)1/2 É
+∞∑
s=t

(E‖x(s +1)−x(s)‖2)1/2

=
(

1−2k0 +
ν∑

i=0

k2
i

)1/2

(w(0)− s(0))1/2
+∞∑
s=t

ρs/2

=
(

1−2k0 +
∑ν

i=0 k2
i

(1−ρ1/2)2
(w(0)− s(0))

)1/2

ρt/2.

If we let Y = I − 1
N
11T , then E‖Y x(t )‖2 = w(t )− s(t ) and thus

(E‖x(t )−x∗‖2)1/2 ÉC 1/2ρt/2(E‖(I −N−1
11

T )x(0)‖2)1/2 .

In order to conclude it remains to show that x∗ =α∗1. Notice that since w(t )−s(t ) tends
to zero, we can argue Y x∗ = 0 and this implies that there exists a scalar random variable
α∗ such that x∗ =α∗1.
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ä
Notice that the smallest convergence rate in (3.15) is given by

min

{
k2

0 +
N −1

N

ν∑

i=1

k2
i

∣∣k0,k1, . . . ,kν Ê 0, k0 +
ν∑

i=1

ki = 0

}
=

N −1

N (ν+1)−1
,

obtained by choosing

k0 =
N −1

N (ν+1)−1
, and ki =

N

N (ν+1)−1
∀i = 1, . . . ,ν. (3.17)

Notice that this convergence rate is smaller than 1/(ν+ 1), which is the rate obtained
through the time-varying strategy on Cayley graphs discussed before. However, for N →
+∞, the two strategies yield the same rate.

The most important difference between the two random strategies presented here
is that the time-varying strategy on Cayley graphs yields convergence to the barycen-
ter of the initial configuration, whereas the one presented in this section will not reach
the consensus at the barycenter. Therefore it is interesting to study how far from the
barycenter the agents will reach the consensus. We have the following result.

Proposition 3.5

E‖x∗−N−1
11

T x(0)‖2 =βE‖
(
I −N−1

11
T
)

x(0)‖2 ,

where

β=
∑ν

i=1 k2
i

N [N (1−k2
0 )+ (1−N )

∑ν
i=1 k2

i
]

.

Proof. Consider ∆(t ) = x(t )−N−111T x(0). We know from (3.8) that the dynamics of
∆(t ) is described by the equation ∆

+ = Pt∆ where Pt is given in (3.14). For this reason,
by denoting Q(t ) := E[∆(t )∆(t )T ], w(t ) = tr(Q(t )) = E‖∆(t )‖2 and s(t ) = N−11T Q(t )1,
exactly the same computation done in the proof of the previous result show that equa-
tion (3.16) still holds true. The transition matrix has eigenvalues λ1 = 1, and λ2 = k2

0 +
N−1

N

∑ν
i=1 k2

i
. The second eigenvalue coincides with the convergence rate ρ computed

before. The time evolution of w(t ) and s(t ) is thus given by
(

w(t )
s(t )

)
= c1λ

t
1a1 + c2λ

t
2a2

where c1, c2 are constants and a1, a2 are the eigenvectors associated toλ1 andλ2. Notice
that a1 = (1 1)T . At steady state the vector (w(∞), s(∞))T is aligned to the dominant
eigenvector a1 and thus w(∞) = c1. Simple calculations yield

w(∞) =βE‖
(
I −N−1

11
T
)

x(0)‖2 ,

where

β=
∑ν

i=1 k2
i

N [N (1−k2
0 )+ (1−N )

∑ν
i=1 k2

i
]

.
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ä
If we use the control gains k0,k1, . . . ,kν as in (3.17), which yield the fastest conver-

gence rate, then we have

E‖x∗−N−1
11

T x(0)‖2 =
1

N (N (1+ν)−1)
E‖

(
I −N−1

11
T
)

x(0)‖2 .

Notice that, if the initial states xi (0) of the agents are independent and E
(
xi (0)2

)
is the

same for all i , then as N →∞ the mean square distance to the barycenter tends to zero.

3.6 Summary

In this chapter we have analyzed the tradeoffs between how fast agents can coordinate
and the amount of information that need to be exchanged. In particular we have mod-
elled the coordination problem as a consensus problem. Under the assumption that
the communication network can be described by a Cayley graph defined on Abelian
groups, that is a graph with symmetries, we have been able to bound the convergence
rate to the consensus. Furthermore, we have proved that the convergence rate to the
barycenter of the initial configuration decreases as the number of agents increases, if
the amount of information received by each agent remain constant. We have also con-
sidered some particular random strategies that consist in choosing randomly a com-
munication graph from a predefined family of graphs. In particular we have considered
stochastically time-varying Cayley graphs and graphs with bounded in-degree. It turns
out that choosing randomly over such family of graphs yield a significant improvement
of the performance compare to time-invariant communication graphs.

3.A Proof Theorem 3.1

In order to prove Theorem 3.1 we need the following technical lemma.

Lemma 3.1 Let T=R/Z∼= [−1/2,1/2[. Let 0 É δ < 1/2 and consider the hypercube V =
[−δ,δ]k ⊆Tk . For every finite set Λ ⊆Tk such that |Λ| ≥ δ−k , there exist x̄1, x̄2 ∈ Λ with

x̄1 6= x̄2 such that x̄1 − x̄2 ∈V .

Proof. For any x ∈ T and δ> 0, define the following set

L(x,δ) = [x, x +δ]+Z⊆T .

Observe that for all y ∈T, L(x,δ)+ y = L(x+y,δ). Now let x̄ = (x̄1, . . . , x̄k ) ∈Tk and define

L(x̄,δ) =
k∏

i=1

L(x̄i ,δ) .

Also in this case we observe that L(x̄,δ)+ ȳ = L(x̄ + ȳ ,δ) for every ȳ ∈ Tk . Consider
now the family of subsets

{L(x̄,δ), x̄ ∈Λ} .
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We claim that there exist x̄1 and x̄2 in Λ such that x̄1 6= x̄2 and such that L(x̄1,δ) ∩
L(x̄2,δ) 6= ;. Indeed, if not, we would have that

1 ≥ m

( ⋃
x̄∈Λ

L(x̄,δ)

)
=

∑

x̄∈Λ
m (L(x̄,δ)) = |Λ|δk ≥ 1

where m(·) is the Lebesgue measure on Tk and where we used the hypothesis |Λ| ≥ δ−k .
However, since all L(x̄1,δ) are closed, it is not possible that m (

⋃
x̄∈Λ L(x̄1,δ)) = 1. Notice

finally that

L(x̄1,δ)∩L(x̄2,δ) 6= ; ⇔ L(0,δ)∩L(x̄2 − x̄1,δ) 6= ; ⇔ x̄2 − x̄1 ∈V .

ä
We can now prove Theorem 3.1.

Proof. With no loss of generality we can assume that

G =ZN1 ⊕ . . .⊕ZNr .

Assume we have fixed a probability distribution π supported on S. Let P be the corre-
sponding stochastic Cayley matrix. Since, as we already said

ρ(P ) = {π̂(χ)|χ ∈ Ĝ} .

Since the characters are the N -th roots of the unity as we showed in Chapter 2 then we
can explicitly write

σ(P ) =
{

N1−1∑

k1=0

N2−1∑

k2=0

. . .
Nr −1∑

kr =0

π(k1, . . . ,kr )e
i 2π

N1
k1ℓ1 e

i 2π
N2

k2ℓ2 · · ·e i 2π
Nr

kr ℓr : ℓ1 ∈ZN1 , . . . ,ℓr ∈ZNr

}

Denote by k̄ j = (k
j
1 , . . . ,k

j
r ), for j = 1, . . . ,ν, the non-zero elements in S, and consider the

subset

Λ=
{(

r∑

i=1

k1
i
ℓi

Ni
, . . . ,

r∑

i=1

kν
i
ℓi

Ni

)
+Z

ν : ℓ1 ∈ZN1 , . . . ,ℓr ∈ZNr

}
⊆T

ν .

Letδ= (
∏

i Ni )−1/ν and let V be the corresponding hypercube inTν defined as in Lemma 3.1.
We want to show that there exists ℓ̄= (ℓ1, . . .ℓr ) ∈ZN1 ×·· ·×ZNr , ℓ̄ 6= 0 such that

(
r∑

i=1

k1
i
ℓi

Ni
, . . . ,

r∑

i=1

kν
i
ℓi

Ni

)
+Z

ν ∈V .

We consider two cases.

1. If there exists ℓ̄= (ℓ1, . . .ℓr ) ∈ZN1 ×·· ·×ZNr , ℓ̄ 6= 0 such that

(
r∑

i=1

k1
i
ℓi

Ni
, . . . ,

r∑

i=1

kν
i
ℓi

Ni

)
+Z

ν = 0 ∈V (3.18)

then clearly we are done.
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2. Assume now there are no ℓ̄ = (ℓ1, . . .ℓr ) ∈ZN1 × ·· ·×ZNr , ℓ̄ 6= 0 satisfying condi-
tion (3.18). In this case it can be shown that two different ℓ̄′, ℓ̄′′ ∈ZN1 × ·· ·×ZNr

yield (
r∑

i=1

k1
i
ℓ′

i

Ni
, . . . ,

r∑

i=1

kν
i
ℓ′

i

Ni

)
+Z

ν 6=
(

r∑

i=1

k1
i
ℓ′′

i

Ni
, . . . ,

r∑

i=1

kν
i
ℓ′′

i

Ni

)
+Z

ν ,

namely different elements inZN1×·· ·×ZNr always lead do distinct elements in Λ.
This implies that |Λ| =

∏
i Ni = δ−ν and so we are in a position to apply Lemma 3.1

and conclude that there exist two different ℓ̄′, ℓ̄′′ ∈ZN1 ×·· ·×ZNr such that

[(
r∑

i=1

k1
i
ℓ′

i

Ni
, . . . ,

r∑

i=1

kν
i
ℓ′

i

Ni

)
+Z

ν

]
−

[(
r∑

i=1

k1
i
ℓ′′

i

Ni
, . . . ,

r∑

i=1

kν
i
ℓ′′

i

Ni

)
+Z

ν

]
∈V

and hence (
r∑

i=1

k1
i
ℓi

Ni
, . . . ,

r∑

i=1

kν
i
ℓi

Ni

)
+Z

ν ∈V ,

where ℓ̄= ℓ̄′− ℓ̄′′ 6= 0.

Consider now the eigenvalue

λ=
N1−1∑

k1=0

N2−1∑

k2=0

. . .
Nr −1∑

kr =0

π(k1, . . . ,kr )e
i ( 2π

N1
k1ℓ1+ 2π

N2
k2ℓ2+···+ 2π

Nr
kr ℓr )

=π(0, . . .0)+
ν∑

j=1

π(k
j
1 , . . . ,k

j
r )e

i ( 2π
N1

k
j
1ℓ1+ 2π

N2
k

j
2ℓ2+···+ 2π

Nr
k

j
r ℓr )

.

Its norm can be estimated as follows

|λ| Êπ(0, . . .0)+
ν∑

j=1

π(k
j
1 , . . . ,k

j
r )cos

(
2π

N1
k

j
1ℓ1 +

2π

N2
k

j
2ℓ2 +·· ·+

2π

Nr
k

j
r ℓr

)

Êπ(0, . . .0)+
ν∑

j=1

π(k
j
1 , . . . ,k

j
r )


1−2π2

(
k

j
1

N1
ℓ1 +

k
j
2

N2
ℓ2 +·· ·+

k
j
r

Nr
ℓr

)2


Êπ(0, . . .0)+
ν∑

j=1

π(k
j
1 , . . . ,k

j
r ) −

ν∑

j=1

π(k
j
1 , . . . ,k

j
r )2π2 1

N 2/ν

Ê 1−2π2 1

N 2/ν

and so we can conclude. ä

3.B Proof Proposition 3.3

We first need the following technical lemma to prove the result.
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Lemma 3.2

max
0Éℓ j ÉN−1

(ℓ1,...,ℓr ) 6=(0,...,0)

∣∣∣∣∣k0 +
r∑

j=1

k j e−i 2π
N ℓ j

∣∣∣∣∣= max
ℓ j ∈{0,1}

(ℓ1,...,ℓr ) 6=(0,...,0)

∣∣∣∣∣k0 +
r∑

j=1

k j e−i 2π
N ℓ j

∣∣∣∣∣

Proof. consider a r -tuple (ℓ1, . . . ,ℓr ) 6= (0, . . . ,0) and let ℓ 6= 0 be a value taken by some of
the ℓ j . Let J ⊆ {1, . . . ,r } be the nonempty index set such that ℓ j = ℓ if and only if j ∈ J .
Consider the new r -tuple

(
ℓ′1, . . . ,ℓ′r

)
defined as follows

ℓ′j =
{

1 if j ∈ J

0 otherwise

We want to show that
∣∣∣∣∣k0 +

r∑

j=1

k j e−i 2π
N ℓ j

∣∣∣∣∣≤
∣∣∣∣∣k0 +

r∑

j=1

k j e
−i 2π

N ℓ′
j

∣∣∣∣∣ (3.19)

Indeed, we have that
∣∣∣∣∣k0 +

r∑

j=1

k j e−i
2πℓ j

N

∣∣∣∣∣

2

=

∣∣∣∣∣k0 +
r∑

j=1

k j cos
2πℓ j

N
− i

(
r∑

j=1

k j sin
2πℓ j

N

)∣∣∣∣∣

2

=
(

k0 +
r∑

j=1

k j cos
2πℓ j

N

)2

+
(

r∑

j=1

k j sin
2πℓ j

N

)2

=
r∑

j=0

k2
j +2k0

r∑

j=1

k j cos

(
2πℓi

N

)
+2

r−1∑

i=1

r∑

j=i+1

ki k j cos

(
2πℓi

N

)
·

·cos

(
2πℓ j

N

)
+2

r−1∑

i=1

r∑

j=i+1

ki k j sin

(
2πℓi

N

)
sin

(
2πℓ j

N

)

=
r∑

j=0

k2
j +2k0

r∑

j=1

k j cos

(
2πℓi

N

)
+2

r−1∑

i=1

r∑

j=i+1

ki k j cos

(
2π(ℓ j −ℓi )

N

)

Observe now that

cos

(
2πℓi

N

)
≤ cos

(
2πℓ′

i

N

)

for all j , and that

cos

(
2π(ℓ j −ℓi )

N

)
≤ cos

(
2π(ℓ′

j
−ℓ′

i
)

N

)

for all i , j . This yields (3.19) and proves the lemma. ä
We can now prove the Proposition 3.3.
Proof. Suppose that k0, . . . ,kr are fixed. We are interested in determining

max
0Éℓ j ÉN−1

(ℓ1,...,ℓr ) 6=(0,...,0)

∣∣∣∣∣k0 +
r∑

j=1

k j e−i 2π
N ℓ j

∣∣∣∣∣
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Using the previous Lemma, if ℓ j ∈ {0,1}, then

∣∣∣∣∣k0 +
r∑

j=1

k j e−i 2π
N ℓ j

∣∣∣∣∣

2

= 1−2

(
∑

j∈J

k j

)(
1−

∑

j∈J

k j

)(
1−cos

2π

N

)

where J ⊆ {1, . . . ,r } is such that j ∈ J if and only if ℓ j = 1. Maximizing this quantity over
the non identically zero vectors (ℓ1, . . . ,ℓr ) ∈ {0,1}r is equivalent to maximize over all the
possible nonempty sets J . From this it is not difficult to see that

max
0Éℓ j ÉN−1

(ℓ1,...,ℓr ) 6=(0,...,0)

∣∣∣∣∣k0 +
r∑

j=1

k j e−i 2π
N ℓ j

∣∣∣∣∣

2

= 1−2m(1−m)

(
1−cos

2π

N

)

where m := min{k0,k1, . . . ,kr }. Since m ≤ 1/2, then in order to minimize 1 − 2m(1 −
m)

(
1−cos 2π

N

)
over the possible k0,k1, . . . ,kr , we need to maximize m. This is obtained

by choosing k0 = k1 = . . . = kr = 1/(r +1), which yield m = 1/(r +1) and

ρ
Cayley
G

=
(
1−

2r

(r +1)2

(
1−cos

2π

N

)) 1
2

≃ 1−
4π2r

(r +1)2

1

N 2
.

ä
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4
QUANTIZATION IN CONSENSUS COORDINATION

When we consider the problem of coordinating the communication bandwidth limita-
tion imposes a threshold on the overall system performance. Agents cannot exchange
data with infinite precision, so data need to be quantized and converted into symbols.
of finite length in order to cope with bandwidth limitations. When agents need to base
their actions upon such distorted information, many important questions arise: Is a
team able to accomplish a task, and if so when will the task be completed? How does
this depend on the distortion introduced? In general a weaker concept of accomplished
task need to be considered, which depends on the accuracy of the information received.
Answers to these questions become even more important to be found when the num-
ber of agents is large. In this case, the bandwidth needs to be shared and thus the agents
should communicate symbols that can be encoded with few bits.

The contributions of the chapter are some partial answers to the previous ques-
tions in the context of consensus problems. The main results can be summarized in two
points: the design of control strategies that solve the consensus problem in presence of
uniform and logarithmic quantizers and the study of the corresponding control perfor-
mance for communication networks that presents symmetries. Results in this chapter
can be considered as a first step towards the characterization of bandwidth constraints
in multi-agent systems. This topic has not been very much investigated even if quan-
tization in control loops has been studied for some time, e.g., [Curry 1970; Delchamps
1990; Wong and Brockett 1997; Mitter 2000; Brockett and Liberzon 2000; Elia and Mitter
2001; Tatikonda and Mitter 2004; Fagnani and Zampieri 2004; De Persis 2004]. Some of
the results of this chapter are built on tools developed for quantized control systems

51
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4.1 Outline

We start defining, in the next section, a weak concept of consensus among agents, which
is needed since asymptotic convergence is not possible in presence of quantization
[Delchamps 1990]. We also recall the model of two particular quantizers: the uniform
and the logarithmic. The second one is preferable because it is possible to stabilize a
system with fewer symbols [Elia and Mitter 2001; Fagnani and Zampieri 2004]. In Sec-
tion 4.3 we formalize an optimal control problem, in a similar fashion as in Chapter 4, for
the case of perfect information. This will be instrumental for the results in Section 4.4
and Section 4.5. In these two sections we propose a control design method, which is
based on the optimal controller derived in Section 4.3, that solve the consensus prob-
lem with uniformly and a combination of uniformly and logarithmically quantized data.
We also show that the exchange of only logarithmically quantized information does not
yield consensus, in general. Section 4.6 is devoted to the study of the effect of quanti-
zation in communication networks that can be modelled as Cayley graphs defined on
Abelian groups. We show that it is possible to design controllers that solve the consen-
sus problem. Control performance is also discussed. In this context we show that for a
particular Cayley graph adding extra logarithmically quantized data exchange improve
the performance with little growth of the needed bandwidth.

4.2 Problem formulation

We recapture here the mathematical formulation of the consensus problem we have
introduced in Chapter 3 and extend it to the case of quantized information. Consider
N > 1 identical agents whose dynamics are described by first order discrete time equa-
tions. Let xi ∈R be the state of each agent and the ui ∈R control input. Each agent is
modelled by a first order system

x+
i = xi +ui i = 1, . . . , N .

In matrix form we have
x+ = x +u ,

where x,u ∈RN . We assume that the feedback control law is a linear state feedback

u = K x, K ∈RN×N .

When agents exchange quantized data, we cannot require global asymptotic conver-
gence to the point α1, with 1= (1, . . . ,1)T as in Chapter 4. Indeed, it is well known that a
feedback law which guarantees globally asymptotically convergence of given system in
the absence of quantization will in general fail to provide it for the closed-loop system
that arises in the presence of a quantizer with a finite number of values. One reason is
the saturation of the quantized signal when it is outside the range of the quantizer. In
this case the quantization error is large and the control law designed for the ideal case of
no quantization may lead to instability. Another reason is deterioration of performance
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near the equilibrium. Indeed, as the difference between the current and the desired val-
ues of the state becomes small, higher precision is required, and so in the presence of
quantization errors asymptotic convergence is typically lost. Due to these phenomena,
instead of seeking for global asymptotic convergence results, it is more reasonable to
expect that the state starting from a given region remains bounded and approaches
a smaller region. Such weaker concept of convergence was introduced in [Delchamps
1990].

We state the consensus problem in presence of quantized data as follows. Let us fix
two positive scalar M and ǫ, with ǫ< M , we want to design a matrix K such that, for any
initial condition x(0) ∈ [−M , M ]N , the closed loop system

x+ = (I +K )x , (4.1)

yields
lim

t→∞
x(t ) ∈ [−ǫ+α,ǫ+α]N (4.2)

for any scalar α. We say that the control law u = K x solves the consensus problem under
quantized communication if (4.2) holds.

4.2.1 Quantized communication

In this chapter we assume that the communication is over communication channels
with bit rate limitations and thus quantization is needed in order to cope with the lim-
itation. A quantizer can be mathematically described as follows. Let I be an index set
and Q = {qi }i∈I a subset of Rn . A quantizer is then modelled as a piecewise constant
function

q :Rn →Q.

To each point qi ∈ Q we can associate a quantization region Vi = cl{x ∈Rn |q(x) = qi },
where cl{.} is the closure. In Figure 4.1(a) is shown a two dimensional function f (x1, x2)
and in Figure 4.1(b) the quantized version of it, q( f (x1, x2)). As shown in the figures, the
function q maps Vi to a single value qi .

Depending on the quantization map q , we can divide the quantizers in two classes:
uniform quantizers and nonuniform quantizers. The first class is characterized by the
fact that the quantization regions are of equal size, see Figure 4.2(a). The nonuniform
quantizers have quantization regions that need not to be equal. Figure 4.2(b) shows an
example of a scalar logarithmic quantizer. In this chapter we discuss the application
of uniform and logarithmic quantizers. We recall here how these maps are defined. Let
δ> 0 be the quantization step. A scalar uniform quantizer is a map qu :R→Q such that

qu(x) = δ
⌊ x

δ

⌋
.

The quantization regions for a scalar uniform quantizer are the intervals

Vi = [−δ/2+ iδ,δ/2+ iδ] , i ∈I .
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(b) Quantized function, q( f (x, y)).

Figure 4.1: A 2D quantizer. Vi represents a quantization region and qi is the quantized
value associated to the quantization region Vi .

The error due to quantization can be bounded as

|qu(x)−x| É δ . (4.3)

A logarithmic quantizer is a map qℓ :R→Q such that

qℓ(x) = exp(qu(ln x)). (4.4)

The quantization regions for a scalar logarithmic quantizer are the intervals

Vi = [exp(−δ/2+ iδ),exp(δ/2+ iδ)] , i ∈I .

The quantization error for a logarithmic quantizer can be bounded as follow

|qℓ(x)−x| É δℓ|x| , δℓ = 1−e−δu . (4.5)

Notice the smaller x gets the finer the quantizer becomes. For a realistic logarithmic
quantizer clearly this cannot be true. Generally around the origin the logarithmic quan-
tizer is substituted with a uniform one, as shown in Figure 4.2(b). More precisely

qℓ(x) =
{

exp(qu(ln x)) if |x| > γ

qu(x) otherwise

where γ is a scalar.

4.3 Consensus with perfect data

Let us consider the centralized case with perfect information. In this case the communi-
cation network can be modelled as a complete graph, which we denote with KN . Notice
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(a) Uniform quantizer. The scalar case.

R

Q

Vi

(b) Logarithmic quantizer. The scalar case.

Figure 4.2: Two different types of quantizers: uniform and logarithmic.

that he graph KN is an undirected graph. In this particular case equation (4.2) becomes
simply

lim
t→∞

x(t ) =α1 . (4.6)

Let us now consider a vector

z = Z x , Z ∈RN−1×N (4.7)

such that the vector z are N −1 differences of the type xi − x j with i < j . In other words
the matrix Z represents the incident matrix of a directed tree, which is a subset of the
complete graph KN .

Example 4.1 Let us consider the complete graph K3. Then we can choose

Z =
(
1 0 −1
1 −1 0

)

corresponding to a directed tree with arcs (1,3) and (1,2). Thus we have that

z =
(
1 0 −1
1 −1 0

)
x =

(
x1 −x3

x1 −x2

)
.

♦

Notice that the condition (4.6) is equivalent to

lim
t→+∞

z(t ) = 0, (4.8)

since ker Z = 〈1〉. We then have the following difference equation

z+ = z +Z u , (4.9)
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1 1 22

33

Figure 4.3: On the left the complete graph K3 and on the right the directed tree de-
scribed by the incident matrix Z of Example 4.1.

describing the differences between the states of the agents. Thus in z(t ) the consensus
problem becomes a problem of asymptotic stability.

In order to exclude simple solutions, such as dead-beat controllers, but that requires
large input signals and thus are energy inefficient, we consider an optimal control prob-
lem. Since for any α ∈R we need to have limt→∞ x(t ) = α1, we consider the following
optimal control problem

minimizeu

∞∑
t=0

(x(t )−α1)T Q(x(t )−α1)+u(t )T Ru(t ) (4.10)

s.t. x+ = x +u

lim
t→∞

x(t ) =α1 , α ∈R .

where we assume that full information is available at each vehicle. Clearly we do not
know the value of α a-priori and thus we cannot solve the previous problem. A possible
way is that of optimizing over α as well, as we considered in Chapter 5. Since we want to
keep α as free variable, we can transform the problem considering a weighting matrix Q

the Laplacian of KN . This is a semi-definite matrix such that

Qi j =





deg(i ) if i = j

−1 if i ∼ j

0 otherwise,

where i ∼ j denotes that the vertexes i and j are neighbors and deg(i ) is the number
of edges that are incident to i . There always exists a matrix L such that (I ,LT )Z is the
incident matrix of the complete graph, so we can rewrite Q as

Q = Z T (I +LT L)Z .
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With this choice of Q we can rewrite the previous optimal control problem as a classical
LQ problem

min
u

∞∑
t=0

z(t )T (I +LT L)z(t )+u(t )T Ru(t ) (4.11)

s.t. z+ = z +Z u

where we used equation (4.7). The solution of the previous problem can be computed
in closed form.

Proposition 4.1 The state feedback that solves the problem (4.11) with R = I is u = F z

with

F =−k Z T (I +LT L) , k =
N +

p
N 2 +4N

N 2 +N
p

N 2 +4N +2N
.

Proof. We first show that we can find α> 0 such that S = α(I +LT L) is a solution of the
Riccati equation associated to the optimal control problem (4.11). The Riccati equation
is

SZ (R +Z T SZ )−1Z T S = I +LT L .

If we substitute we get that

α(I +LT L)Z (R +αZ T (I +LT L)Z )−1 Z T α(I +LT L) = I +LT L .

Let us multiply on the left and the right with Z T and Z respectively. The matrix Z T (I +
LT L)Z is the Laplacian of a complete graph and thus we have that Z T (I +LT L)Z = N I −
11T . Substituting we obtain

α(N I −11
T )

(
I +α(N I −11

T )
)−1

︸ ︷︷ ︸
Γ

α(N I −11
T ) = N I −11

T . (4.12)

Notice that Γ can be written as

Γ=
(
(1+αN )I −α11T

)−1 =
1

1+αN

(
I +

∞∑

i=1

(
αN

1+αN

)i

(11T )i

)
.

Since (11T )i = N i−111T , we can compute the previous sum, we have that

Γ= γ(α)
(
I +β(α)11T

)

with

γ(α) =
1

1+αN
, β(α) =

αN(
−N 2 +N

)
α+1

.

Equation (4.12) becomes

α2γ(α)N
(
N I −11

T
)
= N I −11

T
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from which we can compute

α=
1

2
+

1

2N

√
N 2 +4N . (4.13)

The feedback F is then given by

F =−(I +Z T SZ )−1Z T S .

Notice that (I +Z T SZ )−1 = Γ and since S =α(I +LT L) we have

F =−αγ(α)(I +β(α)11T )Z T (I +LT L) .

Using the fact that Z1= 0 we obtain

F =−αγ(α)Z T (I +LT L) =−k Z T (I +LT L)

with

k =αγ(α) =
N +

p
N 2 +4N

2N +N 2 +N
p

N 2 +4N
,

and this concludes the proof. ä

Corollary 4.1 The optimal control strategy u = K x solves (4.10) for some α ∈R, with Q

Laplacian of the graph KN and R = I . The feedback matrix is

K =−k(N I +LT L) , k =
N +

p
N 2 +4N

N 2 +N
p

N 2 +4N +2N
.

Proof. Using the result of the previous proposition we have that the optimal control for
the problem (4.10) is

u = F z = F Z x =−k Z T (I +LT L)Z =−k(N I −11
T ) .

ä
Notice that (I+K )1= 1,1T (K +I ) =1T and I+K is non-negative. Thus the optimal feed-
back matrix is doubly stochastic. From the discussion we had in Chapter 3 this implies
the agents converge to the barycenter of the initial condition.

4.4 Consensus with uniformly quantized data

Let us now assume that the agents can communicate over a communication network
that is modelled as a complete graph but with uniformly quantized information. This
implies the agent i has available its own state and quantized states of the teammates.
The transmission of quantized data allows us to cope with bandwidth constraints. Let
us define, as in [Fagnani and Zampieri 2004], the contraction rate as C = M/ǫ, where
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M is the half the size of the hypercube in which the initial condition lies, and ǫ is half
the size of the hypercube where the state converges. It is possible to show [Fagnani and
Zampieri 2004] that using uniform quantizers one needs at least C different levels, and
thus an alphabet of C different symbols, to drive the state inside the hypercube of size
2ǫ. Thus, if the agents exchange uniformly quantized data, the total number of symbols
that are sent over the network, in order to solve the consensus problem, are

Lu =
N (N −1)

2
C ,

which thus grows linearly with C .
Using as feedback gains the optimal one we compute previously, the feedback con-

trol law for the overall system becomes

ui =−k(N −1)xi +k
∑

j 6=i

qu(x j ) , i = 1, . . . , N . (4.14)

We have the following result.

Proposition 4.2 The feedback control law (4.14) solves the consensus problem under uni-

formly quantized communication.

Proof. Let us consider a component zi = xi −x j with i < j . Then we have that the closed
loop system becomes

z+
i = (1−k(n −1))zi +k

(
∑

s 6=i

qu(xi )−
∑

r 6= j

qu(xr )

)
.

Let us consider the function V (zi ) = |zi |.Then we have that

∆(V (zi )) =V (z+
i )−V (zi ) =

∣∣∣∣∣(1−kN )zi +k
∑

s 6=i

qu(xi )−k
∑

r 6= j

qu(xr )

∣∣∣∣∣−|zi |

É (|1−kN |−1) |zi |+k|qu(xi )−xi |+k|qu(x j )−x j |
É (|1−kN |−1) |zi |+2kδ .

Since

kN =
N 2 +N

p
N 2 +4N

N 2 +N
p

N 2 +4N +2N
É 1

we have that ∆V (zi ) < 0 if |zi | > 2δ/N . We can then consider the following Lyapunov
function

V (z1, . . . , zN−1) =V (z1)+·· ·+V (zN−1) .

We have that ∆V < 0 for

|z1|+ · · ·+ |zN−1| >
2(N −1)δ

N
.
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����

x1

x2

δ/2

δ/2

−δ/2

−δ/2

P
Q

x2 = x1 +δ

x2 = x1 −δ

Figure 4.4: Figure showing the situation discussed in the proof of Proposition 4.2.

If |zi | ∈ [−2δ/N ,2δ/N ] then the previous equation is satisfied. Thus ∆V < 0 if |xi − x j | >
2δ
N

for all i and j such that i < j .
We now need to show that the limt→+∞ x(t ) ∈ [α−ǫ,α+ǫ]. We limit here the proof to

the case when N = 2, the general case can then be proved in a similar way.
The condition ∆V < 0 holds true in this case if |z1| = |x1 − x2| > δ. This implies that

the Lyapunov function is negative outside the region delimited by the two lines x2 =
x1 +δ and x2 = x1 −δ showed in Figure 4.4. Thus for t →+∞ the state will be confined
inside that region. We now have two possible situation that can occur

(i) The state enters in one of the shaded regions shown in Figure 4.4. We have indi-
cated in dashed line the boundaries of the areas where qu(x1) is constant and with
dotted lines the areas where qu(x2) constant. Thus each of the shaded areas repre-
sents the intersection between areas of the state space where qu(x1) = qu(x2) = ξ

and the region delimited by the two lines described by |x1−x2| = δ. In this case we
have that the system dynamics reduce to

x+
1 = (1−k)2x1 +kξ

x+
2 = (1−k)2x2 +kξ

and we have that the steady state is given by x1 = x2 = ξ . Thus this means that the
state converges asymptotically to the center of the cell delimited by the dashed



4.4. Consensus with uniformly quantized data 61

and dotted lines. We have
lim

t→+∞
x(t ) = ξ ,

and thus (4.2) is fulfilled.

(ii) The state enters the region delimited by solid bold lines in Figure 4.4 in the white
area, between the two shaded one. Assume that the state is at the point P , denoted
by the cross in the figure. In this case we have that two possibilities: the first the
system dynamics evolves so that the trajectory enters the shaded area, and we
thus obtain a behavior as described in point (i), otherwise the trajectories remain
confined in that white area. In this case anyway, it is clear that

lim
t→+∞

x(t ) ∈ [α−δ,α+δ] ,

where (α,α) is the coordinate of the point Q in the Figure.

This concludes the proof. ä

Remark 4.1

Notice that any trajectory of the system

x+
1 = (1−k)x1 +kqu(x2)

x+
2 = (1−k)x2 +kqu(x1)

either converges to a point such that qu(x1) = qu(x2) or to a limit cycle of period 2.
The first statement follows directly from the previous proposition. We show that a

trajectory can converge to a limit cycle. Let us assume, without loss of generality, that
the initial condition is a point P as in Figure 4.4, which can be reached by the argument
in the previous proposition. Let P = (x̄1, x̄2). Then we have that after two time steps the
state reaches

x(2)
1 = (1−k)2x̄1 +k(2−k)ξ2

x(2)
2 = (1−k)2x̄2 +k(2−k)(ξ2 −δ)

where the difference in quantization level is only δ since x̄1 and x̄2 belong to neighbor
cells. Straightforward calculations show that (x(2)

1 , x(2)
2 ) = P if x̄1(0) = ξ2 and x̄2(0) = ξ2 −

δ. In this case then we obtain the following system

(
x(2)

1

x(2)
2

)
=

(
(1−k)2 k (2−k)
k (2−k) (1−k)2

)(
x̄1

x̄2

)

where the state transition matrix has eigenvalues λ1 = 1 and λ2 = 1−4k+2k2 with eigen-
vectors (1,1)T and (1,−1)T , respectively. Thus P is close to the line passing through Q

with angle −45◦ then the system enters in a limit cycle of period 2, whereas if the point
lies close the the 45◦ line then the trajectory converges.
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4.5 Consensus with uniformly and logarithmically quantized data

Although the uniform quantization of the information allows to cope with limited band-
width channels, the number of bits that needs to be transmitted is rather large. In this
section we study some alternatives where data is logarithmically quantized.

4.5.1 Logarithmic-logarithmic quantization

In the case when only logarithmic quantizers are used, using results from [Fagnani and
Zampieri 2004], the total number of symbols on the network is

Lℓ =
N (N −1)

log 1+δℓ
1−δℓ

logC ,

where δℓ ∈ (0,1) is the quantization level of the logarithmic quantizer. Notice that now
the number of symbols grows only logarithmically with C . Thus it would be convenient
from a bandwidth point of view to use as many logarithmic quantizers as possible. How-
ever, we show in the following that it is not possible to substitute all the uniform quan-
tizers with logarithmic one.

In order to carry out the analysis, we approximate the quantization error for a loga-
rithmic quantizer as multiplicative noise

qℓ(x) ≈ x(1+e) (4.15)

where e ∼ U (−δu ,+δu). Since a uniform quantizer can be approximated as additive
noise [Widrow et al. 1995], then from (4.4) we have that

qℓ(x) = exp(qu(log(x))) ≈ exp(log (x)+e) = x +exp(e)

with e ∼U (−δu ,+δu). For small e we have that exp(e) ≈ (1+e) and thus we obtain (4.15).
Under this assumption we state a stochastic consensus problem where the state x is

now a random variable. We will say that a feedback law u = g (x) solves the consensus
problem for the system x+ = x +u, if

lim
t→+∞

Ex(t ) =α1 ,

and the variance of x is bounded. We have the following result.

Proposition 4.3 The feedback control law, for a system with N = 2 agents,

u1 =−kqℓ(qℓ(x1)−x2)

u2 =−k(x2 −qℓ(x1)) .

with k given as in Corollary 4.1, does not solve the stochastic consensus problem.
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Proof. Modelling the quantization as multiplicative noise we have

x+ =
(
1−k k

k 1−k

)
x +e1

(
−k 0
k 0

)
x

+e2

(
−k k

0 0

)
x +e1e2

(
−k 0
0 0

)
x

= (A+e1B +e2C +e1e2D)x ,

where we assume that e1 and e2 are random variables uniformly distributed in [−δu ,δu]
and independent. In order to prove that the consensus is not solved we show that vari-
ance is unbounded. Let us consider z = x1 − x2, we show that Ez2 is unbounded when
t →+∞. We can write

Ez2 =E(x2
1 +x2

2 −2x1x2) =
(
1 −1

)
E(xxT )

(
1
−1

)
. (4.16)

Let us define Q =ExxT . Then we have, after some cumbersome calculations, that

Q+ = AQ AT +σ2BQB T +σ2CQC T +σ4DQDT =
(
Q11 Q12

Q12 Q22

)
, (4.17)

where σ2 =Ee2
1 =Ee2

2 = δ2
u/6. Let P = vec(Q) = [Q11,Q12,Q12,Q22]T then we obtain

P+ = (A⊗ A+σ2B ⊗ B +σ2C ⊗ C +σ4D ⊗ D)︸ ︷︷ ︸
=Ω

P . (4.18)

Let us consider Ω the matrix Ω where the third row and column, corresponding to the
repeated state Q12, has been removed. We compute the polynomial characteristic q(z) =
det(zI − Ω̄) and we obtain that

q(0) = 1−
1

324
δ8k5 +

(
16+

5

648
δ8 +2/9δ4

)
k4 +

(
−32−2/9δ4 −

1

216
δ8

)
k3+

(
24+

1

1296
δ8 +1/18δ4

)
k2 −8k

Substituting k = (1+
p

3)/(2(2+
p

3)) we obtain that q(0) < 0 for any δu . From Jury’s sta-
bility criterion [Åström and Witternmark 1997, page 81] we can conclude that the matrix
Ω̄ has at least one eigenvalue outside the unit circle. This implies that the system (4.18)
is unstable. But since Ez2 is a linear combination of the elements of P , then (4.16) also
diverges. ä

Remark 4.2

The intuitive explanation of why the previous strategy does not yield consensus is that
we quantize logarithmically the state and not a difference. Indeed the quantization error
of a logarithmic quantizer is small around the origin (see Figure 4.2(b)). However in
the consensus problem we want small errors around the equilibrium α1. Clearly if we
consider the quantization of the differences, such as z, then the equilibrium point is the
origin, see equation 4.9.
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4.5.2 Uniform-logarithmic quantization

The previous negative result forces the design of control laws where data are both uni-
formly and logarithmically quantized.

Let us then consider the case where only some of the uniform quantizers are sub-
stituted by logarithmic quantizers. We consider topologies where the complete graph is
divided in two subgraphs: a tree, modelling data that is uniformly quantized, and the
remaining graph modelling logarithmically quantized data exchange. We have that for
a system of N agents the total amount of symbols is

Lu,ℓ = (N −1)C +
N 2 −3N +2

2log 1+δℓ
1−δℓ

logC .

Let us consider two instrumental cases, that is the two- and three-agent system.

Proposition 4.4 The feedback control law

u1 =−k qℓ

(
qu(x1)−x2

)

u2 =−k
(
x2 −qu(x1)

)

with k given as in Corollary 4.1, solves the consensus problem.

Proof. Let us consider the difference z = x1 − x2. Let us consider the Lyapunov function
candidate V = |z|. Using the bounds on the quantization errors, we have that

∆V (z) = |z −k(qℓ(qu(x1)−x2)−x2 +qu(x1))|− |z|
É −2k|z|+k|z|δℓ+2kδ+kδδℓ .

Thus it follows that ∆V (z) < 0 if

|z| >
δ(2+δℓ)

2−δℓ
.

Then we have an analogous situation to that the proof of Proposition 4.2. The state en-
ters the region limited by the solid lines shown in Figure 4.5. In this case the shaded
regions are of different shape, but similar arguments as in the proof of Proposition 4.2
conclude the proof.

ä
When the number of agents is N = 3, then there are three different topologies, de-

pending on how we chose the tree in the complete graph. In Figure 4.6 the tree possible
topologies are shown (up to a relabelling of the agents).

We can prove a result similar to the case N = 2.

Proposition 4.5 Let us define the following feedback control laws for the three different

topologies shown in Figure 4.6
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x1

x2

δ/2

δ/2

−δ/2

−δ/2

x2 = x1 + δ(2+δℓ)
2−δℓ

x2 = x1 − δ(2+δℓ)
2−δℓ

Figure 4.5: Figure showing the situation discussed in the proof of Proposition 4.4.

- Topology 1

u1 =−kqℓ(qu(x1)−x3)−kqℓ(qu(x2)−x3)

u2 = kqℓ(qu(x1)−x3)−2kqℓ(qu(x2)−x3)

u3 =−k(qu(x1)−x3)−k(qu(x2)−x3) .

- Topology 2

u1 =−kqℓ(qu(x1)−x2)−kqℓ(qu(x1)−x3)

u2 =−kqu(x1)−x2)−kqℓ(qu(x1)−x3)
)

u3 =−2kqu(x1)−2kqℓ(qu(x1)−x2) .

- Topology 3

u1 = 2kqℓ(qu(x1)−x2)−kqℓ(qu(x2)−x3)

u2 = k(qu(x1)−x2)−kqℓ(qu(x2)−x3)

u3 = kqℓ(qu(x1)−x3)kqu(x2)−x3) .

with k given as in Corollary 4.1 These control law solve the consensus problem.

Proof. Similar to the proof of Proposition 4.4.
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1 11

222

3 33

Topology 1 Topology 2 Topology 3

Figure 4.6: Three different communication topologies for N = 3. Solid lines denote uni-
formly quantized data exchange, and dashed lines logarithmically quantized data ex-
change.

ä
This methodology can be carried on for any given number of agents. However, it is rather
complicated to characterize the feedback laws for all the topologies corresponding to a
particular N . In the next section we consider the class of Cayley graphs.

4.6 Consensus over Cayley graphs with logarithmically quantized

data

Let us assume we have fixed an Abelian group G having N elements and a subset S ⊆G

such that 0 ∈ S. Consider the Cayley graph G associated with G and S, as we discussed
in Section 3.4. We will assume that the Cayley graph represents almost perfect data ex-
change (namely a uniform quantization with very small quantization error). Let P0 be a
Cayley stochastic matrix compatible with G . We now consider the possibility that each
agent i can transmit functions of the exact information it has available to some other
agent. We assume that such transmissions are logarithmically quantized and that the
symmetry of the overall structure, imposed by the Cayley graph, is maintained. In order
to achieve this, we define q outputs

zs = Hs x, s = 1, . . . , q (4.19)

where Hs are Cayley matrices compatible with G . Thus the i -th component of outputs
z1, . . . , zq represents the information the i -th agent transmits to the other agents. In this
way every agent transmits q scalar messages. We assume that logarithmically quantized
data are modelled as a multiplicative noise distortion, in particular we have that each
component of the output zs is distorted by the multiplicative noise 1+es,i . To complete
the model we have to specify which systems receive this information and how this in-
formation is used for control.

We assume that each agent weights the output data from the other agents through
Cayley matrices Ps , compatible with G , such that the closed loop dynamics can be de-
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scribed as

x+ = P0x +
q∑

s=1
Ps (I +Es )Hs x , (4.20)

where Es is the matrix

Es =




es,1

. . .

es,N


 .

All noises es,i are assumed to be independent, having zero mean and finite variance
δ2

s . Notice that the nonzero elements of the matrix Ps specify which logarithmic link is
active. More precisely, (Ps )i j 6= 0 means that the signal (Hs x) j is transmitted to i after
being logarithmically quantized.

Let us impose, as in Chapter 4, that the configurations x =α1=αχ0 are equilibrium
points, with χ0 the trivial character of the group G and α ∈ R. Thus we impose that
Ex+ =Ex where the expected value is taken with respect to all es,i . This happens if

P0χ0 =χ0,

Hsχ0 = 0, s = 1, . . . , q.

The asymptotic behavior of the dynamical system (4.20) can be studied in a similar
way to the random case treated in Section 3.5.2 by considering Q = E[xxT ]. Let P =
P0 +

∑
s Ps Hs . The evolution for Q can be described as follows

Q+ = PQP T +
q∑

s=1
PsE

(
Es HsQH T

s Es

)
P T

s .

Observe that, if M is any square matrix, then

E(Es MEs )i j =E(esi Mi j es j ) =
{

Mi iE(e2
si

) if i = j .
0 if i 6= j

This implies that

Q+ = PQP T +
q∑

s=1
δ2

s Ps diag(HsQH T
s )P T

s , (4.21)

where we use the notation

diag(M) = diag(M1,1, . . . , MN ,N ) .

Let Y = I −N−1χ0χ
∗
0 and define the signals y(t ) = Y x(t ) and xB (t ) = N−1χ0χ

∗
0 x(t ).

Let moreover

w(t ) =E[||y(t )||2] = trE[y(t )y(t )T ] = tr(Y Q(t )Y T )

ws (t ) =E[||zs (t )||2] = tr(HsQ(t )H T
s )

s(t ) =E[||xB (t )||2] = tr(N−1χ0χ
∗
0 Q(t )N−1χ0χ

∗
0 ) = N−1χ∗

0 Q(t )χ0, .
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where the signals zs (t ) are defined in (4.19).
In order to study the evolution of the above quantities, we need a technical result on

the trace operator for Cayley matrices. Assume P is a Cayley matrix. We know that P can
be written as

P =
∑

χ∈Ĝ

θ(χ)N−1χχ∗ . (4.22)

Consider now the norm ||P ||2 =
∑

χ∈Ĝ |θ(χ)|2. Notice that, if π is the generator of P , then

θ(χ) = π̂(χ) for all χ ∈ Ĝ , where π̂ is the Fourier transform of π. Moreover by Parseval the-
orem we have that ||P ||2 =

∑
χ∈Ĝ |π̂(χ)|2 = N

∑
g∈G |π(g )|2. We have the following result.

Lemma 4.1 Assume that P is a Cayley matrix and D is a diagonal matrix. Then,

tr(PDP∗) = N−1||P ||2tr(D) .

Proof. Assume that P is represented as in (4.22). We can write

PDP∗ =
∑
χ,χ̄

θ(χ)θ(χ̄)N−1χχ∗DN−1χ̄χ̄∗ = N−1
∑
χ,χ̄

θ(χ)θ(χ̄)(χ∗Dχ̄)N−1χχ̄∗ .

Hence,
tr(PDP∗) = N−1

∑
χ,χ̄

θ(χ)θ(χ̄)(χ∗Dχ̄)tr(N−1χχ̄∗) .

It is immediate to verify that

tr(N−1χχ̄∗) =
{

0 if χ 6= χ̄

1 if χ= χ̄

Moreover, we have that

χ∗Dχ=
∑

g∈G

χ(g )∗Dg gχ(g ) =
∑

g∈G

Dg g = tr(D) .

Substituting in the expression above we finally obtain

tr(PDP∗) = N−1
∑
χ
|θ(χ)|2tr(D) = N−1||P ||2tr(D) .

ä
Using the above lemma, we obtain from (4.21) that

w+ = tr(Y PQP T Y T )+N−1
q∑

s=1
δ2

s ||Y Ps ||2ws

w+
r = tr(Hr PQP T H T

r )+N−1
q∑

s=1
δ2

s ||Hr Ps ||2ws (4.23)

s+ = s +N−1
q∑

s=1
δ2

s |λs |2ws
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where λs is defined by Psχ0 =λsχ0 (equivalently, λs = π̂Ps (χ0)).
Define ζ(t ) to be the q-dimensional vector with ws (t ) at position s and L the q ×q-

matrix with Lr s = N−1δ2
s ||Hr Ps ||2. We have the following result.

Lemma 4.2 We have

ζ(t ) ≤ (ρ2I +L)tζ(0)

where the inequality is meant componentwise and where ρ = ρ(P ) is the essential spectral

radius of P as defined in Section 3.5.

Proof. Since P is a Cayley matrix, it can be written as in (4.22). Then

tr(Hr PQP T H T
r ) =

1

N

∑

χ6=χ0

|θ(χ)|2tr(Hr QH T
r χχ∗)

≤
1

N
max{|θ(χ)|2 : χ 6=χ0}

∑

χ6=χ0

tr(Hr QH T
r χχ∗)

= ρ2tr

(
Hr QH T

r

1

N

∑
χ
χχ∗

)
= ρ2tr

(
Hr QH T

r

)
= ρ2wr

Define now a sequence of q dimensional vectors ζ̄(t ) as follows. Let ζ̄(0) = ζ(0) and let

ζ̄+ = (ρ2I +L)ζ̄

By induction it can be proved that ζ(t ) ≤ ζ̄(t ) for all t and this proves the inequality. ä
Define the q-dimensional column vectors a,b defined by as = N−1δ2

s ||Y Ps ||2 and bs =
N−1δ2

s |λs |2 respectively. We can state and prove a general convergence result.

Theorem 4.1 Letρ = ρ(P ) and let ρ̄2 be the induced 2-norm of the matrixρ2I+L. Assume

that L 6= 0 and that ρ̄2 < 1. Then, there exists a scalar random variable α∗ such that

E||α∗χ0 −x(t )||2 É Aρ2t +B ρ̄2t (4.24)

where

A = E||Y x(0)||2 −
||a||

ρ̄2 −ρ2
(E||H x(0)||2)1/2

B =
( ||a||
ρ̄2 −ρ2

+
||b||

(1− ρ̄)2

)
(E||H x(0)||2)1/2

and where Y = I − 1
N
χ0χ

∗
0 and

H =




H1
...

Hq



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Proof. Notice that, as showed in the proof of Lemma 4.2, we have

tr(Y PQP T Y T ) ≤ ρ2w.

Define the sequence w̄(t ) as follows. Let w̄(0) = w(0) and let

w̄+ = ρ2w̄ +||a|| ||ζ̄||

By induction it can be proved that w(t ) ≤ w̄(t ) for all t . Notice moreover that

w̄(t ) = ρ2t w(0)+||a||
t−1∑

i=0

ρ2(t−1−i )||(ρ2I +L)iζ(0)|| ≤

≤ ρ2t w(0)+||a||
t−1∑

i=0

ρ2(t−1−i )ρ̄2i ||ζ(0)|| =

=
(

w(0)−
||a|| ||ζ(0)||
ρ̄2 −ρ2

)
ρ2t +

( ||a|| ||ζ(0)||
ρ̄2 −ρ2

)
ρ̄2t

Since L 6= 0, we have that ρ̄2 > ρ2.
Notice now that

E[||xB (t +1)−xB (t )||2] =E[||xB (t +1)||2]+E[||xB (t )||2]−2trE[xB (t +1)xB (t )T ] .

On the other hand, since

x+
B = xB +N−1

q∑
s=1

χ0χ
∗
0 Ps Es Hs x

we have that

trE[xB (t+1)xB (t )T ] = trE[xB (t )xB (t )T ]+N−1
q∑

s=1
tr [χ0χ

∗
0 PsE(Es )HsE(x(t )xB (t )T )] = s(t ) .

Using Lemma 4.2 we can then estimate as follows

E[||xB (t +1)−xB (t )||2] = s(t +1)− s(t ) = bT ζ(t ) ≤ bT (ρ2I +L)tζ(0) ≤ ρ̄2t ||b|| ||ζ(0)|| .
(4.25)

This shows that xB (t ) converges in mean square sense to a random variable α∗χ0 and
that

(E||α∗χ0 −xB (t )||2)1/2 É
∞∑

s=t

(E||xB (s +1)−xB (s)||2)1/2 ≤
||b||1/2 ||ζ(0)||1/2

1− ρ̃
ρ̄t . (4.26)

The bound (4.24) now follows from

E||α∗χ0 −x(t )||2 =E||α∗χ0 −xB (t )||2 +E||y(t )||2 (4.27)

and from the fact that w(0) =E||Y x(t )||2 and ζ(0) =E||H x(t )||2.
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ä
Notice that, since ρ̄ > ρ, then the rate of convergence is determined by the param-

eter ρ̄, namely by the induced 2-norm of the matrix ρ2I +L. In the sequel we will apply
previous results to analyze a particular but significant example.

We assume the same communication graph of Example 3.3, namely, the Cayley graph
G (ZN ,S), where S = {0,1}. We assume that P0 is the stochastic Cayley matrix generated
by the distribution

πP0 (0) = 1−k , πP0 (1) = k .

where k ∈ [0,1]. Assume moreover q = 1, namely that each agent transmits just one
scalar signal. Precisely, define H1 to be the Cayley matrix generated by the distribution

πH1 (0) = 1, πH1 (1) =−1.

This means that each agent i transmits the difference between its own state xi and the
the state xi−1 which is known exactly by the agent i . It remains to choose the matrix P1.
Our objective is to choose P1 in such a way that P = P0 +P1H1 = N−1χ0χ

∗
0 . This can be

done by letting

πP1 (0) =πP1 (N −1) = 0, πP1 (g ) =
g +1−N

N
g = 1, . . . , N −2

and k = N−1
N

. Indeed, noticing that πP1H1 (g ) = πP1 (g )−πP1 (g −1), this definitions yield
P1H1 with the following generator

πP1 H1 (0) = 0, πP1 H1 (1) =
2−N

N
, πP1 H1 (g ) =

1

N
∀g = 2, . . . , N −1.

With such a choice we have that PH1 = PY = 0. Notice moreover that P1χ0 = λ1χ0

implies that

λ1 =
N−1∑
g=0

πP1 (g ) =
N−2∑
g=1

g +1−N

N
=

N−2∑
g=1

−
g

N
=−

(N −1)(N −2)

2N

and so

b =
1

N
δ2

1|λ1|2 = δ2
1

(N −1)2(N −2)2

4N 3
.

Moreover we have that

||H1P1||2 = N
N−1∑
g=0

|πP1 H1 (g )|2 =
(2−N )2

N
+ (N −2)

1

N
=

(N −1)(N −2)

N

which implies that

L =
1

N
δ2

1||H1P1||2 = δ2
1

(N −1)(N −2)

N 2
.
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Finally notice that Y P1 = (I −P )P1 = P1 −λ1P and so

||Y P1||2 = N
N−1∑
g=0

|πP1 (g )−λ1πP (g )|2 = 2N
(N −1)2(N −2)2

4N 4
+

N
N−2∑
g=1

∣∣∣∣−
g

N
+

(N −1)(N −2)

2N 2

∣∣∣∣
2

=
(N −1)2(N −2)2

4N 2
+

1

N

N−2∑
g=1

N 2g 2 − (N −1)(N −2)

N 2

N−2∑
g=1

g =
(N −1)(N −2)(5N 2 −3N −6)

12N 2

which implies that

a = N−1δ2
1||Y P1||2 = δ2

1
(N −1)(N −2)(5N 2 −3N −6)

12N 3
.

For big N we have that L ≃ δ2
1, a ≃ δ2

1
5N
12 and b ≃ δ2

1
N
4 . In this case, since we have that

ρ(P ) = 0, applying Theorem 4.1, we obtain that

E||α∗χ0 −x(t )||2 É Bδ2t
1

where

B =
(

5

12
+

δ2
1

4(1−δ1)2

)
N (E||H x(0)||2)1/2

Let δ1 = 1/2, then we have that the strategy proposed in this case allows a conver-
gence rate ρ ≃ 1/2. We need in total N uniform quantizers and N (N − 2) logarithmic
quantizers. Thus, the total number of symbols Ltot that needs to be transmitted during
each sampling period is

L
Cayley
u,ℓ = NC +

2

log3
N (N −2)logC .

Without the logarithmic quantizers we need only L
Cayley
u = NC symbols, but we obtain

a convergence rate ρ ≃ 1− 2π2

N 2 (from Theorem 3.1). Observe that for large C the total
number of symbols in the two cases are slightly different, but we obtain a manifest im-
provement in terms of rate of convergence.

If we assume that N = 2ν and we take as an alternative method the one proposed in
Proposition 3.3, thus without quantization, it can be shown that in this way we obtain a
convergence rate

ρ ≃ 1−
π2

2log N
,

with the total number of symbols L
Cayley
ℓ

= C N log N . Also in this case it is clear that
in some situations the technique based on the use of logarithmic quantizers proposed
above presents much better convergence performance through the use of a comparable
total number of symbols.
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Figure 4.7: Total number of communicated symbols for the proposed control strategies
for various choices of N and C . Plots show that the strategy with only uniform quantizers
requires a large amount of symbols compared to the strategies with logarithmic quantiz-
ers particularly when N and C are large. The two strategies with logarithmic quantizers
are comparable.

4.7 Comparisons and numerical results

4.7.1 Total number of symbols

An interesting comparison between the different strategies we have considered is on the
total number of symbols that each strategy requires. The total number of symbols is re-
lated to the total amount of data circulating in the network at each time instance. In Fig-
ure 4.7 are shown three plots shown how the number of symbols changes as function of
the number of vehicles N and the contraction rate C . The plots refer to the three strate-

gies: uniform Lu , uniform-logarithmic Lu,ℓ and Cayley uniform-logarithmic L
Cayley
u,ℓ . As

it can be seen comparing the three plots, when the number of vehicle and the contrac-
tion rate increase the total number of symbols needed is much lower when logarithmic
quantizers are used.
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4.7.2 Simulations

Computer simulations were performed to illustrate the behavior of the proposed strate-
gies. Figure 4.8 shows the trajectories of three vehicles moving on a plane. The vehi-
cles are modelled as point masses and with independent controllers for the x and y

coordinates. In particular in Figure 4.8(a) is shown the strategy where only uniformly
quantized data is used. The grid in the picture divides the plane in cells corresponding
to quantization regions of the quantizer. Notice, as expected, the vehicles converges to
the center of one of the cells. The square indicates the consensus point that would be
reached if no quantization data is used.

In Figure 4.8(b) are shown three vehicles that exchange data both uniformly and log-
arithmically according to the Topology 1 shown in Figure 4.6. Also in this case consensus
is achieved.

In Figure 4.9 it is shown the stable limit cycle for two vehicles when only uniform
quantized data is used. In particular Figure 4.9(b) are shown the x-coordinate for the
two vehicles as function of time, showing clearly the limit cycle.

4.8 Summary

In this chapter we have considered the consensus problem under quantized commu-
nication data. In particular we have designed controller and communication strategies
that solve the consensus problem when either uniform quantizers or a mixture of uni-
form and logarithmic quantizers are used. Results have been extended to the case of
communication networks that can be modelled as Cayley graphs. Expressions of the
total number of symbols needed to achieve consensus have also been derived. This al-
lowed us to compare the different strategies.
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(a) Trajectories of three vehicles exchanging uniformly quantized data.
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(b) Trajectories of three vehicles exchanging uniformly and logarithmically
quantized data.

Figure 4.8: Simulations of three vehicles moving on plane.
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(a) Trajectories of two vehicles exchanging uniformly quantized data
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(b) Evolution of the x-coordinate for the two vehicles exchanging uniformly quantized
data.

Figure 4.9: Simulations for two vehicles exchanging uniformly quantized data.
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5
MODEL PREDICTIVE CONSENSUS

In this chapter we study the consensus problem, introduced in Chapter 4, in a different
setting. In particular, we assume that the agents are described by general linear dynam-
ics, possibly time-varying and different for each agent, that the inputs are constrained
and that a linear combination of the states needs to converge to a common value, the
consensus point, after a fixed time. Furthermore, we assume the consensus point is ne-
gotiated by the agents so that an overall cost function would be minimized. In order to
accommodate all the constraints a distributed model predictive control (MPC) strategy
is used to design the controller and to determine an optimal consensus point. In dis-
tributed MPC, a static finite-horizon optimization problem is decomposed into a set of
subproblems, each solved by an individual agent. The coordination of the subproblems
is, generally, achieved by an active communication, or sensing, among the agents [Com-
ponogara et al. 2002]. Distributed MPC for coordinating swarms of mobile agents was
recently proposed in the literature. Distributed MPC strategies for steering agents to a
stable formation are studied in [Dunbar and Murray 2004, 2005; Borrelli et al. 2005].
In [Dunbar and Murray 2004, 2005] the authors propose a scheme where the equilib-
rium is given a priori, while in [Borrelli et al. 2005] each agents need to know the models
and constraints of the other teammates, in order to solve a local optimal control prob-
lem. In this chapter we consider a less restrictive setup.

The main contribution of this chapter is to propose a decentralized control strategy
that yields consensus in fixed time. In this solution, agents can be described by arbitrary
linear difference equations and their input subject to convex constraints. The proposed
algorithms require the communication of possible consensus point among the agents
in order to determine an optimal point. Contrary to related work, the agents do not

77
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need any model of the dynamics of their teammates, nor exchange complete planned
trajectories. We explore various communication, computation, and control structures,
and demonstrate the performance of the algorithms by numerical examples.

5.1 Outline

The chapter is organized as follows. In Section 5.2 we formally define the subsystem
models and the distributed model predictive control problem. In Section 5.3 it is shown
how primal decomposition techniques and incremental subgradient methods allow us
to find a distributed solution to this consensus problem, in which each agent performs
individual planning of its trajectory and exchanges critical information with neighbors
only. We explore different computation and control structures needed in order to cope
with disturbances and changes in the system configuration, in Section 5.4. The perfor-
mance of these different structures are demonstrated by numerical examples in Sec-
tion 5.5.

5.2 Problem formulation

Consider N > 1 agents whose dynamics are described by the following discrete time
state equations

xi (t +1) = Ai xi (t )+Bi ui (t )

yi (t ) =Ci xi (t ) , i = 1, . . . , N ,

where Ai ∈ Rni×ni , Bi ∈ Rni×pi and Ci ∈ Rsi×ni . We assume that the inputs are con-
strained according to

ui (t ) ∈Ui := {v : ui É v É ui }, (5.1)

where ui ,ui ∈Rpi and the inequalities are element-wise.
Let τ> 0 be a finite and fixed time. We want to find a sequence of inputs ui (0), . . . ,ui (τ−

1), with i = 1, . . . , N and ui (t ) ∈Ui for all t = 0, . . . ,τ−1, such that

yi (τ) = θ, (5.2)

where θ ∈Θ is the consensus point and Θ is a given convex and compact set. Namely we
are seeking a control sequence so that in fixed time we reach a consensus, meaning that
all the outputs are equal at time τ.

In order for (5.2) to hold, the outputs need to have the same dimensions, i.e., we
require that si = s j for all i , j . We assume that the following cost function is associated
to the i -th system,

Vi (yi (t ),ui (t ),θ) =
(
yi (t )−θ

)T
Qi

(
yi (t )−θ

)
+ui (t )T Ri ui (t ) (5.3)
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where Qi ∈Rs×s and Ri ∈Rpi×pi are positive definite symmetric matrices (i.e., we pe-
nalize deviations from the consensus point and the use of control effort). Let us intro-
duce the following vectors

xi =




xi (1)
xi (2)

...
xi (τ)




, ui =




ui (0)
ui (1)

...
ui (τ−1)




,

and the matrices Qi = I ⊗ Qi , Ri = I ⊗ Ri , where I is the identity matrix and ⊗ is the
Kronecker matrix product. We have that the following holds

xi =




Ai

A2
i

...
Aτ

i




︸ ︷︷ ︸
Ei

x0
i +




Bi 0 0 . . . 0
Ai Bi Bi 0 . . . 0

...
. . .

...

Aτ−1
i

Bi Aτ−2
i

Aτ−3
i

Bi

... Bi




︸ ︷︷ ︸
Fi

ui .

We consider next the following optimization problem.

minimize
u1,...,uN,θ

N∑

i=1

Vi (ui ,θ) (5.4)

s.t. Hi (Ei x0
i +Fi ui ) = θ

θ ∈Θ

ui ∈
τ∏

i=1

Ui ,

where cost function is

Vi (ui ,θ) =
τ∑

t=1
Vi (yi (t ),ui (t ),θ) = (Hi (Ei x0

i +Fi ui )−1⊗ θ)T Qi (Hi (Ei x0
i +Fi ui )

−1τ⊗ θ)+uT
i Ri ui

with 1 the vector (1,1, . . . ,1)T , and where the second constraint in the optimization
problem corresponds to the consensus condition yi (τ) = θ, which has been rewritten
as

yi (τ) =Ci xi (τ) =
(
0 . . . 0 Ci

)
︸ ︷︷ ︸

Hi

xi = Hi (Ei x0
i +Fi ui ) = θ .

In order to make the problem well posed the following assumptions need to be satisfied.
First, the dynamical systems are assumed to be controllable and observable. Second, the
meeting time τ is large enough so that all θ in the set Θ is feasible, i.e., all θ in the set Θ
are possible consensus points. Third, for all θ ∈ Θ and i = 1, ..., N , there exists ui in the
relative interior of

∏τ
i=1 Ui such that yi (τ) = θ. This condition means that it should be

possible to reach θ without saturating the control signal.
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5.3 Distributed negotiation

In this section we show how the optimal consensus point, θ, can be computed in a dis-
tributed way. This is particularly important in multi-agent applications since generally
an agent do not have all the information available. More precisely, we assume that the
agents can exchange data over a communication network modelled by a directed graph
G = (V ,E ), which we will call the communication graph. The set V is the vertex set and
E is the arc set. We associate to each agent a vertex of the graph and we have that an arc
(i , j ) ∈ E if and only if agent i can transmit data to agent j .

In order to transform the optimization problem (5.4) in a distributed way we use pri-
mal decomposition in combination with incremental subgradient methods (e.g., [Bert-
sekas et al. 2003]). One important feature of this type of problems is that they can be
solved in a decentralized way by an iterative algorithm. The main limitation is that the
convergence to the optimum is guaranteed only for particular classes of communica-
tion graphs G , which we will describe in detail in the next section.

Since Hi (Ei x0
i
+Fi ui ) = θ, we can eliminate the dependence from θ in Vi (ui ,θ). Thus

we have

Vi (ui ) =
(
Hi (Ei x0

i +Fi ui )−1⊗ (Hi (Ei x0
i +Fi ui ))

)T
Qi

(
Hi (Ei x0

i +Fi ui )

−1⊗ (Hi (Ei x0
i +Fi ui ))

)
+uT

i Ri ui .

We can then define qi (θ) as follows

qi (θ) = minimum
u1,...,uN

Vi (ui ) (5.5)

s.t. Hi (Ei x0
i +Fi ui ) = θ

ui ∈U
τ
i .

Then the optimization problem (5.4) can be written as

minimize
θ

N∑

i=1

qi (θ) (5.6)

s.t. θ ∈Θ .

since the only coupling between the agents is θ. We will later use subgradients to find
the consensus point and therefore we give the following definition.

Definition 5.1 ([Bertsekas et al. 2003]) Let f : Rn →R be a convex function. We say that

a vector λ ∈Rn is a subgradient of f at point x ∈Rn if

f (z) Ê f (x)+λT (z −x)

for all z ∈Rn .

Proposition 5.1 The cost function qi (θ) defined in (5.5) is a convex function and a sub-

gradientλi is given by the Lagrange multipliers corresponding to the constraint Hi (Ei x0
i
+

Fi ui ) = θ.
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Proof. We start by showing that a subgradient is given by the Lagrange multipliers corre-
sponding to the constraint Hi (Ei x0

i
+Fi ui ) = θ. By Lagrangian relaxation we can define

L(ui ,θ,λi ) = Vi (ui )−λT
i (Hi (Ei x0

i +Fi ui )−θ) ,

where λi are Lagrange multipliers. We also introduce the dual function

d(λi ,θ) = min
ui∈U

τ
i

Vi (ui )−λT
i (Hi (Ei x0

i +Fi ui )−θ) .

Since the constraint Hi (Ei x0
i
+Fi ui ) = θ is linear in ui and there exist a solution to this

equation (by assumption) within the relative interior of U
τ
i

and the function Vi is con-
vex and the set U

τ
i

is convex, strong duality follows from Theorem 6.4.4 (p. 373) in [Bert-
sekas et al. 2003]. Now qi (θ) can be expressed as

qi (θ) = max
λi

d(λi ,θ) .

Consider two feasible points, θ† and θ‡, and let λ†
i

be the Lagrange multipliers corre-

sponding to the relaxed constraint for θ†, then

qi (θ‡) = max
λi

{
min

ui∈Ui

{
Vi (ui )−λT

i (Hi (Ei x0
i +Fi ui )−θ‡)

}}
Ê

Ê min
ui∈U

τ
i

{
Vi (ui )− (λ†

i
)T (Hi (Ei x0

i +Fi ui )−θ‡)
}
=

= min
ui∈U

τ
i

{
Vi (ui )− (λ†

i
)T (Hi (Ei x0

i +Fi ui )−θ†)
}

+ (λ†
i
)T (θ‡ −θ†) = q(θ†)+ (λ†

i
)T (θ‡ −θ†)

Hence, by the definition of a subgradient, λ†
i

is a subgradient of qi (.) at θ†. Now qi (θ‡)
can be expressed as

qi (θ‡) = max
λi

{
min

ui∈U
τ
i

{
Vi (ui )−λT

i Hi (Ei x0
i +Fi ui )

}
+λT

i θ
‡

}
=

= max
λi

{
g (λi )+λiθ

‡
}

where g (λi ) is some function and g (λi )+λiθ
‡ is convex in θ‡. Since qi (θ‡) is the point-

wise maximum of a family of convex functions, qi (θ‡) is convex. ä
To find the consensus point θ, we next use incremental and randomized subgradient
methods.

5.3.1 Incremental subgradient algorithms

We present in the following two algorithms that compute the optimal consensus point,
θ, for two classes of communication graphs. These algorithms are based on the incre-
mental subgradient methods from optimization theory [Bertsekas et al. 2003]. The main
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1

2

(a)

1

4

(b)

Figure 5.1: Two examples of communication graphs over which is possible the solve
the optimization problem with an incremental algorithm. On the right a Cayley graph
defined on Z8 with S = {1}. On the left a Cayley graph defined on the same group with
S = {3}.

drawback of such algorithms is that the convergence is guaranteed only asymptotically
with respect to the number of iterations. Let for the rest of the section assume that in
the time horizon τ we do not include the iterations need to the subgradient algorithm
to converge. We will propose, in the next session, some way of circumventing this prob-
lem.

Subgradient methods work in a way that is similar to gradient methods, i.e., the up-
date is made in the opposite direction of the subgradient. The update equation is

θk+1 =PΘ{θk −αkλk } (5.7)

where PΘ{·} denotes the Euclidean projection on the set Θ and αk is the step-size. The
subgradient λk is, in the standard approach, computed for the total cost

∑
i qi (θ), and

thus independent of i . In this chapter we describe two algorithms where the generic
agent i computes the subgradient λi ,k corresponding to the function qi based on the
information received by the neighbor agents.

In the first algorithm we assume that the communication graph is a Cayley graph,
see Chapter 3 for the definition, defined on an additive Abelian group G of order |G| = N .
We consider S ⊂G such that |S| = 1 and with 〈S∪{0}〉 =G , that is S generates the group G

(see Chapter 2). Two examples of such communication graphs are shown in Figure 5.1.
Let us consider the example shown in Figure 5.1(a). Starting with an arbitrary initial
condition θ0 ∈Θ, the first agent computes the subgradient λ1,0 corresponding to q1(θ0).
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Algorithm 1: Cyclic Incremental Algorithm

1. Initialize θ0 and α0

2. k := 0
3. s := element of the set S

4. loop

5. for j := 1 to N do

6. i := ( j · s)mod N

7. Compute a subgradient, λi ,k , corresponding to qi (θk )
8. θk+1 :=PΘ{θk −αkλi ,k }
9. k := k +1

10. αk :=α0/k

11. end for

12. end loop

Algorithm 2: Randomized Algorithm

1. Initialize θ0 and α0

2. k := 0
3. loop

4. Choose i ∈ {1, ..., N } accordingly to uniform probability mass function
5. Compute a subgradient, λi ,k , corresponding to qi (θk )
6. θk+1 :=PΘ{θk −αkλi ,k }
7. αk :=α0/k

8. k := k +1
9. end loop

Using (5.7) an update of the consensus point θ1 is computed and communicated to
the next agent. This agent then computes in the same way the update of the consensus
point, θ2. The algorithm then proceeds iteratively. A pseudocode version of the algo-
rithm is summarized in Algorithm 1.

In the second algorithm, at each time step k the agent that has performed the last
update of the consensus point, accordingly to (5.7), randomly selects another agent,
among all the available agents, and sends the update to the selected agent. The advan-
tage of the method is that there is no need for a particular communication structure, the
communication graph is random, however at each time step every agent must be able
to communicate with any other agent. The algorithm is summarized in Algorithm 2.

We then have the following proposition.

Proposition 5.2 Algorithms 1 and 2 converge in the sense that limk→∞θk = θ∗, where θ∗

is the solution to the optimization problem (5.6).

The proof follows from Theorem 8.2.6 (p. 480) and Theorem 8.2.13 (p. 496) in [Bertsekas
et al. 2003], since the set Θ is convex and compact (so the norms of all possible subgra-
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dients have an upper bound), and the step-size ak is square summable over k but not
summable over k.

5.4 Implementation

In this section we present two new classes of control algorithms that address some im-
plementation issues in the consensus problem. Figure 5.2 shows the logical flow of the
incremental subgradient algorithms presented together with show the two new classes,
cf., [Skogestad and Postlethwaite 2005, p. 386].

More specifically, the logical flow of the scheme presented in the previous section is
summarized in Figure 5.2(a). In the negotiation phase, the optimal consensus point is
computed in a distributed way using Algorithm 1 or Algorithm 2. After the distributed
negotiation, which in general requires al long time before the consensus point is com-
puted is closed to the optimum, the corresponding control action is applied to the agent
in open loop during the execution phase. If there are no disturbances the system will
reach the consensus point at time τ. The main advantage of the scheme proposed is
that it is possible to formally guarantee that the optimal consensus point is computed
in a distributed way. Moreover only a small amount of information, the current consen-
sus point, needs to be exchange at each step. However, such strategy, being completely
open loop, is very sensitive to disturbances.

In Figure 5.2(b), a second control strategy is proposed. In this case, as the previous
strategy, the negotiation phase yields a consensus point that is optimal in the absence
of disturbances. The controller that drives the agents towards the consensus during the
execution phase uses the negotiated consensus point as fixed reference. Each agent can
then use a receding horizon (MPC) control strategy for reaching the consensus point: in
each step we recompute the optimal control sequence for reaching the consensus point
at time τ, apply the first component, sense the current state and recompute the control
sequence.

The third control strategy is shown in Figure 5.2(c). The negotiation phase, in this
case, is carried out at each time step and we assume that the negotiation is stopped af-
ter that all the agents have communicated only β ∈ Z times, namely we assume that
the negotiation is interrupted at k = βN . In this case we then have N different refer-
ence signals, one for each agent. Similarly to above, in the execution the optimal con-
trol sequence for reaching the consensus point is computed and the first component is
applied. The negotiation phase is then repeated.

Similarly to classical MPC, the control strategies in Figure 5.2(b) and Figure 5.2(c)
can cope with disturbances due to the receding horizon operation. The main advantage
of the strategy in Figure 5.2(c) is that the negotiation is not carried out to the optimum
and thus we do not need to wait for the incremental subgradient algorithms to con-
verge. This solution can also cope with changes in the agent dynamics and/or input
constraints. Indeed the agent affected can include these changes locally in its optimiza-
tion algorithm. As we will see later, the strategy can also handle the situation when the
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Negotiate

Execute

(a)

Negotiate

Execute

Sense

(b)

Negotiate

Execute

Sense
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Figure 5.2: The logical flow of the different control strategies. (a) open loop strategy: θ is
negotiated once at the beginning, then the corresponding control action is applied. (b)
set-point strategy: θ is negotiated once at the beginning and the corresponding control
action is then computed at every time step and applied to the system. (c) renegotiation
strategy: θ is renegotiated at every time step. The corresponding control action is then
computed and applied to the system.

number of agents in the consensus problem increases or decreases. In this case the new
agent can be included in the negotiation and the consensus point can be recomputed.

Compared to the open-loop solution of Figure 5.2(a), the control strategies of Fig-
ure 5.2(b) and Figure 5.2(c) are much harder to analyze formally. Still, since they are rel-
evant from a practical perspective, we will demonstrate the potential of such strategies
via simulations.

5.5 Numerical examples

In this section we explore the performance of the three control strategies through nu-
merical examples. The setup is that a number of agents with double integrator dynamics
and input constraints should reach the same coordinates at time τ.

5.5.1 Disturbance free scenario

The first case is the ideal case, where we assume that there is no noise, the number of
agents is constant, and the dynamics of the agents do not change. There is no need for
feedback and the optimal consensus point is negotiated in the beginning, and then the
corresponding control actions are applied to the systems in open-loop. In this specific
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(a) The agents meet at θ at time τ.
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(b) The agents meet at a formation, param-
eterized as the consensus point θ + individ-
ual offsets, at time τ.

Figure 5.3: The trajectories of four agents with double integrator dynamics. The circles
are the starting points and the squares are the ending points. The arrows show the initial
velocities.

example there are four agents with double integrator dynamics, identical control signal
constraints, but different initial positions and velocities. The agents should meet after
20 time samples. The trajectories are shown in Figure 5.3(a). As we expect the agents
meet after 20 samples. With the same setup we also introduce the extension that the
agents can meet in a formation. This is done by adding an individual bias to the con-
sensus point. The configuration is identical with the ideal case except that the system
now should meet in a square formation. As can be seen in Figure 5.3(b), the agents meet
in a square formation after 20 samples.

5.5.2 Noisy scenario

In the second case, we add Gaussian noise with standard deviation 0.5. Two variants are
compared: the open-loop variant (Figure 5.2(a)) and the setpoint variant (Figure 5.2(b)).
In the setpoint variant, the consensus is negotiated before the agents start moving, and
then the consensus is used as a setpoint. The control signals are recalculated at every
time step, yielding a closed loop control. The trajectories of the open loop variant are
shown in Figure 5.4(a), and as expected the agents do not reach consensus. Figure 5.4(b)
demonstrates the results for the setpoint variant: the agents are very close to achieving
consensus in 20 samples despite the persistent disturbances.

5.5.3 Scalability scenario

The third case starts with three agents and adds a fourth agent after 10 samples. The to-
tal time of the simulation is 30 samples. Also in this scenario, two variants are compared:
the setpoint variant discussed above and the renegotiation variant (Figure 5.2(c)). In the
setpoint variant the consensus point is negotiated between the three agents in the be-
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(a) Open loop.
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(b) Closed loop with θ as setpoint.

Figure 5.4: The trajectories of four agents with double integrator dynamics and noise
added to the states at each sample. The circles are the starting points and the squares
are the ending points. The arrows show the initial velocities.

ginning. When the fourth agent is added, it is given θ as a setpoint. Figure 5.5(a) shows
the trajectories of the setpoint variant. The agents reach consensus as expected but the
initial condition of the fourth system does not influence the consensus point at all, ir-
respectively of how hard it is to control and how expensive its control efforts are. In the
renegotiation algorithm, the cyclic algorithm is executed with 10 iterations at each step.
The trajectories are shown in Figure 5.5(b), and as can be seen the final consensus is
closer to the added agent in this case compared with the previous algorithm. Another
advantage is that the agents can start moving before the consensus point is completely
agreed upon. However, this is also a drawback since if the current θ is far from optimal,
then the agents can start moving in the wrong direction. The behavior depends on the
setup, e.g., the dynamics and initial conditions, and warrants further theoretical inves-
tigations.

5.6 Summary

We have formulated a consensus problem where the output of a number of different
agents should coincide after a specified time. The dynamics of the agents can be arbi-
trary, as long as they are linear, and input constraints can be accommodated for. We
have shown that it is possible to find the consensus point in a distributed way where
the only information needed to be communicated is the current consensus point sug-
gestion. Moreover, we have proposed three different control schemes suited for more
realistic scenarios and we have explored the performance by numerical simulation. The
control schemes are very flexible and can handle several difficulties in multi-agent co-
ordination. The drawback is that the general behavior is difficult to analyze for the more
complex control schemes.
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(a) Closed loop with θ negotiated once,
then θ is the setpoint for all systems.
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(b) θ is renegotiated at every time step.

Figure 5.5: The trajectories of four agents with double integrator dynamics. The system
starts with three agents and after 10 samples a fourth agent is added to the system. The
circles are the starting points and the squares are the ending points. The solid lines de-
note the trajectories before the fourth system is added, and the dashed lines denote the
trajectories after that the fourth system has been added. Finally, the arrows show the
initial velocities.
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6
COLLABORATIVE ESTIMATION

An interesting application area where a system comprised of a lager number of inde-
pendent agents have a tremendous potential, is that of collaborative estimation and
tracking. Indeed, noisy data, coming from different agents, can be fused to obtain a
more accurate information about a dynamical process. Typical scenarios include track-
ing of moving objects [Zhao et al. 2003; Mazo et al. 2004], monitoring of the temper-
ature or salinity of large geographical areas such as forests and lakes [Szewczyk et al.
2004; Borges de Sousa et al. 2005], and synchronization of the agents clocks [Giridhar
and Kumar 2006].

In this chapter we assume that the agents are stationary nodes equipped with sen-
sors and a wireless communication device that allows internode data exchange. We also
assume that the nodes measure the same dynamic process. An example is shown in
Figure 6.1, where a wireless sensor network (WSN) is deployed in order to estimate the
position of a moving vehicle. Under the assumption that the dynamic process is not too
fast, or that the sampling frequency of the nodes is fast enough, we propose an algo-
rithm where neighbor nodes combine estimates and measurements so that the over-
all estimation error variance is minimized. In particular each node linearly weights the
data coming from neighbors to obtain a more accurate estimate of the time-varying
signal measured, where the weights are optimally chosen online. A similar approach,
where the weights are fixed and based on the Laplacian matrix of the graph modelling
the communication network, was proposed by [Olfati-Saber and Shamma 2005]. Re-
lated work to the present chapter is the solution discussed in [Xiao et al. 2005] and [Xiao
et al. 2006]. The authors consider the problem of estimating a constant parameter from
noisy data. The estimation is based on a distributed average consensus, which is shown

89
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Node

Communication linkPath

Moving object

Figure 6.1: A possible scenario where collaborative estimation can be applied. A set
of communicating nodes measure the position, with respect to a common coordinate
frame, of a moving vehicle. The communication of measurements and estimates results
in an accurate measure of the vehicle position.

to converge to the global maximum-likelihood estimate of the parameter.

6.1 Outline

The chapter is organized as follows. In Section 1 we formalize the problem. We also de-
fine a model of the communication network based on undirected graphs. A centralized
solution based on the minimization of the overall estimate variance is discussed in Sec-
tion 2. Since a centralized solution requires a large amount of data flowing from the
nodes to a central station and back, we propose a decentralized solution in Section 3.
The detailed algorithm, corresponding to the decentralized solution, and some imple-
mentation issues are discussed in Section 4. Numerical results, where the proposed al-
gorithm is compared with other solutions, are reported in Section 5.

6.2 Problem formulation

Let us consider N > 1 nodes randomly distributed in the plane. We assume that each
node can measure a common scalar signal d(t ) corrupted by additive noise:

ui (t ) = d(t )+ vi (t ) , i = 1, . . . , N ,
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where vi is a zero-mean Gaussian random variable. This is a common assumption to
characterize the noise fluctuations, e.g., [Gustafsson and Gunnarsson 2005; Olfati-Saber
and Shamma 2005], and can be motivated by the central limit theorem. Defining the
vectors u(t ) = (u1(t ), . . . ,uN (t ))T and v(t ) = (v1(t ), . . . , vN (t ))T , we can rewrite the previ-
ous equation as

u(t ) = d(t )1+ v(t ) ,

where 1= (1, . . . ,1)T . We assume that the covariance matrix of the random vector v(t ) is
Σ=σ2I , so that vi and v j , for i 6= j , are uncorrelated.

Since the nodes are connected through a communication network, each node has
available extra data, transmitted by the neighbors, in order to reconstruct the signal
d(t ). We thus assume that a node i builds an estimate, xi (t ), of the signal d(t ) as

xi (nt +n) =
N∑

j=1

ki j (nt )x j (nt )+
N∑

j=1

hi j (nt )u j (nt ) , (6.1)

where n represents the sampling period. Thus each node computes an estimates of the
a linear combination of its estimates and measurements with the estimates and mea-
surements received from neighbors nodes. If node i is not connected with node j at
time t , then ki j (nt ) = ki j (nt ) = 0 and hi j (nt ) = h j i (nt ) = 0. This estimation model is
similar, though more general, to the one proposed in [Olfati-Saber and Shamma 2005].

Remark 6.1

From the model (6.1) that we propose, it is clear that one could try to design ki i (t ) and
hi i (t ) so that a single node, without exchanging data with neighbors, is able to estimate
d(t ). This would have the advantage of saving power for communication. However for
a single node it would require a longer time before achieving a good estimate of d(t ).
Moreover measurements taken too close in time, by the same node, are generally cor-
rupted by correlated noise

E {vi (t )vi (t −τ)} = r (τ) ,

where r (τ) is the autocorrelation function of the noise. Measurements taken by different
nodes are instead corrupted by uncorrelated noise.

Let us assume, for simplicity that the sampling period is n = 1, we rewrite the esti-
mator (6.1) in a more compact way as

x(t +1) = K (t )x(t )+H(t )u(t ) (6.2)

where x(t ) = (x1(t ), . . . , xN (t ))T , [K (t )]i j = ki j (t ) and [H(t )]i j = hi j (t ).
It is convenient to model the communication network as an undirected graph G =

(V ,E ), where V = {1, . . . , N } is the vertex set and E ⊆ V ×V the edge set. Note that (i , j ) ∈ E

implies that ( j , i ) ∈ E since the graph is undirected. The graph G is said to be connected
if there is a sequence of edges in E that can be traversed to go from any vertex to any
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other vertex. We associate to each edge (i , j ) ∈ E a time-varying weight w j i (t ). In gen-
eral, it may hold that the weights wi j (t ) and w j i (t ) are different. We introduce the adja-
cency matrix W (t ) as

[W (t )]i j =
{

wi j (t ) , if ( j , i ) ∈ E

0, otherwise.

We say that a matrix W (t ) is compatible with G , if W (t ) defines an adjacency matrix for
G . We denote this by W (t ) ≃G . We interpret the matrices K (t ) and H(t ) of equation (6.2)
as the adjacency matrices of two weighted graphs, one associated to the communication
of estimates x(t ) and the other associated to the communication of measurements u(t ).
It is convenient to introduce the neighbors of a node i as the set Ni of all nodes that can
communicate with i , namely

Ni = { j ∈ V : ( j , i ) ∈ E } .

We can now state the main problem of the paper. Given a wireless sensor network
modelled by a connected graph G , find time-varying matrices K (t ) and H(t ), compat-
ible with G , such that the signal d(t ) is consistently estimated and the variance of the
estimate is minimized. Moreover, the solution should be distributed in the sense that
the computations of ki j (t ) and hi j (t ) should be performed by node i .

6.3 Centralized estimation

Let us assume that x(0) and u(0) are independent and identically distributed random
variables. We construct the difference

y(t +1) = x(t +1)−d(t +1)1

= K (t )y(t )+K (t )d(t )1+H(t )d(t )−d(t +1)1+H(t )v(t ) .

If the signal d(t ) = d is constant then, taking the expected value with respect to the noise
v(t ), we obtain

Ey(t +1) = K (t )Ey(t )+ (K (t )+H(t ))1d −d1 . (6.3)

The convergence of Ey(t ) to zero is clearly guaranteed if

(K (t )+H(t ))1=1 (6.4)

and
γmax(K (t )) < 1

for all t , where γmax(.) is the largest singular value of K (t ). It follows that the estimate is
consistent also if d(t ) is time-varying, as long as the variations are sufficiently slow.

The degree of freedom in the choice of K (t ) and H(t ), can be used to minimize the
variance of the estimate. For this purpose we study how the covariance matrix changes
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with time. Let us assume that x(t ) and u(t ) are independent random vectors. Introduce
the matrix

P (t ) =Ey(t )yT (t ) =E(x(t )−d(t )1)(x(t )−d(t )1)T .

Then,

P (t +1) = K (t )P (t )K (t )T +σ2H(t )H(t )T . (6.5)

One option now is to choose K (t ) and H(t ) such that P (t +1) is minimized at each time
instance. Hence, we have the following optimization problem

min
K (t ),H(t )

tr(K (t )P (t )K T (t ))+σ2tr(H(t )H T (t )) (6.6)

s.t. (K (t )+H(t ))1=1 ,

γmax(K (t )) < 1,

K (t ) ≃G ,

H(t ) ≃G .

This optimization problem is solved iteratively, starting with some initial guess P (0).
Notice that the objective function is quadratic in K (t ) and H(t ) for a given P (t ). The first
constraint is the linear matrix inequality (6.4). The second constraint, which ensures
that the estimation error converges to zero, it can be written as a linear matrix inequality
using Schur complement [Boyd et al. 1994]. The last constraints, which impose structure
on the matrices K (t ) and H(t ), correspond to equality constraints on the elements of the
matrices H(t ) and K (t ).

Although the optimization problem (6.6) could be solved using standard numerical
optimization tools, it clearly requires a powerful central node collecting the data, com-
puting the new weights and dispatching them to the sensors.

Beside the typical disadvantage of a centralized solution which is not robust to fail-
ures, in this case we would have large delays due to the propagation of the data from
the farthest nodes to the central node. Although this could be overcome having directed
paths from every node to the central node, this would require, in general, a total power
consumption which is prohibitive for small nodes. We propose in the following a decen-
tralized solution where each node computes its weights minimizing the variance of its
estimate.

6.4 Decentralized estimation

In order to state a decentralized optimization problem, we need to introduce the follow-
ing vectors

ỹi (t ) =
(

yi1 (t ), . . . , yiMi
(t )

)
∈RMi

where Mi = |Ni |, and such that yi j
(t ) = y j (t ) if j ∈Ni . Thus yi is a vector that contains

all the estimation errors of the neighbors of sensors i , including itself. In a similar way
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is defined the vector

k̃i (t ) =
(
ki1 (t ), . . . ,kiMi

(t )
)T

∈RMi

where kis (t ) = ki j (t ) if and only if j ∈ Ni . The vector k̃i (t ) contains all the non-zero
elements of the i -row of the matrix K . Similarly we define h̃i (t ) with respect to the matrix
H .

The variance for the node i is then

Eyi (t +1)2 = k̃i (t )T
Γi (t )k̃i (t )+σ2h̃i (t )h̃i (t )T ,

where Γi (t ) = Eỹi (t )ỹi (t )T is the covariance matrix associated to the sensors i based
on its estimates and the estimates received from its neighbors. We will discuss in the
next session how this matrix can be computed. Notice that Eyi (t +1)2 = Pi i (t +1), with
P (t +1) defined in (6.5).

We then can state the following optimization problem for node i

min
k̃i (t ),h̃i (t )

k̃i (t )T
Γi (t )k̃i (t )+σ2h̃i (t )h̃i (t )T (6.7)

s.t .
(
k̃T

i (t )+ h̃T
i (t )

)
1= 1 (6.8)

γmax(K (t )) < 1. (6.9)

The first constraint, which comes from the condition (6.4), depends only on variables
that are local for node i , whereas the last constraint is a global constraint involving the
entire matrix K (T ) and thus it cannot be computed locally. In order to make the op-
timization problem (6.7) distributed we need to find conditions on the k̃i and h̃i that
would guarantee that γmax(K (t )) < 1. In particular we use the following result.

Proposition 6.1 If it holds

N∑

j=1

ki j (t )2 < 1/2, and
N∑

j=1

|ki j (t )| < 1 (6.10)

then γmax(K (t )) < 1, for any t Ê 0.

Proof. Since the result does not depend on t , in order to have lighter notation, in the
following we drop the time dependence. We need to prove that if the given inequalities
hold, then γmax(K ) < 1. This means that it must hold λmax(K K T ) < 1, where with λmax(.)
we denote the maximum eigenvalue. We have that

[K K T ]i j =
∑

r

ki r k j r

and in particular
[K K T ]i i =

∑
s

k2
i s .
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Let λ be a generic eigenvalues of K K T . Then we know, from the Gerschgorin’s circle
theorem, that

λ ∈
{

z ∈C |
N⋃

i=1

∣∣z −
∑

s

k2
i s

∣∣É
∑

j 6=i

|
∑

s

ki s k j s | É
∑

j 6=i

∑
s

|ki s | |k j s |
}

.

If we now consider the following sum we have that

(∑
s

|ki s |
)2

=
∑

s

k2
i s +

∑
s

∑

s 6=ℓ
|ki s | |kiℓ| .

Since (
∑

s |ki s |)2 < 1 by hypothesis then we have that

∑
s

∑

s 6=ℓ
|ki s | |kiℓ| < 1−

∑
s

k2
i s .

And thus we have that

λ ∈
{

z ∈C |
N⋃

i=1

∣∣z −
∑

s

k2
i s

∣∣< 1−
∑

s

k2
i s

}
.

Since, by hypothesis,
∑

s k2
i s
< 1/2, we easily conclude that |λ| < 1, and thus we have the

sought results. ä

Remark 6.2

Notice that the bounds on k̃i and h̃i are quite conservative since Gerschgorin’s bounds
are in general not tight.

From the definition of k̃i and h̃i it follows that the two inequalities (6.10) are equivalent
to

Mi∑

j=1

ki j
(t )2 < 1/2, and

Mi∑

j=1

|ki j
(t )| < 1

since the other N −Mi coefficient are zero. Let us define the following set

Θ=
{

k̃i ∈RMi |
Mi∑

j=1

ki j
(t )2 <

1

2
and

Mi∑

j=1

|ki j
(t )| < 1

}
. (6.11)

It is not difficult to see that the set Θ is convex. We can then rewrite (6.7) as the following
problem, where all the variable to be optimized are local for node i

min
k̃i ,h̃i

k̃i (t )T
Γi (t )k̃i (t )+σ2h̃i (t )h̃i (t )T (6.12)

s.t .
(
k̃T

i (t )+ h̃T
i (t )

)
1= 1

k̃i ∈Θ
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Notice that the problem is quadratic in k̃i and h̃i for a given Γi (t ), with one linear con-
straint and two nonlinear constraints. Since the cost function of the primal optimization
problem (6.12) is convex in Θ, the constraint (k̃T

i
+ h̃T

i
)1= 1 is linear in k̃i (t ) and h̃i (t ),

and we if we assume the solution is in the set Θ, then strong duality follows [Bertsekas
et al. 2003]. The problem can then be transform in its dual. We consider the Lagrangian

L(η, k̃i (t ), h̃i (t )) = k̃T
i (t )Γi k̃i (t )+σ2h̃i (t )h̃T

i (t )+η((k̃T
i (t )+ h̃T

i (t ))1−1)

where η ∈R is a Lagrangian multiplier. We introduce the dual function

g (η) = inf
k̃i (t ),h̃i (t )

L(η, k̃i (t ), h̃i (t )) ,

and the dual optimization problem becomes

max
η

g (η) .

In particular we obtain that

k̃i =−
ηΓ−1

i
1

2
(6.13)

h̃i =−
η1

2σ2
. (6.14)

We then minimize the dual optimization function g (η) with respect to η. Simple alge-
braic calculation yields the optimal values

k̃i (t ) =
Γi (t )−11

σ−2Mi +1T Γi (t )−11

h̃i (t ) =
1

Mi +σ21T Γi (t )−11
.

which are the optimal weights for each sensor, for a given Γi (t ). We should now show
that these optimal weights are feasible for the problem (6.12), which corresponds to
prove that the solution belong to the set Θ defined in (6.11). This so far has not been
shown formally, however extensive simulations show that the obtained solution is fea-
sible.

As we have pointed out before the optimal weights k̃i (t ) and h̃i (t ) depend on the
covariance matrix Γi (t ). Since each node receives measurements and estimates from
the neighbors, it is possible to compute, or estimate, the covariance matrix Γi (t ) at each
time step.

6.5 Implementation issues

Algorithm 3 below shows the implementation of the estimator in each node of the
network. First, each sensor initializes its local covariance matrix estimate with the noise



6.5. Implementation issues 97

Algorithm 3: Estimation algorithm for node i

1. t := 0
2. Γ̂i :=σ2I

3. while forever do

4. Mi := |Ni |
5. d̂ := 0
6. if t É 2 then

7. for j ∈Ni do

8. d̂ := d̂ +
u j (t )

Mi
9. end for

10. else

11. for j ∈Ni do

12. d̂ := d̂ +
x j (t )+u j (t )

2Mi
13. end for

14. for j ∈Ni do

15. ŷi j
(t ) := x j (t )− d̂

16. end for

17. end if

18. Γ̂i (t ) :=
t −1

t
Γ̂i (t −1)+

1

t
ŷi (t )ŷT

i
(t )

19. k̃i (t ) :=
Γ̂i (t )−11

σ−2Mi +1T Γ̂i (t )−11

20. h̃i (t ) :=
1

Mi +σ21T Γ̂i (t )−11

21. ˆ̃yi (t ) :=
(
ŷi1 (t ), . . . , ŷiMi

(t )
)T

22. xi (t ) :=
∑

j∈Ni (t )

(
ki j

x j (t )+hi j
u j (t )

)

23. t := t +1
24. end while
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covariance, i.e. Γ̂i (0) = σ2I (see line 2 in the algorithm), where we remark using the
“hat” it is only an estimate of the real noise covariance. In order to compute the opti-
mal weights (6.14) we need at each time step the matrix Γ̂i (t ). This can be computed
using measurements and estimates communicated to the node by the neighbors. Let
ˆ̃yi = xi (t )−d̂(t )1, where d̂(t ) is a “rough” estimate of the signal d(t ) based on an average
between the available estimates and measurements (see lines 8 and 12 in the algorithm).
Indeed, as an estimate of d(t ) we cannot use x(t −1). The reason is that, even tough the
signal is evolving rather slowly, the prediction (6.2) (which was computed at time t−1) is
not accurate enough to avoid the propagation of an error. Simulations results show that
this has catastrophic effects on the estimation of Γ̂i (t ) and we need to rely on a simple
average. However, as it will be shown in the next session, this is sufficient to obtain good
results.

At the time instant t each node updates the estimate of the covariance matrix as
follows (see line 18)

Γ̂i (t ) =
t −1

t
Γ̂i (t −1)+

1

t
ˆ̃yi (t ) ˆ̃yi (t )T .

After computing the covariance matrix the new weights can be computed as shown in
lines 19 and 20 of the Algorithm. The estimate at time t is then updated as shown in line
23. In the algorithm a matrix inversion should be computed. This is not a difficult op-
eration in resource constrained sensor network, since each node has generally a rather
limited number of neighbors, and thus the size of the matrix Γ̂i is very small.

Note that the algorithm is implemented under the assumption that each node is able
to compute and communicate data within the sampling instance and that the nodes
have a synchronous clock.

6.6 Numerical results

Numerical simulations have been carried out to compare the proposed algorithm with
order possible approaches. In particular the proposed algorithm is compared with two
other algorithms, one we called arithmetic mean estimator, namely such that

ki j (t ) = hi j (t ) =





1

2 |Ni |
if i ∼ j

0 otherwise.

The other one is based on the normalized Laplacian [Godsil and Royle 2001], and we
will called it Laplacian based estimator, namely

ki j (t ) = hi j (t ) =





1−
|Ni |

maxi |Ni |
if i = j

|Ni |
maxi |Ni |

if i ∼ j

0 otherwise.
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(a) Random generated network with N = 15.
Each node has 3.6 neighbors, in average.

(b) Random generated network with N = 150.
Each node has 8.3 neighbors, in average.

Two random generated networks have been considered. The first, shown in Figure 6.2(a)
with N = 15 nodes and the second with N = 150 nodes in Figure 6.2(b). The signal to be
tracked is d(t ) = 3sin(2πt/780)−cos(2πt/620) with a noise normally distributed around
d(t ) with variance σ2 = 1.2. The sensor network is generated distributing randomly dis-
tributed on an a squared area of side N /2. Two nodes are connected if and only if their
relative distance is less than 1.5

p
N .

Realizations are shown for the two cases in Figure 6.2 and Figure 6.3. The first plot
of the two figures shows the signal corrupted by noise, and the second refers the the
realization for the arithmetic mean based estimator, the third to the Laplacian based
and the last refers to the proposed algorithm. In particular it is possible to appreciate,
visually, the improvements due to the solution proposed.

In the following table are collected the standard deviation of the means square error.

Estimator Std. dev. MSE Std. dev. MSE
N = 15 N = 150

Arithmetic mean 0.296 0.209
Laplacian based 0.350 0.356

Decentralized 0.175 0.132

In the first case the proposed algorithm yields and improvement of about 70% and
of about 60% in the second case, with respect to the arithmetic mean estimator and of
about 103% and of about 173% compared with the Laplacian based estimator.

6.7 Summary

In this chapter, we have presented a decentralized cooperative estimation algorithm for
the estimation of time-varying signal using a wireless sensor network. Specifically, the
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Figure 6.2: Realization of the different estimators versus time. The first plot show the
measurements. The second shows the arithmetic mean estimator, the second the Lapla-
cian based and the last show the proposed distributed estimator. The noise variance is
of 1.2.

Figure 6.3: Realization of the different estimators versus time. The first plot show the
measurements. The second shows the arithmetic mean estimator, the second the Lapla-
cian based and the last show the proposed distributed estimator. The noise variance is
of 1.2.
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algorithm allows for accurate refinements of the estimates by employing previous esti-
mates and noisy measurements of the signal to be estimated. We provide optimal time-
varying weights to be used in combining the information, where the cost function is the
variance of the estimate. Numerical results shows that the proposed algorithm exhibits
very good performance in terms of standard deviation of the measurement errors and
that it outperform other common solutions.
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7
HIERARCHICAL COORDINATION ARCHITECTURE

In this chapter we present a control architecture for the implementation of a class of
coordination strategies for a team of autonomous vehicles. This class is characterized
by the alternation between two phases: a communication phase where the team ex-
changes messages to define waypoints for each vehicle; and a motion phase where the
vehicles move in the absence of communications to the designated waypoints, where a
new communication phase will take place. The coordination strategy is encoded as an
automata based specification.

Several difficulties must be faced in developing a control architecture for the im-
plementation of this class of coordination strategies. We illustrate these difficulties and
discuss our contributions in the context of the coordinated search for the extremum of a
scalar field by a team of autonomous underwater vehicles with limited communication
capabilities. The coordination strategy is inspired by a class of optimization algorithms
with phased operations: each phase starts with the selection of points to sample and
terminates when these points have been sampled.

First, there are severe limitations on communications. For example, autonomous
underwater vehicles use acoustic communications which pose significant restrictions
on range and bandwidth [Sozer et al. 2000; Kilfoyle and Baggeroer 2000]. This precludes
the use of communications for low-level feedback control. We address this difficulty by
restricting communications to the exchange of a few coordination messages.

The second difficulty is in that the design space of the team search is large and het-
erogeneous. The design involves generating sampling points and arrival times to ensure
communications at the end of each phase; assigning vehicles to the sampling points;
and designing real-time feedback strategies for each vehicle. We address this difficulty

103
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by structuring the design into two pieces: generation of sampling points and execution
control. We present conditions for the generation of sampling points and arrival times
with the required properties; this is done in the setting of dynamic optimization and
reach set computations. We introduce a layered design for the execution control with a
team controller, a vehicle supervisor and several maneuver controllers per vehicle; this
is done in the framework of hybrid automata. The coordination strategy is implemented
through the interactions of the team controllers during the coordination phase. In this
phase, one team controller, the master controller, receives the samples sent by the other
team controllers, calculates the sampling points and arrival times for the next motion
phase and sends them to the other team controllers. The motion phase is executed inde-
pendently by each vehicle. Each vehicle supervisor commands the maneuver controller
of that vehicle to reach the designated sampling point within a given tolerance of the
arrival time.

The third difficulty originates in the requirement that the execution control must in-
deed implement the search strategy. We address this difficulty by layering the execution
control and designing each layer to ensure that their controllers produce guaranteed
results under the assumption that the controllers at the adjacent layers also produce
guaranteed results. This is done in a modular fashion. The vehicle supervisor and the
maneuver controllers guarantee that each sampling point is visited within a given tol-
erance of the arrival time. Under these assumptions the composition of the team con-
trollers is shown to implement the specification. This is done using automata-based
techniques. This modularity decouples the behavior of the controlled team from that of
the optimization algorithm; the team inherits the search properties of the optimization
algorithm.

Our contributions concern the design of a modular architecture and the proof that
the modules and the interactions within the architecture implement a given specifica-
tion. This is done in the framework of automata-theoretic techniques and bisimulation
analysis. Our design touches upon several related problems: finding the minimizer of a
scalar field through the coordinated motions of multiple vehicles; guaranteed maneu-
ver design; waypoint based coordination schemes, and control architectures.

There is a substantial body of work on the formalization of control architectures. Ex-
amples include the use of Petri nets and stochastic hybrid automata [Saridis and Vala-
vanis 1988; Lima and Saridis 1996], hybrid systems [Varaiya 1993; Varaiya and Shladover
1991; Varaiya 1997; Godbole et al. 1995], and linear temporal logic [Fainekos et al. 2005].
Our work is related to the layering concepts presented in [Varaiya 1997]. The ideas used
in execution control are inspired by [Varaiya 1997, 1993; de Sousa et al. 2000]. The case
study we present in the last part of chapter, is related to find the minimum of a scalar
field with the coordinated motions of autonomous vehicles. This problem has received
large attention in the last decade. A significant body of this work concerns the adap-
tation of optimization algorithms to single- or multi-vehicle search strategies. Search
strategies for single vehicle operations which include a combination of the underlying
principles of different optimization algorithms are reported in [Burian et al. 1996] along
with illustrative examples which use real data, such as depth profiles of a lake. Pure
gradient-based methods for scenarios where a vehicle platoon searches the minimum
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of general convex and smooth scalar fields are presented in [Bachmayer and Leonard
2002]. Lyapunov-based arguments are used in [Fiorelli et al. 2003] for the gradient de-
scent of a scalar field. These approaches result in feedback control laws that require
closing the control loop around communicated measurements. We take the view of con-
sidering limited and sporadic communications, which preclude the use of these tech-
niques.

7.1 Outline

The paper is organized as follows. In Section 7.2 we introduce the problem formula-
tion. In particular we highlight the constraints and assumptions under which the con-
trol architecture is developed. Moreover we define the system specification, namely a
mathematical description of the overall system behavior. Section 7.3 describes the hi-
erarchical control structure in the framework of interacting hybrid automata. The main
results are reported in Section 7.4 where properties of the hierarchical control structure
are discussed and it is shown that such architecture implements the given system spec-
ification. In Section 7.5 we present simulation results to illustrate the implementation
of our design in a team search mission for a team of underwater vehicles.

7.2 Problem formulation

Let us consider a set V = {v1, v2, . . . , vN } of N > 1 vehicles. Each vehicle vi is modelled as
a nonlinear control system

ẋi (t ) = fi (xi (t ),ui (t )),

where xi (t ) ∈ X ⊂ Rn is the state of the vehicle, ui (t ) ∈ U ⊂ Rm the control, and fi :
X ×U → T X the vector field.

The main problem is that of designing a control architecture that allows to imple-
ment control strategies for coordinating the team of vehicles V , so that a given task is
completed. Moreover the architecture should be robust to typical faults and errors that
can occur in a multi-vehicle system (such as communication data losses, vehicle fail-
ures, etc.) guaranteeing that some given overall specification is fulfilled. In the following,
we describe in detail the main assumptions under which the architecture is built.

7.2.1 Team coordination via waypoints generation

The first assumption relates to the control strategy that coordinates the whole team of
vehicles. In this work we assume that the team is coordinated by an event-based con-
troller that generates waypoints, namely a point w = (w1, . . . , wN ) ∈W ⊆X

N . The team
coordination is defined by the following update map

(w+, t+) =ϕ(w, t ,e),
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where e is an event defined on an event alphabet Σ and t ∈ T ⊂ R+ is the time step.
With notation w+ we indicate the next value of w . Similarly for t . We call ϕ(.) the team
coordination strategy. Based on wi and w+

i
, the control ui is derived for each vehicle i .

7.2.2 Vehicle models

The vehicle models we consider are those that can be approximated by a unicycle. We
then have that each vehicle is described by the differential equation




ẋ

ẏ

ψ̇


=




v cosψ
v sinψ

ω


 , (7.1)

where (x, y) is the location of the vehicle with respect some fixed coordinate frame, v

is the linear forward velocity, ψ is the orientation of the vehicle and ω is the angular
velocity. In the following we will also consider the case of external slowly-varying distur-
bances acting on the vehicles. Typical example are wind disturbances for airplanes or
water streams for underwater vehicles. We then have the following modified dynamic
equations




ẋ

ẏ

ψ̇


=




v cosψ+ vd cosψd

v sinψ+ vd sinψd

ω


 .

where vd and ψd is the velocity and the direction, respectively, of the disturbance acting
on the vehicle.

Many vehicles used can be approximately described by a unicycle model together
with extra kinematic constraints. Let us consider some examples. Synchro drive vehi-
cles can be precisely described by the previous kinematic model. In this type of vehicle,
indeed, the linear and angular velocities can be controlled independently and are the
same for all wheels. Differential drive vehicles, where the locomotion system is com-
posed of two parallel driving wheels that can be controlled independently, are described
by a unicycle model if we impose that v = (v1+v2)/2 andω= (v1−v2)/ℓ, where v1 and v2

are the right and left wheel speeds and ℓ is the distance between them. Notice the kine-
matic constraint between angular and linear speed. Tricycle and car-like vehicles, where
only the front wheels are actuated, can be modelled by the previous kinematic model.
In this case if α is the angle of the turning wheel with respect to the heading of the ve-
hicle, then v = vs cosα and ω= vs /d sinα where vs is the linear velocity of the steering
wheel and d is the distance between passive axle and the steering wheel. See [Laumond
et al. 1998; Oriolo et al. 2002; Beard et al. 2002; LaValle 2006] for further discussions. Also
underwater vehicles and aerial vehicles that move on a plane can be approximated with
the unicycle model [Ögren 2003; McGee et al. 2005]. For this type of vehicles the extra
kinematic constraints impose that vmin > 0, that is the vehicle requires a minimum ve-
locity (“stall” velocity) to maintain controllability, and the angular velocity depends on
the linear velocity ω= c v where c is a constant related to the maximum curvature of the
trajectory that the vehicle can follow.
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Team
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Reconfig
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Reconfigured
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Timeout

Figure 7.1: System specification for the team coordination.

7.2.3 System specification

In order to guarantee that a control architecture can steer the vehicles so that a given
task is fulfilled, we need to have a model of the desired system behavior, the system
specification. Introducing such a model allows us to relate properties of a control archi-
tecture and the specification. The system specification should also model the interac-
tion between communication and control.

In this chapter we present the system specification as a transition system.

Definition 7.1 (Transition system [Puri and Varaiya 1996]) A transition system T is a

tuple

T = (Q,→, I ,O, Init,Final),

where

• Q is the set of states

• I and O is the set of inputs and outputs, respectively

•→⊂Q × I ×Q ×O is the transition relation

• Init ∈Q is the initial state

• Final ∈Q is the final state
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The interpretation is that an input i ∈ I cause the system to move from one state q ∈Q to

another state q ′ ∈Q producing the output o ∈O. It is convenient to write q
i /o→ q ′ instead

of (q, i , q ′,o) ∈→. The graphical representation of T is a directed graph with vertices

representing Q and arcs representing
i /o→, an arc with empty origin representing Init and

a vertex with an extra circle representing Final.
We define the system specification for the team coordination as the transition sys-

tem

TSpec = (QSpec,→, ISpec,;,Team Coord,Team Stop)

shown in Figure 7.1. It has four discrete states: Team Coord, Team Reconfig, Team Mo-

tion, Team Stop. The mission proceeds in phases. Each phase is described by a loop

Team Coord→Team Motion→Team Coord .

This loop is repeated until the mission is successfully completed, namely when a ter-
mination condition is satisfied. Note that the loop describes the interaction between
communication and control. Namely, in the Team Coord state the vehicles exchange
data, while in the state Team Motion the vehicles move.

The system specification implies the following behaviour of the overall multi-vehicle
system. The system starts in the Team Coord state. A transition to Team Stop takes place
if the termination condition is true. Otherwise in Team Coord the vehicles exchange part
of their state information, including their current waypoint wi , prior to the generation
of the new waypoints. The transition to Team Motion takes place upon the reception of
next waypoints w+

i
. While in Team Motion, the low-level controllers drive each vehicle

to their waypoint. When the vehicles have reached their waypoints, the system switch
back to Team Coord to exchange new vehicle state information. If a vehicle did not suc-
ceed to reach its waypoint, a timeout event is generated and the system goes to Team

Reconfig. Then the team executes an reconfiguration operation, which means that they
adjust their team behaviour due to the faulty vehicle. (For simplicity, we assume that
only one vehicle did not reach its waypoint at each reconfiguration). After reconfigu-
ration, the system goes to Team Coord, where the (currently active) vehicles exchange
their state information and new waypoints are generated. If the team has reached its
goal, the mission is completed and the system go to the state Team Stop.

Note that the system specification defined here is fairly general, and captures a rather
wide class of multi-vehicle control problems. In the next section we define a hierarchical
control structure and then, in Section 7.4, we will show that the proposed architecture
fulfills the given specifications.

7.3 Hierarchical control architecture

The problem of coordinating vehicles is inherently a hybrid control problem. Indeed
it has both discrete dynamics, related to the coordination strategy, and continuous dy-
namics, related to the model description of the individual vehicle. There is a distinct
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Team Controller

Vehicle Supervisor

Maneuver Controller

(w+, t+) =ϕ(w, t ,e)

ẋ = f (x,u)

(w,command)e

maneuver typee′

Figure 7.2: Hierarchical control structure for each vehicle.

interaction between the discrete and continuous parts. The team coordination is ob-
tained computing a set of waypoints according to the team coordination strategy. The
vehicles are steered by a local feedback control strategy from one waypoint to the next
one. Upon reaching a waypoint, the next waypoint is computed by the team coordina-
tion strategy, and so on. The hierarchical control structure allows us to formally prove
correctness of the implementation. It also enables a modular design of the control sys-
tem for which modules can be developed and implemented independently as long as
their interfaces are appropriate. The control structure provides an intuitive structure
for program developers and system operators.

7.3.1 Master-slave control structure

We propose a hierarchical control structure, for each vehicle, organized in three lay-
ers, as shown in Figure 7.2. It consists of a team controller, a vehicle supervisor and a
maneuver controller. The team controller handles the event-based coordination of the
vehicles by assigning new waypoints. Thus it implements the team coordination strat-
egy ϕ(.). It also determines when the mission is completed and when the team needs to
reconfigure. The vehicle supervisor provides a set of maneuvers onto which it maps the
coordination commands from the team controller. Such intermediate layer is an inter-
face between the high-level coordination in the team controller and the low-level imple-
mentation in the maneuver controller, which allows abstraction of the lower layer. The
vehicle supervisor signals back to the team controller an event e, which is used by the
team controller to handle possible faults. The maneuver controller interprets the ma-
neuvers specified by the vehicle supervisor. It computes low-level control commands
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Master

Slave 1 Slave 2

Architecture

Figure 7.3: Control architecture for multi-vehicle system with three vehicles. Each hi-
erarchical structure corresponds to a vehicle controller. Arrows between hierarchies
represent communication links between vehicles. Arrows inside each hierarchical stack
represents signals between different layers.

and executes them on the vehicle. Hence, the maneuver controller specifies ui (t ) for
the individual vehicle control systems ẋi (t ) = fi (xi (t ),ui (t )) as described in Section 7.2.
It signals back to the vehicle supervisor the success or the failure of the maneuver.

The hierarchical control architecture for each vehicle needs to be extended to the
case in which there are many cooperating vehicles. The (local) team controller of each
vehicle takes care of the co-operation with the other vehicles and takes decision on the
event-based coordination of the team. The team controller is either in mode master or
slave. During each mission, we assume that there is only one master in the team and,
for simplicity, that this role is fixed for the whole mission. The master team controller
provides inputs to the slave team controllers of the other vehicles, and the slave team
controllers report to the master. The interaction between master and slaves is achieved
over a communication network. The (local) vehicle supervisor and the (local) maneuver
controller work exactly as described previously, but note that maneuvers, events, etc.,
are now local variables. The overall architecture is illustrated in Figure 7.3.

7.3.2 Team controller

The team controller for each vehicle is modelled as a transition system. Since the team
controller can be in either the master or slave mode, we have two team controller tran-
sition systems. They are further described below. The master team controller

TM = (QM ,→, IM ,OM , InitM ,FinalM )
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Figure 7.4: The master team controller is the parallel composition of three transition
systems.

is shown in detail in Figure 7.4 The master team controller consists of the parallel com-
position of three transition systems. The main functionality is provided by the upper
transition system with the four states Master Coord, Master Reconfig, Master Motion,
Master Stop. The other two transition systems are counters: one counter stores the
number of active slaves and the other counter keeps track of the number of received
acknowledgments from the slaves. In the state Master Coord, the master waits for data
transmitted by the slaves. As data are received, acknowledgments (“Acks”) are being
counted until all active slaves have been acknowledged. Then the master computes the
new set of waypoints and send them to the slaves. An event Goto to waypoint is triggered
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and a command g oto(wi , t ) is signaled to the vehicle supervisor. Notice that t here rep-
resents a constant time within which the command needs to executed. This transition,
which is represented by the state transition from Master Coord to Master Motion, resets
the ack counter. When the master reaches its waypoint, it returns to Master Coord where
it waits for the slave team controllers to report. This transition takes place when the ve-
hicle supervisor has received a “done” event from the maneuver controller. If some of
the slaves do not succeed to reach their assigned waypoints within a given timeout time,
Master timeout will trigger, signalled by the vehicle supervisor, and the master will go to
Master Reconfig where a team reconfiguration will take place. The number of active
slaves is then updated through a state transition in the active slaves counter given by
the middle transition system in Figure 7.4. When the master is in Master Coord and has
received data from all active slaves, it determines if the goal is reached. If that is the
case, the master issues stop commands to the slaves and goes to Master Stop. The stop
command is also sent to the vehicle controller for a suitable action on the vehicles.

The slave team controller transition system is shown in Figure 7.5. The team con-
trollers of the N −1 slaves are identical and denoted

TS1 = ·· · = TSN−1 = (QS ,→, IS ,OS , InitS ,FinalS ).

The states are Slave Coord, Slave Motion, Slave Stop. The initial state is Slave Coord,
where the slave team controller is waiting for the next waypoint and a motion com-
mand from the master team controller. When the command has been received, the slave
goes to Slave Motion and the vehicle moves to its new waypoint. This is done signalling
the vehicle supervisor with g oto(wi , t ), where t is a constant, similarly as for the mas-
ter team controller. If the vehicle reaches its waypoint before the slave timeout expires,
the slave team controller sends an ack to the master team controller together with the
partial state information required by the waypoint generating algorithm and the sys-
tem goes to Slave Coord waiting for the next waypoint. If instead the slave vehicle does
not reach the waypoint, the slave team controller goes to Slave Stop. The event Slave

timeout is trigged by the vehicle supervisor. The slave team controller may also go to
Slave Stop from Slave Coord. This transition typically takes place when the master has
decided that the goal is reached and therefore forces all slaves to stop.

7.3.3 Vehicle supervisor

Each vehicle is described as a provider of maneuvers; different maneuvers are required
for different missions. External controllers, such as the master team controller, request
the vehicle to execute maneuvers. Interactions are mediated by the vehicle supervisor,
which resides onboard the vehicle. It is introduced for the purpose of modularity: there
is a library of maneuvers and of maneuver controllers. The vehicle supervisor checks
requests for the execution of a given maneuver against the list of maneuvers available
in a library. In this way we can extend the vehicle capabilities, by adding new maneuvers
to the library, without recoding the existing control code. In the reminder of this paper
we show that the search mission can be executed with two maneuvers, goto and hold,
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Slave
Coord

Slave
Motion

Slave
Stop

Goto waypoint/goto(wi, t)

Slave at waypoint wi/Ack

Stop vehicle/ǫ

Slave timeout/ǫ

Figure 7.5: Slave team controller.

which can be collapsed to just one maneuver for the purpose of simplicity. This simpli-
fication would eliminate the need for the vehicle supervisor. However, for the sake of
generality, we present it next.

The vehicle supervisor interfaces the team controller with the maneuver controllers.
The vehicle supervisor (for the master)

TV = (QV ,→, IV ,OV , InitV ,FinalV )

is shown in Figure 7.6, where

• QV = {Idle,Motion,Stop}

• IV = {goto(wi ,t),doneGoto,MtimeOut,Stop vehicle}

• OV = {Master at waypoint(wi ),startGoto(wi ,t)}

• InitV = Idle and FinalV = Stop .

The vehicle supervisor for the slave is similar with the exception that signals refers to
those of the slave. In the following we refer to the master vehicle supervisor.

The input and output events model interactions with the team controller and with
the maneuver controller. The vehicle supervisor receives the events goto(wi ,t) and Stop

vehicle from the team controller to execute a goto maneuver to waypoint wi in time
less than t and to stop the vehicle; it receives the events doneGoto and MtimeOut from
the current maneuver controller to indicate the termination of the maneuver because
of a time out; it sends the events startGoto(wi ,t) and startHold(wi ) to the maneuver
controller to go to waypoint wi in time less than t and to hold the position; and it sends
the events Master at waypoint(wi ) and Master timeout to the team controller to indicate
that the waypoint was reached and a that time out has occurred.

A normal execution cycle alternates between the states Idle and Motion. The transi-
tion to Motion is taken when the event goto(wi ,t) is received from the team controller.
The transition to the Idle state takes place when the event doneGoto is received from
the maneuver controller and the event Master at waypoint is signalled to the team con-
troller together with the reached waypoint wi .
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Idle

Stop

Motion

doneGoto/Master at waypoint wi

goto(ωi, t)/startGoto(ωi, t)

Stop vehicle/ǫ Stop vehicle/ǫ

MtimeOut/Master timeout

ǫ/startHold(wi)

Figure 7.6: Vehicle supervisor.

Note that there are no clocks in the vehicle supervisor. The reasons for this are that
(i) both the supervisor and the maneuver controllers reside on the same vehicle and
we can therefore assume reliable communications between them; and (ii) maneuver
timeouts are extended locally within the maneuver controllers.

7.3.4 Maneuver controller

The low level control is organized in terms of maneuvers. For the purpose of modularity,
there is one maneuver controller for each type of maneuver. In this way we can easily
add maneuver controllers to the existing ones to extend the capabilities of the vehicle,
without changing the vehicle supervisor. Each maneuver controller is a hybrid automa-
ton which encodes the corresponding control logic. The maneuver controller takes as
input a maneuver specification and generates commands to the actuators.

7.4 System properties

This section shows how to verify that the proposed control architecture implements the
specification. The verification is done in a modular fashion. We observe that the execu-
tion proceeds in phases and thus we need to verify the behavior of the control architec-
ture for each phase. First, we show that the high-level team coordination through the
interconnected master and slave team controllers are consistent with the system spec-
ification. Second, we state a set of properties for the waypoint generation procedure to
generate waypoints and times of arrival that are both reachable and allow for the mas-
ter and the slave team controllers to follow the required patterns of coordination. We
show how to ensure these properties for a general nonlinear system. Third, we prove
that the on-line execution control generates the interactions among the team controller
and the vehicle supervisors which ensure that the sampling points are reached within
the allowed time intervals under the assumption that the maneuver controllers produce
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guaranteed results. The described modularity decouples efficiently the behavior of the
controlled team from that of the underlying optimization algorithm.

7.4.1 Team coordination

We will in this section define a quotient transition system T /∼ based on the system T

derived from the interconnected master and slave team controllers. We will show that
T /∼ is isomorphic to the team coordination specification TSpec in Section 7.2. Since T is
bisimilar with T /∼ by construction, we will conclude that the closed-loop system based
on the interconnected team controllers fulfills the specification.

The interconnection of the master team controller

TM = (QM ,→, IM ,OM , InitM ,FinalM )

with N −1 identical slave team controllers

TS1 = ·· · = TSN−1 = (QS ,→, IS ,OS , InitS ,FinalS )

is illustrated in Figure 7.3. To simplify notation we do not distinguish the transition re-
lations, but the interpretation in each case should be clear from the context. The overall
transition system T = (Q,→, I ,O, Init,Final) is given by the parallel composition

T = TM‖TS1‖ . . .‖TSN−1 .

The state of T is denoted

q = (qM , qS1 , . . . , qSN−1 ,k) ∈Q =QM ×QN−1
S × {0, . . . , N −1},

where qM is the state of the main part of the master team controller (upper transition
system in Figure 7.4), qSi

is the state of slave i team controller (Figure 7.5), and k is the
number of active slaves (middle transition system in Figure 7.4). (We disregard the lower
transition system in Figure 7.4.)

We introduce the quotient transition system T /∼= (Q/∼,→, I ,O, Init/∼,Final/∼)
with equivalence relation∼⊂Q×Q, which partitions the state space of T into four equiv-
alence classes QR ,QC ,QM ,QS ⊂Q. (The indices indicate “Reconfiguration”, “Coordina-
tion”, “Motion” and “Stop”, which reveals the idea behind the partition.) The equivalence
classes are defined as follows:

QR =
{

q = (Master Reconfig, q1, . . . , qN−1, ·) ∈Q : qi ∈ {Slave Coord,Slave Stop}
}

QC =
{

q = (Master Coord, q1, . . . , qN−1, ·) ∈Q : qi ∈ {Slave Coord,Slave Stop}
}

QM =
{

q = (Master Motion, ·, . . . , ·) ∈Q
}

QS =
{

q = (Master Stop,Slave Stop, . . . ,Slave Stop, ·) ∈Q
}
.

Consider four elements qR ∈QR , qC ∈QC , qM ∈QM and qS ∈QS . The transition relation
for T /∼ is then defined as follows:
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• qR → qC provided that Master Reconfig→Master Coord and
Slave Coord→ Slave Stop

• qC → qM provided that Master Coord→Master Motion and
Slave Coord→ Slave Motion

• qC → qS provided that Master Coord→Master Stop and
Slave Coord→ Slave Stop

• qM → qR provided that Master Motion→Master Reconfig,
Slave Motion→ Slave Coord and Slave Motion→ Slave Stop

• qM → qC provided that Master Motion→Master Coord,
Slave Motion→ Slave Coord and Slave Motion→ Slave Stop.

The inputs I , outputs O, initial states Init/∼ and final states Final/∼ of T /∼ are easily
derived from T .

Recall the definition of simulation and bisimulation for transition systems, e.g., [Puri
and Varaiya 1996].

Definition 7.2 (Simulation and bisimulation) Given two transition systems

T1 = (Q1,→, I1,O1, Init1,Final1)

and

T2 = (Q2,→, I2,O2, Init2,Final2),

we say that T2 simulates T1 with relation R ⊂Q1×Q2 if (x, y) ∈ R and x → x ′ implies that

there exists y ′ ∈ Q2 such that y → y ′ and (x ′, y ′) ∈ R. If T1 simulates T2 and T2 simulates

T1, we say that T1 and T2 are bisimilar.

The following result follows from construction with R being the equivalence relation
defined previously.

Lemma 7.1 T and T /∼ are bisimilar.

We next show that T /∼ and TSpec are isomorphic. We recall the following definition.

Definition 7.3 (Isomorphic transition systems) Two transition systems

T1 = (Q1,→, I1,O1, Init1,Final1)

and

T2 = (Q2,→, I2,O2, Init2,Final2)

are isomorphic if there is a bijection h : Q1 → Q2 such that for all x, y ∈ Q1 it holds that

x → y if and only if h(x) → h(y).



7.4. System properties 117

In order to relate T /∼ and TSpec , we need to identify the inputs of T /∼ with the inputs of
TSpec . It can easily be done by relating each transition of T /∼ with a transition of TSpec :

• qR → qC corresponds to Team Reconfig→Team Coord

• qC → qM corresponds to Team Coord→Team Motion

• qC → qS corresponds to Team Coord→Team Stop

• qM → qR corresponds to Team Motion→Team Reconfig

• qM → qC corresponds to Team Motion→Team Coord.

A suitable bijective map h : Q/∼→QSpec of Definition 7.3 is simply the relabelling:

• h(QR ) =Team Reconfig

• h(QC ) =Team Coord

• h(QM ) =Team Motion

• h(QS ) =Team Stop.

It then follows that T /∼ and TSpec are isomorphic. Two transition systems that are iso-
morphic are obviously also bisimilar. Since T and T /∼ are bisimilar (Lemma 7.1) and
thus also T /∼ and TSpec are bisimilar, we have the following main result.

Theorem 7.1 T and TSpec are bisimilar.

The transition systems T and TSpec are hence equivalent in the sense of a bisimulation
relation. The implementation of the interconnected team controllers will thus fulfills
the system specification.

7.4.2 Waypoint generation

The generation of the waypoints by the team controller according to a team coordina-
tion strategy ϕ(.) needs to fulfill some conditions so that the generated waypoints are
reachable for the vehicles. Let us recall the definition of the reach set.

Definition 7.4 (Backward Reach set) Consider a control system ẋ = f (x,u). The back-

ward reach set R[tα, tβ,M ] at time tα < tβ is the set of points z ∈X such that there exists

a control u(·) that drives the trajectory of the system ẋ = f (x,u) with initial condition

x(tα) = z to some closed target set M ⊂X at time τ ∈ [tα, tβ].

It is possible to extend the definition to capture uncertainties and disturbances, see
[Kurzhanskii and Varaiya 2001, 2002b,a]. Although that is useful for underwater vehicles
facing uncertain currents etc., we limit the discussion to the basic definition of reach set
given above.
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We define next the notion of admissible waypoint. Vehicle i reaches its waypoint
w+

i
, after a goto maneuver, if no faults occurred. After the goto maneuver it executes an

hold maneuver around w+
i

awaiting for new commands. Let us consider dh the maxi-
mum distance the vehicle can be from w+

i
executing an holding maneuver. Notice that

for systems that cannot be stopped, such as airplanes or underwater vehicles, a hold-
ing maneuver corresponds to hover around the point w+

i
. Let rcom be the limited range

within which inter-vehicle communication is possible. We then have the following def-
inition.

Definition 7.5 (Admissible waypoint) A waypoint is admissible if the following condi-

tions hold for every i and j ,

‖w+
i −w+

j ‖ É rcom −dh

wi ∈ R[t , t̄ , w+
i ] ,

where t̄ is the time within which the control action must be completed.

An admissible waypoint generation procedure is one which is generates admissible way-
points. In order to determine admissibility we need to compute the reach sets for each
vehicle. This is a non-trivial task. Some recent literature have proposed been tackling
the problem of computing the reach set of a system [Varaiya 1998; Lafferriere et al. 2001;
Mitchell and Tomlin 2003; Kurzhanski and Varaiya 2004], however for a general nonlin-
ear system the problem is still open.

In the following we study a particular example where the waypoints belong to a grid
in the two-dimensional space and the distance between waypoints is chosen so that a
feasible trajectory for vehicles modelled as unicycles exists.

7.5 Autonomous underwater vehicles in search mission

In this section we show how the proposed architecture can be used to implement a
search algorithm for autonomous underwater vehicles (AUVs). We assume that the AUVs
move at a constant depth, they are equipped with acoustic modem for inter-vehicle
communication and they can measure the temperature, or some other scalar variable,
at their position. The objective is to search for the minimum of a temperature field. The
search algorithm is based on a fixed-size version of the simplex optimization algorithm
introduced in [Spendley et al. 1962]. This is a very effective algorithm for finding the
extremum of a scalar field from few samples. Some other optimization algorithms have
been previously used in vehicle-based search strategies, e.g., [Bachmayer and Leonard
2002; Burian et al. 1996]. The simplicity and robustness properties of the simplex al-
gorithm makes it a good candidate, particularly for a team of AUVs under severe com-
munication constraints. What also makes this method appealing is the fact that it al-
lows reasoning about vehicle motion in discrete terms: indeed the simplex algorithm
imposes a discretization of the configuration space, so it can be implemented in the
proposed hierarchical structure.



7.5. Autonomous underwater vehicles in search mission 119

d

Figure 7.7: A triangular grid with aperture d over a scalar field depicted through its level
curves (dark dashed lines). The shaded triangle illustrates the simplex location, which
evolves on the grid.

7.5.1 Simplex algorithm

The simplex optimization algorithm is a direct search method which behaves much like
a gradient descent method but with no explicit gradient calculation. It is usually ap-
plied in situations where computation capability is limited and gradient calculation is
difficult, as happens in scalar fields corrupted by noise. We are interested in executing
a search operation for finding the minimum of a planar field defined over a convex set
Ω⊂R2, see Figure 7.7. The simplex optimization method starts by evaluating the scalar
field at the vertices of a three-sided simplex, placed at an initial guess position. It then
proceeds by creating a new simplex, obtained by reflecting the vertex associated to the
sample with higher field value. The reflection is with respect to the line passing through
the two remaining vertices. The algorithm stops when the newly generated simplex co-
incides with the simplex generated two iterations before, namely after two reflections
step we need to reflect the starting vertex. This procedure is described with more details
below.

Consider a triangular grid G ⊂Ωwith aperture d , as depicted in Figure 7.7. Introduce
an arbitrary point p0 ∈Ω and a base of vectors given by b1,b2 such that bT

1 b1 = bT
2 b2 =

d 2 and bT
1 b2 = d 2 cosπ/3. The grid is then the set of points

G = {p ∈Ω| p = p0 +kb1 +ℓb2, k,ℓ ∈Z} .

A simplex z = (z1, z2, z3) ∈G
3 is defined by three neighboring vertices of G , which belong

to a triangle. Let F : Ω →R the scalar field. The reflection rule updates the simplex in
the following way. Suppose, without loss of generality, that F (z3) Ê F (zi ), i = 1,2. Given
a simplex z = (z1, z2, z3) the next simplex is

z+ = (z1, z2, z3)+ = (z1, z2, z1 + z2 − z3) .
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Algorithm 4: Simplex algorithm.

1. z(0) := (z1(0), z2(0), z3(0))

2. k := 0

3. while k < 2∨ z(k) 6= (k −2) do

4. i := argmaxi F (zi (k))

5. z ′
i

:= z j + zh − zi with j ,h ∈ {1,2,3} and j 6= h, j 6= i ,h 6= i

6. z ′
j

:= z j

7. z ′
h

:= zh

8. z(k +1) := (z ′
1, z ′

2, z ′
3)

9. k := k +1

10. end while

The algorithm implementing the simplex is shown in Algorithm 4.
We see from the condition on line 3 that the algorithm stops at iteration k̄ when

z(k̄) = z(k̄ −2). Since the algorithm is deterministic, it follows that a continuation after
step k̄ would lead to an oscillation between the two discrete states z(k̄) and z(k̄ − 1).
The main limitation of the simplex algorithm is that we are not guaranteed that when
the algorithm stops we have reached a neighbor of the minimum. However the simplex
could be used as a first strategy to get close to the minimum.

7.5.2 Team controller design

The team controller implements the simplex algorithm. The master team controller will
receive the acknowledgements from the slaves together with the measurement taken
at the current position. The master then runs the simplex search algorithm in order
to compute the next waypoint, computed reflecting the current waypoint at which the
measured field is higher. Let assume N = 3.

The team controller of the master needs to compute the next simplex, which gives
the next set of waypoint. It should also assign waypoints to the various slaves. Let us
denote with (w1, w2, w3) the current simplex and with (w1, w2, w3)+ the next simplex.
For simplicity of notation we defined the reflecting operator

ξ : G 3 →G
3 : (w1, w2, w3) 7→ γ(w1, w2, w3) = w3 +w2 −w1 ,

that is γ(w1, w2, w3) takes the first argument and computes its reflection with respect to
the second and third argument. Thus the simplex algorithm can be then described by
the map (w+, t+) =ϕsimplex(w, t ,e) where w ∈G

3 is a simplex, w+ is computed through
the reflecting operator and an event e is related to the fact a vehicle arrived in a neigh-
borhood of the waypoint.

The master team controller is the transition system TM = (QM ,→, IM ,OM , InitM ,
FinalM ) as defined in Section 7.3 with input and outputs
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w jwk
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Figure 7.8: Assignment of the next waypoints for the three AUVs, by the master team
controller, when F (wi ) Ê F (w j ) Ê F (wk ).
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Figure 7.9: Assignment, by the master team controller, of the next waypoints when only
one slave AUV is present.

• IM =R3 is a vector with the three samples taken by the three vehicles,

• OM = G
3, is the new simplex. The vertexes are the new waypoints. (We assume

that the triple is ordered so that in position i there is the next waypoint for vehicle
i .)

Before defining the transition relation we notice that the master can compute two steps
of the simplex algorithm, without knowing the new samples. Let us assume, without
loss of generality that we start with the simplex (w1, w2, w3) such that F (w1) Ê F (w2) Ê
F (w3). Applying the simplex algorithm we have (w1, w2, w3)+ = (γ(w1, w2, w3), w2, w3).
However in this situation the master can already compute the next simplex. Indeed
two situations could occur. The case F (γ(w1, w2, w3)) Ê max(F (w2),F (w3)) implies that
(γ(w1, w2, w3), w2, w3) = (w1, w2, w3), and thus the algorithm stops. Otherwise we com-
pute the reflected waypoint of w2 with respect to γ(w1, w2, w3) and w3. We have that
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the transition

Team Coord
Acti ve acked

/
(w1,w2,w3)+

−−−−−−−−−−−−−−−−−−−→Team Motion (7.2)

is such that

(wi , w j , wk )+ = (wk ,γ(wi , w j , wk ),γ(w j , wk ,γ(wi , w j , wk )))

with F (wi ) Ê F (w j ) Ê F (wk ). The situation is represented in Figure 7.8.
Notice that if any of the two slave vehicles break down or is not able to reach its

assigned waypoint, the algorithm can still work. However in this case, during the recon-
figuration, transition (7.2) needs to be changed. Notice that the master, just before a re-
configuration, knows the field value at each vertex of the previous simplex, and thus the
next simple can always be computed. With two only vehicles the waypoint assignment
is as shown in Figure 7.9.

7.5.3 Vehicle supervisor design

The vehicle supervisor consists of two possible maneuvers in this case: a Goto and a
Hold maneuver. The first is issued by the master when the next waypoint is different
from the previous one, whereas the second is issued when the vehicle needs to stay at
the same waypoint. In this case the vehicle supervisor is as the one we presented in
Section 7.3, but to the Hold state corresponds the Idle state. Indeed whenever a AUV is
waiting for critical information it needs to hover around the current position.

7.5.4 Maneuver controller design

The maneuver controller is responsible of steering the AUVs from the current waypoint
to the next one. If the next waypoint is the same as the current one, then the AUV will be
in Hold state which means that it will follow a circular trajectory that pass through the
waypoint. For the problem we are interested in, we propose the hybrid system as shown
in Figure 7.10. The continuous state space X ⊆R4 since we have the state of the vehicle
(x, y,ψ)T and the time t .

The system starts in the Hold state. In this state the controller maintains a constant
velocity so that the vehicle follows a circular trajectory. If the vehicle supervisor send a
st ar tGoto(w+

i
, t̄ ) command, then the maneuver controller of vehicle i needs to steer

the vehicle tracking a trajectory of the type shown in Figure 7.11. Depending on the
heading of the vehicle with respect to the final waypoint, the system will jump either
to the state Turn CW or Turn CCW, following an arc of circle clockwise or counter
clockwise, respectively. The arc of circle in boldface shown in Figure 7.11. The mini-
mum radius of the circle will depend on the minimum curvature of the trajectory that
the vehicle can follow. When the angle of the vehicle ψ is close to the angle ψre f the ve-
hicle switches control jumping to the Straight state. In this state the controller will make
the system following a straight line passing through the next waypoint. When the dis-
tance between the vehicle and the final waypoint w+

i
is less than a given threshold, rtol,
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Hold

t := 0

Stop vehicle ∧startHold(wi)
/

ǫ

Straight

Turn CW

Turn CCW

startGoto(wi, t̄) ∧ |ψ − ψw| ≤ π
/

ǫ

startGoto(wi, t̄) ∧ |ψ − ψw| > π
/

ǫ

‖(x, y)T − w+‖ < rtol
/

(doneGoto, (x, y)T )

t > t̄
/

MtimeOut

|ψ − ψref | < δ/ǫ

|ψ − ψref | < δ
/

ǫ

t > t̄
/

MtimeOut

t > t̄
/

MtimeOut

Figure 7.10: Hybrid automaton modelling the maneuver controller.

the maneuver controller returns in the Hold state maintaining the vehicle around the
reached point. If something goes wrong and the maneuver controller is not able to com-
plete the st ar tGoto(.) command within time t̄ , then an error signal is communicated
to the vehicle supervisor. In case of success a doneGoto together with the coordinate of
the reached point are signalled to the vehicle supervisor.

This is a very simple, though instructive, example of how to build a maneuver con-
trol for this type of architecture. Complex control strategies, such as those discussed
in [Souères et al. 2001], could be considered in this framework. In the case of distur-
bances acting on the vehicles, such as water streams, techniques as those in [Aicardi
et al. 2001] could be used in order to counteract the disturbances.

7.5.5 Simulations results

Computer simulations were performed to illustrate the behavior of the proposed hier-
archical control structure applied to a team of AUVs. We considered the simplex based
search with three AUVs in a time-varying planar scalar field (which could represent
salinity, temperature, etc.).

Figure 7.12 shows four snapshots of the evolution of the AUVs’ positions in a scalar
field. The field is quadratic with additive white noise and a constant drift of (−0.4,0) m/s.
The approximately ellipsoidal lines are the level curves of the scalar field. Notice that we
have added noise to the measurements, which is the reason why the level curves are not
smooth. The simulation starts with the AUVs at the desired depth and at the vertices of
a predefined initial simplex w = ((100,50), (122,62), (100,75)). Figure 7.12(a) shows the
initial trajectory of the AUVs. The grid implicitly imposed by the simplex algorithm is
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Figure 7.11: Example of a trajectory followed by a vehicle, for moving from w to w+.

illustrated in this plot. The multi-vehicle system completes the search procedure after
135 s.

Figure 7.13 shows another scenario for the evolution of three AUVs towards the ex-
tremum of the scalar field. The initial simplex is w = ((400,300), (422,312), (400,275)).
The figure is labelled with the discrete states of the team controllers (TC), vehicle super-
visors (VS) and maneuver controllers (MC) for different phases of the operation. During
the progression, one of the AUVs fails to reach its waypoint. In the figure, it corresponds
to the AUV with the dotted trajectory. The other two AUVs reach their corresponding
waypoints and wait there until the timeout occurs. Note the circular trajectories of these
two AUVs while waiting. At timeout, the system is reconfigured and the team, now com-
posed of two vehicles, proceeds with the execution of the search. The team is able to
progress towards the extremum of the field, despite the failure of one of the vehicles.

7.6 Summary

We presented a hierarchical control architecture for implementing coordination strat-
egy for a team of autonomous vehicles. A general coordination problem was mapped
onto the architecture decomposing it into waypoint generation and online execution
control. The waypoint generation procedure generates the waypoints for the team in
accordance to a given high-level coordination algorithm and was mapped onto the top
layer of the hierarchy called team controller. The execution control was organized into
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(a) AUVs’ trajectories after the first iteration.
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(b) Situation after 70 seconds.
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(c) Situation after 100 seconds.
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(d) Search mission completed after 135 seconds.

Figure 7.12: Simplex coordination algorithm executing a search in a noisy quadratic field
with drift.

two additional layers, the vehicle supervisor and maneuver controller.
It was shown that the controller implementation is consistent with the system spec-

ification on the desired team behavior. This was done in a modular fashion by layering
the execution control and designing each layer to ensure that the controllers produce
suitable results.

We considered a case study, the design of a search mission for autonomous under-
water vehicles and we discussed the design of all the three layers of the proposed archi-
tecture. Computer simulations illustrated the overall system performance.
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(a) One step of the search algorithm
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(b) The vehicle with the dotted trajectory does not
reach the assigned waypoint

+
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Vehicle
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TC:Motion
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VS:Motion
MC:Hold

(c) Reconfiguration and continuation of the search algorithm

Figure 7.13: Trajectories of three AUVs (solid, dotted, dash-dot) moving towards the
minimizer of a scalar field. The stars correspond to the generated waypoints. Note the
reconfiguration after a vehicle failure.
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8
CONCLUSIONS AND FUTURE WORK

8.1 Conclusions

In this thesis analysis, design and implementation of cooperative control strategies for
multi-robot systems under communication constraints were discussed. In particular,
a problem was researched in detail in which the group of agents is supposed to agree
on a common state without any centralized coordination: the consensus problem. We
analyzed the tradeoffs between how fast agents can coordinate and the amount of in-
formation that needs to be exchanged. Under the assumption that the communication
network has a certain symmetry, that is, it can be described by a Cayley graph on an
Abelian group we determined a bound of the convergence rate to consensus. Further-
more, we proved that the convergence rate to the barycenter of the initial configuration
decreases as the number of agents increases, if the amount of information does not
scale with the number of agents. We also considered some particular random strategies
that consist in randomly choosing a communication graph from a predefined family
of graphs. In particular we considered stochastically time-varying Cayley graphs and
graphs with bounded in-degree. It turns out these strategies yield a significant improve-
ment of the performance compared to time-invariant communication graphs. Since
digital communication involves quantization in order to cope with bandwidth limita-
tions, we also analyzed the consensus problem under quantized communication data.
In particular, we studied control and communication strategies that solve the consen-
sus problem when either uniform quantizers or a mixture of uniform and logarithmic
quantizers are used. Results were extended to the case of communication networks that
can be modelled as Cayley graphs. Estimates of the total number of symbols needed to
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achieve consensus were also derived, which allowed us to compare the different strate-
gies.

We formulated a control design problem for which the output of the agents should
coincide after a pre-specified time. The dynamics of the agents are supposed to be time-
invariant and linear and subject to input constraints. A receding horizon control strat-
egy was investigated. We showed that it was possible to design strategies where the con-
sensus point was negotiated among the agents in a distributed way. We explored the
performance by numerical simulations. The control schemes is very flexible and can
handle several difficulties in multi-agent coordination. The drawback is that the general
behavior is difficult to analyze for the more complex control schemes. We also designed
a decentralized cooperative estimation algorithm for the estimation of time-varying sig-
nals based on a consensus filter. Specifically, the algorithm allows for accurate refine-
ments of the estimates by employing previous estimates and noisy measurements. We
provided optimal time-varying filter weights.

The implementation of multi-robot control systems is difficult due to the high sys-
tem complexity. We presented a hierarchical control architecture for implementing co-
ordination strategies for a team of autonomous vehicles. A general coordination prob-
lem was mapped onto the architecture decomposing it into waypoint generation and
online execution control. The waypoint generation procedure generates waypoints in
accordance to a given high-level team coordination algorithm. The execution control
was organized into two additional layers: the vehicle supervisor and the maneuver con-
troller. It was shown that the controller implementation is consistent with the system
specification of the desired team behavior. This was done in a modular fashion by lay-
ering the execution control and designing each layer to ensure that the controllers pro-
duce suitable results. We considered a case study on a search mission for autonomous
underwater vehicles and we discussed the design of all the three layers of the proposed
architecture. Computer simulations illustrated the overall system performance.

8.2 Future work

The thesis presents original contributions to several problem in multi-robot coordina-
tion, but it also suggests may research issues for further studies. One important limita-
tion of the considered consensus problem is on the assumption of the communication.
Certain classes of time-invariant and time-varying communication graphs were stud-
ied. These simplified models allowed us to analyze also controller performance. One
would need to consider more realistic network models. One such model is that where
the communication graph changes with the relative position of the agents. This type of
model arises when agents are considered as omnidirectional antennas with a short re-
liable communication range. In the literature, dynamic networks have been considered
in the consensus problem, but performance analysis and quantization issues, in this
type of networks, are still open questions that would be interesting to study.

Modular and flexible architectures for implementation of coordination algorithms
offer many new research challenges. Verification of hierarchical control architectures
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for multi-agent systems is quite an open question. The hierarchical organization is im-
portant since verification could be tackled layer by layer, assuming the other layers fulfill
some specifications. Important extensions on modelling dynamic reconfiguration and
uncertainty for multi-agent systems should be considered

In this thesis we focused on a master-slave architecture. In order to tackle the class of
multi-agent systems we have considered in the first part of the thesis, decentralization
issues need to be addressed.
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