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Abstract— In this paper, we present a novel method for schedul-
ing smart appliances and batteries, in order to reduce both
the electricity bill and the CO2 emissions. Mathematically, the
scheduling problem is posed as a multi-objective Mixed Integer
Linear Programming (MILP), which can be solved by using
standard algorithms. A case study is performed to assess the
performance of the proposed scheduling framework. Numerical
results show that the new formulation can decrease both the
CO: emissions and the electricity bill. Furthermore, a survey
of studies that deal with scheduling of smart appliances is
provided. These papers use methods based on MILP, Dynamic
Programming (DP), and Minimum Cut Algorithm (MCA) for
solving the scheduling problem. We discuss their performance
in terms of computation time and optimality versus time
discretization and number of appliances.

I. INTRODUCTION

The need to satisfy the increasing energy demand in a
sustainable way requires active energy distribution networks,
i.e., distribution networks with the possibility of bidirectional
power flows controlling a combination of distributed energy
resources, such as storage devices and renewable energy
sources. Hence, distribution companies are required to con-
sider more complex scenarios due to the extra stress created
to balance energy demand and generation. Load balancing
must be accomplished so that the quality of electrical supply
to consumers is maintained and the usage of non-renewable
generation is minimized.

In this scenario, Demand Response (DR) has received in-
creased attention in recent years since it can efficiently
support load balancing and economical/environmental cost
reduction [1], [2]. DR is commonly defined as changes in
electricity use by consumers in response to changes in the
electricity price over time [1]; further, the electricity use
can also be sensitive to changes in the CO2 emission. DR
policies aim at flattening the demand curve, which helps
preventing grid instability and reduce line losses, as well as
the number of expensive generation plants used only for peak
load periods. Naturally, effective DR policies require smart
appliances, which can be switched on or off in response to
price and CO; signals.

Several studies have investigated the potential changes in
residential electricity use under time-varying price rates by
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rescheduling smart appliances, e.g., see [3], [4], [5]. Other
works have also focused on CO5 emission factors and its
potential impacts on the changes in household load profile,
e.g., see [6]. The main conclusions are that employing hourly
electricity prices and DR technologies can be highly benefi-
cial for the distribution grid and compel consumers to arrange
an economical/environmental way of using smart appliances.
Further, another important conclusion is that the success
of DR programs depends on the awareness and behavioral
adaption of consumers. It is clearly too hard for consumers to
reschedule their appliances based on time-varying electricity
prices and CO- emission, keep monitoring these signals over
the whole day and, additionally, conveniently use the storage
device [7], [8]. Hence, automated decision support systems
are needed to optimally schedule household appliances.
Further, by integrating batteries with DR policies, it would
be more flexible and efficient for consumers to manage their
energy use in response to time-varying electricity prices
and network congestion, taking advantage of the capability
of these devices to store energy and release it when it is
more convenient. Studying the impact of DR policies that
employ storage devices is motivated by the cost reduction
of small-scale devices, by the technological advances and
the availability of physical infrastructures for accommodating
energy storage devices.

Several works have proposed load management strategies
accounting for price and CO, information (e.g., see [1],
[9], [10], [11], [12], [13], [14], [15] and the Stockholm
Royal Seaport project [16]). The aforementioned works do
not consider batteries, which are taken into account in [17],
[18].

Differently from the aforementioned works, in this paper we
aim to model the decision problem as realistically as possible,
accounting, for instance, for energy degradation and power
losses in batteries including different multiplicative factor in
charging and discharging. Hence, simplified analytical and
linear-programming based analysis tools, as in [15], [17], are
not employed. Instead, in this work we take advantage of
the modeling capabilities and the computational advances of
MILP algorithms for stating a residential appliance schedul-
ing problem that aims at optimizing a trade off between
electricity costs and COs emission (in certain countries
including Sweden [12]) by purchasing energy from the grid
and/or storing energy to use it when more beneficial. Further,
we account for user time preferences and the possibility to
sell stored energy to the grid.

This paper conducts a numerical study to investigate, in a
realistic test case, the impact of DR policies that consider both
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Fig. 1. An active apartment building in Royal Seaport project in Stockholm.

electricity price and CO4 signals as well as batteries. Fur-
ther, we compare three commonly employed methods in the
literature to solve the appliance scheduling problem without
batteries: i) a MILP formulation proposed in [11], solved by
branch and bound techniques; ii) a discrete-time formulation
solved by the minimum cut algorithm, as proposed in [13];
iii) a dynamic programming based procedure proposed in
[12]. Advantages and limitations of these methods are then
discussed.

The paper is organized as follows. Section II describes the
realistic scenario under study. Section III is devoted to formu-
late the scheduling problem of smart appliances and battery,
and discusses numerical results. Section IV presents a survey
on different methods for scheduling smart home appliances
and discusses their performance. Finally, Section V provides
conclusions and future studies.

II. AN ACTIVE HOUSE IN THE ROYAL SEAPORT PROJECT

In our case study we consider active houses, which are
houses where effective DR policies are enabled through
the integration of smart appliances, scheduling algorithms,
energy management systems, and information exchange over
wireless communication technologies. Within the Stockholm
Royal Seaport project [16], which is a new, environmentally
sustainable city district being built in Stockholm, some active
apartment buildings are available and occupied by families;
an example of an active apartment building is depicted in
Figure 1.

We consider a case study of 10000 active apartments with
smart appliances, for the evaluation of DR programs, and to
predict the potential load shift and bill and CO, savings of
households. Actual hourly power consumption profiles from
active apartments in the Stockholm Royal Seaport are used
in this work. The data has been kindly provided by Fortum
Corporation, which is actively involved in the project.

A. Power consumption of an active house

In this paper, we want to investigate the potential of active
houses for saving electricity bill and reducing CO5 emission
by using an automation system for scheduling of smart
appliances and batteries. Therefore, for assessment of the
automation system, it is necessary to have the information
related to hourly energy consumption in active houses without
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automation system, and the portion of household appliances
in this energy consumption. In the Stockholm Royal Seaport
project, two active apartments are occupied by families and
hourly power consumption is available from March 2013 to
January 2014. To determine the hourly power consumption of
household appliances vs other consumptions, a comparison
with previous works is done. In [14], apartments average
hourly power consumption is a result of the empirical measur-
ing of a total of 199 apartments between the years 2005-2008
in Sweden, which is done by the Swedish Energy Agency. In
that study, five types of apartments (singles 26-64 years old
and above the age of 64, couples 26-64 years old and above
the age of 64 and families 26-64 years old) are taken into
account. Among all these 199 apartments, 125 of them were
occupied by families 26-64 years old (more than 60%) and
in this paper the data related to them is used. Fig. 2 shows
average hourly power consumption of apartments occupied
with families who are 26-64 years old, in which 4% of the
consumption is devoted to run washing-machine and dryer
and 4% for dish-washer, and the remaining consumption is
used for the other appliances.

Based on these information and considering Fig. 2, estimated
average hourly power consumption of appliances vs other
consumptions for the two active apartments is shown in Fig.
3. As it is obvious in these two figures, the average hourly
load curve profile of the studied active apartments is very
similar to that of the apartments monitored in [14]. The only
thing to be noticed, is that the total amount of energy being
used in one day in the active apartments is approximately 9.9
kWh on average, and in comparison with the apartments that
were studied in [14] (consuming 12,6 kWh on average) has
decreased more than 20%. This reduction in power consump-
tion is reasonable based on the modern home appliances that
are used in the active apartments.

III. OPTIMAL SCHEDULING OF SMART APPLIANCES AND
BATTERIES IN ACTIVE HOUSES

The aim of scheduling smart appliances in active houses is
to reduce the electricity bill and CO2 emission, and in many
situations there exist a conflict between electricity bill and
CO, emission to be minimized at the same time [12]. To
achieve the goal of optimal scheduling, different methods
have been proposed to deal with this possible conflict and
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Fig. 3. Estimated average hourly power consumption of appliances vs other
consumptions (for March 2013 - January 2014) of two active apartments.
trade-off. Weighted sum and e-constrained approaches are
two of these methods that have mostly been used in the
literature [13], [12], [11]. So the problem is a multi-objective
minimization of electricity bill and CO, emission, and there
exist constraints on the user preferences and operation pro-
cess of appliances. That means we are concerned with the
scheduling of a number of user-specified home-appliances
in a certain period of time, in which the user can also
specify precedence relations between certain appliances (user
preferences). In this scheduling framework, the operation
process of an appliance is divided into a set of sub-tasks
(energy phases) of the appliance operation (i.e. movement,
pre-heating, heating, etc for washing machine [11]) and it is
considered that, once an energy phase starts, it must continue
until it is finished. In addition, there exists a flexible delay
between energy phases of each appliance that is modeled
by a minimum and maximum delay time (constraints on
the operation process of appliances). Based on our knowl-
edge till now, the mixed integer linear programming (MILP)
framework that was proposed in [11] is more extendable
(e.g. for including batteries as dynamical systems) than the
other methods proposed in the literature. Therefore, in this
paper we formulate the smart home appliances scheduling
problem (with and without battery) by extending the MILP
framework in [11], which considers the minimum electricity
cost and satisfies technical operation constraints, consumer
preferences and peak power consumption. In this paper,
electricity tariff and CO;y footprint signals are assumed to
be piecewise constant, and the MILP scheduling problem is
solved using CPLEX (using the YALMIP MATLAB interface
[19]), which is a commercial implementation of a branch-and-
bound algorithm.

A. Scheduling appliances without using battery

In the mathematical formulation for scheduling of smart ap-
pliances in [11], the appliances execution period is discretized
into m uniform time slots (e.g. 10 minutes per slot). The
number of appliances considered for scheduling is denoted
by N, and n; for ¢ = 1,2, ..., N, denotes the number of un-
interruptible energy phases for each appliance. The energy
assigned to energy phase j of appliance ¢ during the whole
period of time slot k£ is denoted by pfj. In addition, auxil-
iary binary decision variables (zfj) are required to indicate

whether a particular energy phase is being processed or not.
Moreover, two other sets of binary decision variables are
needed to model the decision problem. One is denoted as
sfj, with a value of one indicating that, in appliance i, energy
phase j is already finished by time slot k. The other set is
denoted as tfj . These decision variables are used to indicate
whether at time slot k, appliance ¢ is making a transition
between running phase 7 — 1 to j. We formulate a multi-
objective optimization problem in which the cost function is
parameterized with the weighting parameter A € [0, 1] (that
would be chosen by end-users) as follow

m N n;
DA=NEF+ACH) | DO ] 6]
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To generate the Pareto curve [20], considering the electricity
bill and CO, emission, following normalizations are applied
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where e* and ¢* denote the electricity bill and CO; foot-
print for time slot & respectively and based on given 24-hour
ahead tariff curves (which are piecewise constant). Note that
A = 0 implies end-users to only care about the electricity bill,
while for A = 1 they only take CO5 emission into account.
The optimization problem in (1) is solved based on defined
variables and subject to the following constraints.
The constraint that is enforced to make sure that the energy
phases fulfill their energy requirement is as

> bl =ERy;, Vij, 3)
k=1

where E'RR;; is the energy requirements for energy phase j
in appliance ¢. In addition, to determine that an energy phase
is being processed during time slot k, while the limitation on
lower and upper power assignment to the phase are satisfied,
the constraint
kK E =k k -

D;;%ij < pi; <Dy, Vi, gk, 4)

is enforced. Also, the power safety constraint can be imposed

as
N n;
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where P is the upper limit of the total energy assigned at
time slot k.

The limits on energy phases process time are imposed as

m
T, <Y aby <Ty, Vij. (6)
k=1
To satisfy the sequential processing of the energy phases of an
appliance and also sequential operation between appliances,
the following constraints are imposed respectively

. i . o _
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where T';; and Tij are the lower and upper limits of the
number of time slots for energy phase j in appliance ¢ to be
processed, and 7 being the index of the appliance which must
be finished before 7 can start. To make sure that energy phases
are uninterruptible the following constraint is imposed.

k, < 11— Vi, i,k
wit -2l < sh o Vi VE=2,...m (8
sfjfl < sk Vi, Vk=2,....m

ij
To count the number of time slots spent between the energy
phases in an appliance and impose lower and upper limits on
this number, the constraints

tk
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are considered, where D, and D,; are between-phase delay
lower and upper bounds respectively. Finally, to meet the
household preferences and finishing a particular appliance

within a specified time interval, the constraint
k k
x;; <TP; (11)

is enforced, where TPik characterizes the time preference
interval. To summarize, the complete minimization problem
(1) can be written as

i(u— N E* +AC*) (ZZ;J”> A€ 0,1]

Vi7j7 k?
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P,T,s,t
k=1 =1 j=1
subject to  constraints (3) — (11)
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(12)

B. Scheduling appliances by using battery

To investigate battery usage effects on saving electricity bill
and CO, emission, battery can be modeled as a set of
constraints and be included in the minimization problem (12).
This battery formulation is an extension of the formulation in
[21] by including the limits on the number of charging and
discharging cycles. The level of energy stored in the battery
at time slot k, should always satisfies the lower (b,) and upper
(b,) limitations

b, < b <by, VE, (13)

where b* is the state of charge (SOC) of battery in time
slot k. Moreover, to meet the lower and upper limitations
on power exchanged with battery when it is charging or
discharging during time slot k, the two constraints

0<bF <Bbrak, o<k <k vk (14)
are enforced, in which the auxiliary binary decision variables
o¥ and z% indicate whether the battery is charging or dis-
charging in time slot k, respectively. The power exchanged
with battery during time slot & is denoted by bF (or b%)

when the battery is charging (or discharging). In addition,
the constraint

ok 42k <1, VE, (15)

should be satisfied to make sure that the battery is not
charging and discharging at the same time slot. To take the
state of health of batteries into account, the total number
of charging and discharging cycles during a day should be
limited to a determined number V., and the constraints

b —ak=l <k VE=2,...,m

k k-1 k
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should be satisfied, where the auxiliary binary decision vari-
ables ¢/ and dF determine the transition time slots to start
charging and discharging, respectively. The dynamic system
constraint

VY = bt b — bt VE=2,...m,  (17)

describes the evolution of energy stored in the battery, in
which the « is a constant stored energy degradation in each
sampling interval, and 7. and 7y are efficiencies accounting
for the losses during charging and discharging. To satisfy the
power balance in the system, the constraint

N n;

SO ol vk -l =pf,
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(18)

is enforced, where the exchanged power with the grid is de-
noted by p’é, and it should satisfy lower and upper limitations.

ok, <p& <Pk, (19)

where the lower limit is negative to allow energy selling to
the grid. Finally, it is reasonable to assume that the initial and
the final energy levels (b2 and b7 respectively) in the battery
are the same, since the final energy level is also the initial
condition for the next day scheduling. Hence, the following
equality constraint on the initial and final SOC' of batteries
is enforced

Y =T, (20)

Moreover, the initial level should be high enough to allow
a flexible use of the battery: in this study, we assume b =
b, + b%b Now the proposed multi-objective optimization
problem of jointly scheduling smart appliances and battery

could be written as
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which can be solved by CPLEX.

C. Impact of DR signals on the automated active houses

As it was discussed in previous sections, DR signals provide
costumers an opportunity to save electricity bill and COq
emission by shifting consumption and using batteries. To
illustrate potential future benefits of automation systems in
active houses which are provided by DR signals, 10000
apartments are considered as a case study. For this case
study, three different scenarios including reference apart-
ments (without automation system), test apartment (equipped
with automation system), and test apartment with battery
(equipped with automation system and battery) have been
taken into account and compared with each other. Throughout
the comparison, average hourly power consumption data from
the mentioned two real active apartments (Fig. 3) is used, and
is considered as the average hourly power consumption of the
reference apartment, and the technical specifications of the
smart appliances (dishwasher, washing machine, and dryer)
have been extracted from [11]. For each scenario, the number
and types of the smart appliances that are running in one
day in those 10000 apartments, can be calculated from these
technical specification, average hourly power consumption
data from the two real active apartments in the day, and
considering the fact that 4% of energy consumption is devoted
to the washing-machine and dryer and 4% for dish-washer.
Thus, by having the number and types of smart appliances,
solving the multi-objective optimization (12) for scheduling
of appliances yield to average hourly power consumption
for the 10000 test apartments. To include batteries in the
automation systems, one should consider some limitations
(e.g. charging rate and capacity), inefficiencies, and nonlinear
relationships between life cycles and depth of discharge
(DOD). A battery with the following specifications is applied
for the apartments with batteries

« Maximum DOD: 30%

« Storage capacity: 1700 (Wh)

o Maximum power exchange: 1000 (W)

o Stored energy degradation («): negligible

o Charging and discharging efficiency: 90%

« Maximum charging and discharging cycles: 5 (per day).
Solving the multi-objective optimization (21) for scheduling
of appliances and battery (with the mentioned specifications),
yields the average hourly power consumption for the 10000
test apartments with battery. In Fig. 4 average hourly power
consumption curves related to smart appliances and battery,
for these three scenarios of apartments for June 2013, is
shown. Note that, to show the differences more clearly, only
the consumption related to the smart appliances and batteries
has shown. In addition, the total bill and CO4 savings in these
10000 apartments for the test apartment and test apartment
with battery are compared in Table I, in terms of percent and
amount of saving. In all the simulations, hourly price tariffs
for June 2013 are downloaded from Nordpool website [22].
In addition, the SVK website [23] provide us with electricity
generation by fuel type data, electricity import, and electricity
export for 2013 and hourly CO2 foot print curves can be
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Fig. 4. Average hourly load curves of three type of active apartments in

June 2013 for different values of the weight parameter ().
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Fig. 5. Average hourly Swedish Fuel-Type Specific Generation in June
2013.

computed based on these data [10]. Average hourly electricity
generation by fuel type data, import and export for June 2013
is shown in Fig. 5.

D. Discussion

1) Environmental and economic benefits: As it is men-
tioned in [10], in certain countries like Sweden there some-
times exists a trade-off between environmental and economic
consideration, and for some electricity generation mixes,
price and CO intensity are negatively correlated. Moreover,
it is shown in [10] that the Swedish CO; intensity is very
sensitive to import of high carbon intensity power generation.
Thus, considering only economic incentives for shifting load



TABLE I
BILL AND COg SAVING IN 10000 ACTIVE APARTMENTS (JUNE 2013).

A [o [025 J05 [075 |1
Saving without using battery
CO2 (%) -2.88 -0.23 1.05 1.79 1.98
CO: (kg) -2330 -183 849 1447 1602
bill (%) 2.41 2.16 1.56 0.68 -0.22
bill (SEK) || 19013 17032 | 12305 | 5336 -1751
Saving by using battery

CO2 (%) -5.01 0.37 5.56 7.66 8.02
CO2 (kg) -4057 297 4501 6200 6491
bill (%) 4.94 4.10 2.46 0.70 -1.10
bill (SEK) || 38948 32304 19371 | 5502 -8669

could result in an increased CO5 emission, and this is obvious
in the case under study. Figure 4 shows the comparison
between the average hourly energy profiles of smart home
appliances and batteries for the reference apartment, test
apartment, and test apartment with battery under different
attitude of users toward the electricity bill and CO5 emission
(different \). Comparing Figures 4 and 5 we may notice
that for A = 0 (considering economic profits only), the load
tends to be shifted to the hours when the ratio of import
energy to energy sources such as hydropower and nuclear
power is higher (between 03:00 and 06:00), because Sweden
imports are relatively inexpensive [12]. This leads to 4.94%
bill saving for test apartments with batteries (Table I) that is
more than twice the saving in test apartment without battery
(2.41%). This scenario yields CO, emission to be increased
with 2.88% and 5.01% for test apartments without and with
batteries, respectively, which is not environmentally desired.
This is due to the use of energy imported during night from
Denmark, Germany and Poland whose primary energy source
is combustive fuel power plants and is CO- intense (303, 430,
and 640 gCO4 /kWh respectively), while clean energy sources
such as hydropower and nuclear power have negligible CO2
intensity (4 and 16 gCO5/kWh respectively) [10].

On the opposite, for A = 1 (caring about environmental
impact only), the load tends to be distributed within the hours
when the ratio of import energy to clean energy sources
such as hydropower and nuclear power is lower (between
07:00 and 22:00). As it is illustrated in Table I, scheduling
in test apartment with battery yields 8.02% COs saving
(more than four times of the saving in the test apartment
without battery), while increasing the electricity expenses by
1.1%, which is not desired economically. Therefore, for most
customers it is most convenient to care both environmental
and economic benefits. Consider, for instance, A = 0.5 and
the test apartments with battery: in this case, we can have
5.56% and 2.46% CO; and bill saving, respectively, which
is desirable both environmentally and economically.

2) Impacts of uncertainty in scheduling problem: The
scheduling program in Subsection III-C provides scheduling
within 24 hours to get the optimal solution, which is the most
optimistic scenario and difficult to be achieved in practice
because consumers can change their usage patterns during
the day. This can be represented in the proposed scheduling
framework by considering different time preference intervals.

TABLE II
BiLL AND COg SAVING IN 10000 ACTIVE APARTMENTS, AFFECTED BY
TIME PREFERENCES (JUNE 2013).

A [o [025 J05 [075 |1
Saving without using battery
CO2 (%) -1.31 0.71 1.59 1.80 1.84
bill (%) 0.62 0.42 0.14 -0.09 | -0.41
Saving by using battery
CO2 (%) -3.44 1.31 6.10 7.67 8.02
bill (%) 3.15 2.36 1.04 -0.07 -1.39

Hence, to investigate the impact of user time preferences
on the load shift, the scheduling of appliances for the three
types of apartment (reference, test, and test with battery) have
been computed under different A and between 08:00 and
24:00 hours. Note that this time interval has been chosen
based on Figure 3, which shows that families in active
apartments are more interested to run their appliances within
this period. Bill and CO- savings in the 10000 apartments for
the test apartment and test apartment with battery scenarios
are compared in Table II. As it is obvious in this Table,
the percentage of COg saving for A = 0.75 and A = 1
are approximately the same (for both test apartment and test
apartment with battery scenarios), while for smaller A this
saving increases, which is reasonable. In this period, energy
generation from clean energy sources such as hydropower
is higher and CO, emission is less, so by choosing the
mentioned time preference interval, loads could not to be
shifted to the early day hours (for example in the case of
A = 0) when COs; is intense. But bill saving has drastically
decreased for different A, and both types of apartments.
Instead of the case A = 1, this reduction is larger for the
apartments without batteries. For example in the case A = 0,
for the apartment without battery bill saving decrease from
2.41% to 0.62% which means 75% reduction in saving, while
the same case for the apartment with battery causes to a
reduction of less than 40% in saving.

3) Battery profitability: To take the cost of batteries into
account, and to investigate whether the battery usage in
the proposed method is profitable or not, life cycles of the
deployed battery is calculated. In the literature, lead-acid
batteries for smart houses are commonly utilized [24]. In the
manufacturers battery specification data sheet for the lead-
acid batteries, the number of life cycles versus different DOD
is given. Further, charging and discharging efficiencies for
lead-acid batteries are generally 85-95%. If we consider the
schedule of smart appliances and batteries in the test apart-
ments in June 2013 (for example for A = 0.25), simulation
results show that for 10000 apartment in 30 days, batteries
will be used 475513 times in total, and the DOD is 21% on
average. Based on the mentioned data sheet, for this percent
of DOD, the number of life cycles is 2600 for a battery. We
can conclude that a battery would be economically viable if
it costs less than 2500 SEK. However, we remark that the
use of battery is environmentally beneficial.



IV. PERFORMANCE OF DIFFERENT METHODS FOR
SCHEDULING HOME APPLIANCES

As it was mentioned before, based on our knowledge until
now, the MILP framework in [11] is more extendable than
the others for scheduling of smart appliances. But for being
solved, it has some limitation in computational time and it is
valuable to compare it with the other formulations. In addition
to MILP framework in [11], there are two other problem
formulations and methods (by using time discretization) for
scheduling smart home appliances.

Dynamic programming (DP): A more general case is con-
sidered in [12] where the electricity tariff and CO4 footprint
signals (demand response (DR) signals) are arbitrary. In that
paper, a dynamic programming based procedure is applied to
solve the multi-objective scheduling problem, in a test case
with drastically different electricity price and CO2 emission
patterns. As the two objective are in conflict with each other,
the e-constraint approach is considered for exploration and
trade-off analysis through Pareto curve, but it is obvious that
weighted sum approach could be used in the same procedure.
Minimum cut algorithm (MCA): In [13], the same
setting as in [12] is used for scheduling of appliances,
user preferences and technical operation constraints. Then a
discrete time formulation for the problem is proposed and
is solved by finding a minimum-cut in a suitably defined
diagraph, while a weighted sum approach is considered for
multi-objective scheduling problem. It is shown in the paper
that this method results in a near-optimal cost and reduces
computational time.

For comparing these three frameworks for solving the
scheduling problem, simulations are all done on a 64bit
Windows system with an Intel Core 17-3770, 3.40GHz and
16.0 GB of RAM.

A. Computation time and optimality versus time discretiza-
tion

As it was considered in [13], we also use an instance
introduced and solved in [12] to compare the solving time
and optimal cost of the three mentioned methods, as a func-
tion of time discretization. For this comparison, scheduling
of three appliances including washing machine, dryer, and
dishwasher is studied and all the appliances specifications,
user preferences, and the hourly price tariff are detailed in
[13]. This instance has been solved by the three formulations
for values of discretization time (/V;) which are the number
of time slots in a day, ranging from 24-15 to 24-65 by
steps of 5. The computation time and optimal cost of this
simulation is shown in the Fig. 6. As it is obvious in left of
this figure, the computation time of MILP is more than two
orders of magnitude larger than MCA and DP. Moreover,
as it is pictured in the right of Fig. 6, MILP yields to
a more accurate solution for the optimization problem for
all the discretization resolution that is around 0.56 % on
average, and the two other methods results in the same cost
as each other. In addition, it shows that by increasing the
discretization from 24-15 to 24-65, MILP can improve the
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Fig. 6. Computation time and optimality versus discretization.

optimal cost by 0.15% which is negligible, and increasing
the resolution is not worth computational burden. Therefore,
as discretization increases, DP and MCA perform much better
than MILP in computational time while having a negligible
error in minimum cost computation compare to the MILP.

B. Computation time and optimality versus number of appli-
ances

To compare the solving time and optimality of the solution for
the growing number of appliances, a set of three appliances
with 5 energy phases (e.p.’s) is considered, and we increase
the number of appliances by adding one of that set at each
step. As it is mentioned in this paper, in the MILP formulation
the information related to the upper and lower limits on the
power assignment of each energy phases, and also the limits
on energy phases process time is required, so it can not
be chosen randomly (unlike the case discussed in [13]). In
this paper, these three appliances have been defined based
on the specification of washing machine and dishwasher that
are detailed in [13], means the first appliance has the same
specifications as the first 5 e.p.’s of dishwasher, the second
appliance has the same specification as the first 5 e.p.’s of
washing machine, and the third one has the specifications
that are twice of the specifications of the first one. The
time is discretized in N; =24-6 (every 10 minutes) and the
simulation results are shown in Fig. 7. As it is obvious in
the right of Fig. 7, they all have approximately the same
optimal cost as long as the number of appliances increases.
In addition, it is pictured in left of Fig. 7, that MILP results
in a computational time more than three orders of magnitude
larger, and also the computational time of MCA is always less
than DP. Regarding the implementation of these methods, it
should be mentioned that MCA has been implemented in C++
and is used in Matlab through a mex-file, while the others
are implemented in Matlab, and this is one of the reasons
that make MCA to have much less computational time in
comparison with the others. The other point is that, the DP
implementation in [12], is based on e-constraint while here
it is implemented based on weighted sum cost function, and
it is much faster (about 200 times) than the one in [12].

V. CONCLUSION AND FUTURE STUDIES

This paper proposes a new method for scheduling smart
home appliances and batteries. A novel optimal scheduling
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formulation is posed as a multi-objective Mixed Integer
Linear Programming (MILP), which not only decreases the
CO; emissions and the electricity bill, but also takes the state
of health of batteries into account. A realistic case study of
10000 active apartments in the Royal Seaport project was
investigated for assessing the impacts of DR signals on load
shifting and bill and CO; saving factors. This assessment is
based on different attitudes of users toward the environmen-
tally and economic benefits (different A\). It has been shown
that, the more consumers care about the electricity price, the
more CO- emission is produced (for A close to one). An opti-
mized use of the battery can further increase daily cost saving
and CO- emission reduction. Further, a comparison of related
papers that apply DP and MCA for scheduling of smart
appliances is given, and their performance in terms of com-
putation time and optimality versus time discretization and
number of appliances is discussed. It shows that solution time
for the scheduling problem formulated as a MILP increases
exponentially when the number of appliances increases, and
also when the discretization resolution increases, but it is
much easier to include batteries in the MILP formulation.
Uncertainties related to the scheduling of appliances, have
also been studied in terms of time preferences, and as a
future study the other uncertainties such as interrupting the
appliances, or customary scheduling of appliances, could
be analysed. In addition, as it was discussed, only 8% of
power consumption of the active apartments is devoted to
the smart appliances, and almost half of it is related to the
lightning, heating and cold appliances. Thus, by taking these
consumptions into account in automated systems, the bill and
CO, savings could be significantly increased.
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