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Abstract— To achieve satisfactory overall performance, opti-
mal rate allocation in a networked control system with highly
limited communication resources is instrumental. In this paper,
a rate allocation technique for state feedback control in linear
dynamic systems over an erroneous channel is proposed. The
method consists of two steps:(i) the overall distortion is
expressed as a function of rates at all time instants by meansof
high-rate quantization theory, and (ii) a constrained optimization
problem to minimize the overall distortion is solved. It is shown
that a non-uniform quantization is in general the best strategy
for state feedback control over noisy channels. Monte Carlo
simulations illustrate the proposed scheme, which is shownto
have good performance when compared to arbitrarily selected
rate allocations.

I. INTRODUCTION

In networked control systems it is important to encode the
sensor measurements before sending them to the controller
using a few bits, because of the limited information that can
be transmitted using battery-powered devices. However, the
distortion introduced by the quantization should not reduce
the performance of the controller. Hence, optimizing the rate
allocation is important to overcome the limited communication
resources and to achieve a better overall performance.

The problem of optimizing encoder–controller mappings to
improve performance of control over finite-rate channels, with
or without transmission errors, has been addressed in, e.g.,
[1], [2], [3]. How to assign bits among the elements of the
state vector of the plant, while imposing a constraint on the
number of bits over time, can be found in e.g., [4], [5]. In these
works, it has been often assumed that bits (rates) are evenly
distributed to sensor measurements. However, owing to the
non-stationarity of the state observations, an even distribution
of bits to sensor measurements is often not efficient for
networked control. Hence, it is natural to expect considerable
gains by employing a non-uniform allocation of rates. How to
achieve the optimal rate allocation in control systems discussed
above is a challenging task. One main obstacle is the lack of
tractable distortion functions, which we need to use as objec-
tive functions for the rate optimization problem. Furthermore,
such an optimization problem is often non-convex and non-
linear, which implies that it is difficult to compute the optimal
solution.

The problem we are addressing here is related to classical
rate allocation problems in communications [6], [7], and high-
rate quantization theory [6], [8], [9]. We also contribute to rate
allocation based on high-rate theory by studying a general

class of quantizers, while previous work has often focused on
the special case of optimized quantizers. For example in [10],
the problem is studied in the context of transform codes, where
the objective function is convex, and the optimal solution can
be derived in a closed-form. However, in our setting we will
show that the overall distortion is a non-convex function of
the rates, which makes it more difficult the computation of
the optimal solution.

The main contribution of this paper is a novel method for
rate allocation for state feedback control of a linear system
over an erroneous channel. Specifically, we are interested to
the rate allocation problem for two prominent situations of
closed loop control: linear feedback control and state esti-
mation. By resorting to an approximation based on high-rate
quantization theory, we are able to derive a computationally
feasible scheme that seeks to minimize the overall distortion
over a finite time horizon. The resulting rate allocation is
not necessarily evenly distributed. Practical considerations
concerning integer rate constraints are discussed and illustrated
through numerical examples. Overall good performance of our
method is shown by numerical simulations.

The remainder of the paper is organized as follows. In
Section II, the overall system is described and the rate al-
location problem is formulated. Some useful results on high-
rate quantization theory are given in Section III, which are
then used in Section IV, where we solve the rate constrained
optimization problems for the state estimation and state feed-
back control. Finally, numerical simulations are carried out in
Section VI to demonstrate the performance of the proposed
bit-rate allocation schemes.

II. PROBLEM FORMULATION

The goal of this work is to arrive at a rate allocation
scheme for state feedback control of a dynamic system over an
erroneous channel. The scalar plant is governed by the linear
equation

xt+1 = axt + ut + vt, a > 0, (1)

wherext, ut, vt∈R. The initial statex0 and the process noise
vt are mutually independent. They arei.i.d. zero-mean Gaus-
sian with variancesσ2

x0
and σ2

v , respectively. Following the
block diagram in Fig. 1, we describe each system component
in detail. The state measurementxt is encoded and transmitted
to the controller and decoder units through an erroneous



Plant Encoder
xt

it

ut dt

DecoderController

vt x0

jt

Channel

Fig. 1. A block-diagram of a control system where measurements
are transmitted to the controller over an erroneous channel.

channel. The encoder is time-varying and memoryless,

it = ft(xt) ∈
{

0, . . . , 2Rt − 1
}

. (2)

The rate Rt is a non-negative integer. The indexit will
be mapped to a binary codeword before being fed to a
binary channel. The mapping from an index to a codeword is
commonly referred to as theindex assignment(IA). Finding
the optimal IA is a combinatorial problem which is known
to be NP-hard [11]. Therefore, in this paper, we average out
the dependence on a specific IA by randomization. At each
transmission, a random assignment is generated and revealed
to the encoder and decoder. Previous work that assumed a
random IA to facilitate further analysis includes, e.g., [12].

Throughout the paper, the overallerroneous channelis
composed by the combination of the random IA and a binary
symmetric channel (BSC). The overall symbol error probabil-
ity Pr(jt|it) is

Pr(jt| it) =

{

α (Rt) , jt 6= it,
1 − (2Rt − 1)α (Rt) , jt = it,

(3)

(cf., [12]), whereα (Rt) , (1−(1−ǫ)Rt)/(2Rt−1), is obtained
by averaging over all possible index assignments, andǫ =
Pr(0| 1)=Pr(1| 0), is the crossover probability of the BSC.

At the receiver side, the decoder takes the current channel
output as the input, and generates an output,

dt = Dt(jt) ∈ R. (4)

In the following subsections, we pose the rate allocation
problems for linear feedback control and for state estimation
separately.

A. State Feedback Control

The controlut is determined by the decoded symbol,ut =
gt(dt) ∈ R. We specifygt(·) after the introduction of the
control objective, which is the minimization of the expected
value of the costJtot(R),

Jtot(R) =

T
∑

t=1

Jt(Rt−1) =

T
∑

t=1

(

x2
t + ρu2

t−1

)

, ρ ≥ 0,

(5)
subject to a rate constraint

∑T−1
t=0 Rt ≤ Rtot. Here,Jt(Rt−1),

Rt−1 = {R0, . . . , Rt−1}, denotes the instantaneous cost and

Rtot denotes the total rate. The sequence of rates is denoted by
R={R0, . . . , RT−1}. We refer toR asthe bit-rate allocation.
The objective (5) is the linear quadratic (LQ) cost from
classical stochastic control [13], whereρ is the importance
factor of the control input with respect to the state. The
implicit relation of the costE {Jtot(R)} and the allocation
R is determined by the channel and coding–control scheme.
Throughout this paper, the control is a linear function of the
decoded symboldt,

ut = ℓtdt. (6)

If the estimatedt is close to the true statext then the classical
linear quadratic Gaussian (LQG) theory is expected to give
good results, even though it does not account for channel errors
and quantization distortion. Accordingly, we useℓt given by
the LQG theory,

ℓt , −
aφt+1

φt+1 + ρ
,

φt = 1+
a2φt+1ρ

φt+1+ρ
, with φT =1.

Problem 1 below specifies the rate allocation problem in
control systems studied in this paper.

Problem 1. Given the linear plant(1), the discrete memoryless
channel (3), the memoryless encoder–decoder pair(2) and
(4), the control law(6), find the optimal bit-rate allocationR
minimizing the expected cost of(5), subject to the total bits
constraint,

min
R

E {Jtot(R)} ,

s. t.
∑T−1

t=0 Rt ≤ Rtot,

whereJtot(R) is

Jtot(R) =

T−1
∑

t=0

(φt+1 + ρ)ℓ2
t (xt − dt)

2. (7)

Here we replaceJtot(R) in (5) by the one of (7), because
we can also write the overall cost (5) as

E {Jtot(R)}

=E

{

(φ0−1)x2
0+

T−1
∑

t=0

φt+1v
2
t +

T−1
∑

t=0

(φt+1 + ρ)(−xtℓt + ut)
2

}

Note that, the new instantaneous costE {Jt(Rt)} becomes

E {Jt(Rt)} = E
{

πt(xt − dt)
2
}

, πt , (φt+1 + ρ)ℓ2
t .

(8)
In the next subsection, we study a special case of Problem 1
for state estimation.

B. State Estimation

In this subsection we study a special case of Problem 1
for state estimation. The rate allocation problem for state esti-
mation, with slightly modified system equation and objective
function compared with Problem 1, is

Problem 2. Given the plantxt+1 = axt +vt, the channel(3),
and the memoryless encoder–decoder pair(2) and (4), find



the optimal bit-rate allocationR that minimizes the overall
distortion below, subject to a total bit-rate constraint. Namely,

min
R

∑T−1
t=0 E {Jt(Rt)} ,

s. t.
∑T−1

t=0 Rt ≤ Rtot,
(9)

whereJt(Rt) is

Jt(Rt) = (xt − dt)
2. (10)

Note that objective function of Problem 2 is motivated by
the closed-loop control, cf., (8). Compared with Problem 1,
Problem 2 is considerably simplified becauseJt does not
depend on the past ratesRt−1.

III. H IGH-RATE APPROXIMATION OFMSE

One main difficulty of Problem 1 and Problem 2 is that the
objective functions do not have an analytical expression. In
the next section, we propose an approximation of adequate
accuracy, which will then be used for the solution of the
optimization problems.

By (8), we note that the mean-squared error (MSE) is a
key factor in the overall cost, therefore, a major challenge
lies in deriving a useful expression for the MSE. In general,
it is not possible to derive a closed-form expression, even
in the case of simple uniform quantizers. Therefore, we
resort to approximations based onhigh-rate theory[6] (for
further details, we refer the reader to [12] and [14]). Roughly
speaking, the high-rate assumption requires the probability
distribution function (PDF) of the source to be approximately
constant within a quantization cell. LetP[xt] denote the PDF
of the sourcext, which is zero-mean and with varianceσ2

xt
.

Essentially, we are in need of a useful expression to describe
the relation between the MSE and the rateRt. Therefore, we
impose2Rtα(Rt) ≈ 1−(1−ǫ)Rt on the high-rate MSE from
[14] and arrive at

E
{

(xt − dt)
2
}

≈ Ĵt(βt, κt, Rt)

, βt(1 − (1 − ǫ)Rt) + κt2
−2Rt ,

βt , σ2
xt

+

∫

y

y2λt(y)dy,

κt , G2/3

∫

x

λ−2
t (x)P[xt](x)dx.

(11)

The constantG is the volume of a unit sphere. The function
λt(x) is referred to as thequantizer point density function.
This function is used to specify a quantizer in terms of the
density of the reconstruction points. It holds thatλt(x) ≥ 0,
for all xt, and

∫

λt(x)dx = 1, which resembles a probability
density function. Finally, the parameter1 ≤ ϕt ≤ 2Rt specifies
the number of codewords the encoder will chose. In this paper,
we consider only the encoder–decoders for whichϕt = 2Rt .
The distortion (11) has certain useful property that will allow
us to solve the rate allocation problem, as shown by the
following lemma.

Lemma 1. The distortion function

Ĵt = βt(1 − (1 − ǫ)Rt) + κt2
−2Rt , 0<βt <∞, 0<κt <∞,
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Fig. 2. The impact ofRt, κt, βt and ǫ on the cost function̂Jt.

is a quasi-convex function and has a unique global minimum.

Proof: Compute the derivative of

∂Ĵt

∂Rt

(βt, κt, Rt) = −βt ln (1−ǫ)(1−ǫ)Rt − 2 ln (2)κt2
−2Rt,

and it has at most one critical pointR⋆
t , which solves

−βt ln (1 − ǫ)(1 − ǫ)R⋆

t − 2 ln (2)κt2
−2R⋆

t = 0.

Compute the second order derivative ofĴt with respect toRt,

∂2Ĵt

∂R2
t

(βt, κt, Rt) =−βt ln2 (1−ǫ)(1−ǫ)Rt +4 ln2 (2)κt2
−2Rt .

The critical point is a global minimum, since
limRt→0 ∂2Ĵt/∂R2

t >0.
In Fig. 2, some examples of̂Jt are depicted to show the

impact of the variablesβt, κt andRt. Generally speaking, as
the rate increases, the quantization distortion decreases, while
the distortion caused by transmission errors grows. Beyond
the critical point, the latter distortion dominates, and therefore
the overall distortion will increase with the rate. Moreover,
for the same quantizer, the higher the crossover probability
ǫ, the closer to0 the critical point is. As shown later in
Section IV, Lemma 1 is instrumental in solving the rate
allocation problems. Finally, we mention a class ofĴt, which
can be written as

Ĵt = σ2
xt

(

β̃t(1 − (1 − ǫ)Rt) + κ̃t2
−2Rt

)

= σ2
xJ̃t(β̃t, κ̃t, Rt)

Here, J̃t(β̃t, κ̃t, Rt) , β̃t(1 − (1 − ǫ)Rt)+ κ̃t2
−2Rt , where

0<β̃t <∞ and0<κ̃t <∞ are independent ofRt and ofσ2
xt

.
This class of̂Jt is central to our solutions to the state feedback
control problems. Owing to the fact thatJ̃t is a special case
of Ĵt, Lemma 1 applies directly tõJt.

IV. RATE ALLOCATION

In this Section, we solve the rate allocation problems for
state feedback control and state estimation.



A. Rate Allocation for State Feedback Control

Optimizing rate allocation for state feedback control is
challenging mostly because that the instantaneous costJt(Rt)
depends on all previous ratesRt. We notice that the terms
E
{

x2
t

}

andE
{

(xt−dt)
2
}

are essential to the instantaneous
cost (8). In order to proceed, we will approximatext by a
zero-mean Gaussian source, because the initial state and the
process noise are zero-mean Gaussian. By imposing such an
approximation, we only need to estimate the variance, which
we denote bŷσ2

xt
. The next challenge lies in the derivation of

σ̂2
xt

. In order to facilitate the derivation of a tractable overall
cost for optimization, we consider an upper bound forσ̂2

xt
by

simplifying the correlation betweenxt anddt, so that it holds

σ̂2
xt

= (At + Bt(β̃t(1 − (1 − ǫ)Rt−1) + κ̃t2
−2Rt−1)σ̂2

xt−1
+σ2

v,
(12)

where At > 0 and Bt > 0 are terms independent ofRt−1

and σ̂2
xt−1

. The following two cases are used to illustrate the
utility and motivation of (12). First, consider the decoder
dt−1 =E {xt−1|jt−1}, for which the estimation errorxt−1−dt−1

is uncorrelated with the estimatedt−1. Therefore (12) is an
exact expression, with

At = a2 + ℓ2
t−1 + 2aℓt−1, Bt = −(ℓ2

t−1 + 2aℓt−1).

Second, we in general can writeE
{

x2
t

}

as

E
{

x2
t

}

= ℓ2
t−1E

{

(xt−1 − dt−1)
2
}

+ (a + ℓt−1)
2
E
{

x2
t−1

}

− 2(a + ℓt−1)ℓt−1E {xt−1(xt−1 − dt−1)} + σ2
v.

The term E {xt−1(xt−1−dt−1)} depends on the source,
the quantizer and the channel. In the special case that
E {xt−1(xt−1−dt−1)} = γ(ǫ)E

{

x2
t−1

}

, where γ(ǫ) does not
depend onxt−1 and dt−1, then σ̂2

xt
can be expressed in the

form of (12), with

At = (a + ℓt−1)
2 − 2(a+ ℓt−1)ℓt−1γ(ǫ), Bt = ℓ2

t−1,

Based on the above Gaussian approximation, we arrive at the
instantaneous cost

E {Jt(Rt)} = πtσ̂
2
xt

(β̃t(1 − (1 − ǫ)Rt) + κ̃t2
−2Rt),

(13)
where σ̂2

xt
is recursively calculated according to (12). In

practice, (13) can be applied generally to all systems from
Section II by finding suitableAt and Bt to approximate the
true instantaneous costs. Therefore, the unconstrained and con-
strained rate allocation problems based on (13) are formulated
as the following approximate versions of Problem 1.

Problem 3. Find R that solves

min
R

T−1
∑

t=0

E {Jt(Rt)} ,

with E {Jt(Rt)} given by(13).

Problem 4. Find R that solves

min
R

T−1
∑

t=0

E {Jt(Rt)} ,

s. t.

T−1
∑

t=0

Rt ≤ Rtot,

with E {Jt(Rt)} given by(13).

By recursively replacinĝσ2
xt

with σ̂2
xt−1

, back toσ̂2
x0

=σ2
x0

,
we are able to expresŝσ2

xt
as function ofRt−1 and σ2

x0
.

In particular,E {Jt(Rt)} is a sum of2t terms, as shown in
Lemma 2,

Lemma 2. The cost(13) can be written as

E {Jt(Rt)} =

1
∑

b0=0

· · ·

1
∑

bt−1=0

πtΨt(b0, . . . , bt−1)J̃t(β̃t, κ̃t, Rt)

wherebs∈{0, 1}, 0 ≤ s ≤ t − 1, is a binary variable, and

Ψt(b0, . . . , bt−1) , B̄

(

t−1
∏

s=s̄+1

B̄s

(

J̃s(β̃s, κ̃s, Rs)
)bs

)

,

B̄s ,

{

As, bs = 0,
Bs, bs = 1,

B̄ ,

{

τs̄−1, s̄ > 0,
B0σ

2
x0

, s̄ = 0,
(14)

where s̄ is the smallests for which bs = 1, and τs̄−1 is
calculated recursively according to

τs = Asτs−1 + σ2
v, with τ0 =A0σ

2
x0

+ σ2
v.

Lemma 2 is proved by direct calculations. Theorem 1
specifies the solution to Problem 3 and Problem 4.

Theorem 1. SupposeR ∈ R
T . The solution to Problem 4 is

as follows:

1) If Rtot≥
∑T−1

t=0 R⋆
t , whereR⋆ is a solution to the system

of equations

0 =
∂Ĵt

∂Rt

(βt, κt, R
⋆
t ), t = 0, . . . , T − 1, (15)

thenR
⋆ also solves Problem 4.

2) If Rtot <
∑T−1

t=0 R⋆
t , whereR

⋆ is the solution to(15),
then the solution{R, θ} to











−
T−1
∑

s=t

Ψt,s = θ,

∑T−1
t=0 Rt = Rtot,

(16)

with Ψt,s defined as

Ψt,s ,

1
∑

b0=0

· · ·

1
∑

bt=1

· · ·

1
∑

bs=0

πsΨ̄(b0, . . . , bs),

t = 0, . . . , T − 1, solves Problem 4, whereθ is the
associated Lagrange multiplier, and

Ψ̄(b0, . . . , bs) , B̄

(

s−1
∏

m=s̄+1

B̄m

)(

s−1
∏

n=s̄+1

(Cn)
bn

)

,



whereCn is

Cn ,

{

∂J̃n

∂Rn

(β̃n, κ̃n, Rn), n = t

J̃n(β̃n, κ̃n, Rn), n 6= t.

Here,∂J̃t/∂Rt =−β̃t ln(1−ǫ)(1−ǫ)Rt−2 ln(2)κ̃t2
−2Rt,

is the derivative of̃Jt with respect toRt.

Proof: Theorem 1 is proved in two steps. First, we can
show that Problem 3 has a unique global minimum, which
solves the system of equations (15). Especially, we can show
that ∂(

∑T−1
t=0 E {Jt(Rt)})/∂Rk = 0 ⇔ ∂J̃k/∂Rk = 0. At

the critical point, the Hessian matrix is positive definite,in
particular, all the elements at the diagonal are positive and the
other elements are zero.

Second, based on Lagrange dual theory we can show the
solution to (16) solves Problem 4. We notice that strong duality
holds because the constraint is positive linearly independent
of Rt, and the Mangasarian-Fromowitz constraint qualification
applies [15]. Minimize the Lagrangian

η(R, θ) =

T−1
∑

t=0

E {Jt(Rt)} + θ

(

T−1
∑

t=0

Rt − Rtot

)

,

then (16) follows immediately.

B. Rate Allocation for State Estimation

According to the system equation in Problem 2, the state
xt can be expressed in terms of the initial statex0 and the
process noisesvt−1

0 as

xt = atx0 +
t−1
∑

s=0

at−1−svs.

Sincex0 and v
t−1
0 are i.i.d. zero-mean Gaussian distributed,

consequentlyxt is also zero-mean Gaussian with the variance

σ2
xt

= a2tσ2
x0

+

t−1
∑

s=0

(

at−1−s
)2

σ2
v .

Under the high-rate assumption, the distortionE {Jt(Rt)}
from (9) can be approximated by the expression (11). We re-
formulate Problem 2 and solve the rate allocation problem with
respect to the instantaneous costE {Jt(Rt)}=Ĵt(βt, κt, Rt).
In particular, the rate unconstrained and constrained optimiza-
tion problems based on (11) are formulated as the following
approximate versions of Problem 2.

Problem 5. Find R which solves the problem,

min
R

T−1
∑

t=0

Ĵt

whereĴt is given in(11).

Problem 6. Find R which solves

min
R

T−1
∑

t=0

Ĵt

s. t.

T−1
∑

t=0

Rt ≤ Rtot,

whereĴt is as given in(11).

Here we solve the constrained optimization problem for
state estimation as shown in Theorem 2.

Theorem 2. SupposeR ∈ R
T . The solution to Problem 6 is

as follows.

1) If Rtot >
∑T−1

t=0 R⋆
t , whereR

⋆ is the solution to(15),
thenR

⋆ also solves Problem 6.
2) If Rtot <

∑T−1
t=0 R⋆

t , whereR
⋆ is a solution to(15), then

the solution{R, θ} to
{

θ = − ∂Ĵt

∂Rt

(βt, κt, Rt), t = 0, . . . , T − 1,

Rtot =
∑T−1

t=0 Rt.
(17)

solves Problem 6, whereθ is the associated Lagrange
multiplier.

Proof: We prove Theorem 2 also in two steps. First,
we show that Problem 5 has a global minimum atR

⋆,
which solves the system of equations (15). This can be
realized by computing the critical point, at which the gradient
is a zero vector, and (15) follows immediately. According
to (15), the variablesR are separable. From Lemma 1, it
follows that Ĵt(βt, κt, Rt) is a quasi-convex function and
has one unique minimum. Therefore, the overall distortion
∑T−1

t=0 Ĵt(βt, κt, Rt) has a unique global minimum. Second,
we show that the solution to (17) solves Problem 6. The
proof is based on Lagrange dual theory. Strong duality still
holds, because the constraint is a positive linearly independent
combination of Rt, the Mangasarian-Fromowitz constraint
qualification applies. Next, we minimizes the Lagrangian,

η(R, θ) =

T−1
∑

t=0

Ĵt+ θ

(

T−1
∑

t=0

Rt − Rtot

)

whereĴt is as given in (11). Straightforward calculation of the
derivatives ofη(R, θ) with respect toRt andθ yields (17).

V. PRACTICAL CONSIDERATIONS

In this section we deal with the assumption of Theorem 1
that Rt is allowed to be real and negative. If Theorem 1 and
Theorem 2 give negative rates, we set them to zero, which
is equivalent to excluding the corresponding instantaneous
distortions from the overall distortion. Then, we resolve the
optimization problem with respect to the new overall distor-
tion. A rounding algorithm of the rates is then formulated as
a binary optimization problem, where the rounded rateR̃t is
related to the real-valued rateRt as,

R̃t = bt⌈Rt⌉ + (1 − bt)⌊Rt⌋,

bt∈{0, 1}, where⌈·⌉ and⌊·⌋ denote the rounding upwards and
downwards to the nearest integer, respectively. We optimize
the rounding by finding the binary sequenceb

T−1
0 which solves



the problem

min
b

T−1

0

T−1
∑

t=0

E

{

Jt(R̃t)
}

,

s. t.

T−1
∑

t=0

R̃t ≤ Rtot.

A solution to this binary optimization problem can always
be obtained by applying exhaustive search or combinatorial
algorithms [16].

VI. N UMERICAL EXPERIMENTS

In this section, we present numerical experiments performed
to verify the performance of the proposed bit-rate allocation
algorithms for state feedback control and state estimation.

A. State Feedback Control

The optimized rate allocation is obtained by applying The-
orem 1, together with the binary rounding algorithm from
Section V. In particular, we optimize the allocation by means
of the objective (13) of Problem 4. The overall performance is
on the other hand evaluated in term of the objective function
(5) of Problem 1, which is achieved numerically. We choose
to use time-varying uniform quantizers where the quantizer
range[−νt νt] is related to the estimated signal variance as
νt = 4σ̂xt

and the distortion caused by the signals outside
the support of the quantizer is negligible. Moreover, (12) is
utilized, whereE {xt−1(xt−1−dt−1)} = γ(ǫ)E

{

x2
t−1

}

with
γ(ǫ) heuristically obtained by numerical experiments (actually
the exact value ofγ(ǫ) is not influent since a multiplicative
constant of the cost function does not change the optimal
solution).

In Fig. 3 we demonstrate the performance of the proposed
scheme by comparing it with several other allocations. The
system parameters are chosen in the interest of demonstrating
non-uniform rate allocations, in particular, the system setup
is: a = 0.5, ρ = 0.1, T = 10, Rtot = 30, ǫ = 0.001,
σ2

x0
= 10, and σ2

v = 0.1. The simulated costs are obtained
by averaging over100 IA’s and each IA150 000 samples. In
Fig. 3, we compare the optimized allocation scheme, denoted
by RA12, which was obtained by the method proposed in this
paper, with13 other schemes, denoted byRA1–RA11, RA13,
and RA14. All 14 allocations are listed in the same figure.
Especially, the allocationRA4 was achieved with our method
by solving the unconstrained rate allocation problem. Regard-
ing the optimized allocation,Rt is fairly evenly distributed
over t, and compared with the uniform allocationRA6, there
is certain performance improvement. The uniform allocations
RA1–RA8 have a time-invariant rate from8 bits to 1 bit.
Among these allocations,RA8, for which Rt = 1, ∀t, has the
worst performance, whileRA4, for which Rt = 5, ∀t, has
the best performance. In fact, based on our analysis,β̃t = β̃,
κ̃t = κ̃, and the solution to Problem 3 isR⋆

t = 5, ∀t. In the
presence of channel errors, more bits can sometimes do more
harm than good. This is consistent with the simulation result
thatRA5 is superior to allocations that are assigned more than

5 bits for everyt, cf., RA1–RA3. The allocationsRA9–RA13

are used to represent the strategies that more bits are assigned
to the initial states. Obviously, this strategy is not efficient in
the current example partly because of the following facts. First,
as discussed, the additional bits exceeding the critical point
do more harm than good. Second, the degradation caused by
reducing one bit at a lower rate is much significant than the
improvement along with adding one bit at a higher rate.

B. State Estimation

In Fig. 4, we demonstrate the simulation results corre-
sponding to state feedback control for the state estimation
problem. Here, the optimized rate allocation is obtained by
applying Theorem 2 and the binary rounding algorithm. The
involved system parameters are the same as in Section VI-A.
The performance for the same14 allocations,RA1–RA14

as in Fig. 3, are depicted. In particular,RA4 is still the
global optimum which solves the unconstrained optimization
problem; whileRA14 is the optimized rate allocation for state
estimation. Performance in Fig. 4 is measured by the objective
function of Problem 2, and it is obtained by averaging over
100 IA’s and each IA150 000 samples. Compared with the
uniform allocationRA6, we see that our method gives an
evident gain. Note that, hereRA14 outperformsRA12, which
is the optimized allocation for state feedback control. An
explanation for the gain ofRA14 is that without control action
the trajectory approacheszero slowly which requires more bits
in the initial states.

Finally, we assess the Gaussian assumption of the state. In
Fig. 5, a comparison of the PDF’s of the estimatedxt and
the truext is depicted, for threeρ values:ρ = 0.1, ρ = 1
andρ = 10. The other parameters retain the same values, i.e.,
a = 0.5, T = 10, Rtot = 30, ǫ = 0.001, σ2

x0
= 10, σ2

v = 0.1.
We could observe that for large-valuedρ, the influence of
control is moderate. Consequently, the system behaved more
like the open-loop system. Therefore the Gaussian assumption
is highly accurate. On the other hand, for small-valuedρ, the
influence of control is significant, which reduces the accuracy
of the Gaussian assumption of the statext. However, the
Gaussian assumption worked well in practice.

VII. CONCLUSION

In this paper, we posed two problems to assign optimally
Rtot bits to T time units for control and estimation over
erroneous channels. First, we approximated the objective func-
tions by means of high-rate quantization theory. Second, we
showed that the unconstrained optimization problem has a
global minimum, which solves the rate allocation problem if
such a global minimum does not violate the rate constraint.
On the other hand, if the global minimum violates the rate
constraint, then we solved the rate constrained optimization
problem by means of Lagrangian duality for non-convex non-
linear problems. Numerical results obtained by Monte Carlo
simulations showed good performance of our approach.
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Fig. 3. Performance comparison among various rate allocations forstate feedback control. The x-axis is associated to the allocation, whereas
the y-axis is the overall distortion. For example,RA14 hasR9 = [54433322222]. Notice that allocations marked with a diamond do not
satisfy the total rate constraint.
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Fig. 5. The PDF’s of the estimatedxt and the truext, t = 1, 2, for differentρ values.
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