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Abstract— To achieve satisfactory overall performance, opti- class of quantizers, while previous work has often focused o
mal rate allocation in a networked control system with highy the special case of optimized quantizers. For example i) [10
limited communication resources is instrumental. In this @per,  the proplem is studied in the context of transform codes revhe
a rate allocation technique for state feedback control in Ihear L L . .
dynamic systems over an erroneous channel is proposed. Thethe Ob]_eCt'V_e function is convex, and th? optimal S_Olu“a'm c
method consists of two steps:(i) the overall distortion is Pe derived in a closed-form. However, in our setting we will
expressed as a function of rates at all time instants by meansf show that the overall distortion is a non-convex function of

high-rate quantization theory, and (iz) a constrained optimization  the rates, which makes it more difficult the computation of
problem to minimize the overall distortion is solved. It is siown the optimal solution

that a non-uniform quantization is in general the best straegy . L . .
for state feedback control over noisy channels. Monte Carlo  1N€ main contribution of this paper is a novel method for

simulations illustrate the proposed scheme, which is showmo rate allocation for state feedback control of a linear syste
have good performance when compared to arbitrarily selec@ over an erroneous channel. Specifically, we are interested t
rate allocations. the rate allocation problem for two prominent situations of
| INTRODUCTION cIos_ed loop control: linear feedbgck pontrol and stgte— esti
mation. By resorting to an approximation based on high-rate
In networked control systems it is important to encode thgjantization theory, we are able to derive a computatignall
sensor measurements before sending them to the controéersible scheme that seeks to minimize the overall distorti
using a few bits, because of the limited information that casver a finite time horizon. The resulting rate allocation is
be transmitted using battery-powered devices. However, thot necessarily evenly distributed. Practical considenat
distortion introduced by the quantization should not redugoncerning integer rate constraints are discussed arstrdted
the performance of the controller. Hence, optimizing the rathrough numerical examples. Overall good performance of ou
allocation is important to overcome the limited commurimat method is shown by numerical simulations.
resources and to achieve a better overall performance. The remainder of the paper is organized as follows. In
The problem of optimizing encoder—controller mappings tgection I, the overall system is described and the rate al-
improve performance of control over finite-rate channeigh w |ocation problem is formulated. Some useful results on igh
or without transmission errors, has been addressed in, erfite quantization theory are given in Section Ill, which are
[1], [2], [3]. How to assign bits among the elements of théhen used in Section IV, where we solve the rate constrained
state vector of the plant, while imposing a constraint on thgtimization problems for the state estimation and stagelfe
number of bits over time, can be found in e.g., [4], [5]. Ind@e back control. Finally, numerical simulations are carried in
works, it has been often assumed that bits (rates) are eveghttion VI to demonstrate the performance of the proposed
distributed to sensor measurements. However, owing to thgrate allocation schemes.
non-stationarity of the state observations, an even digidn
of bits to sensor measurements is often not efficient for Il. PROBLEM FORMULATION
networked control. Hence, it is natural to expect consiolera
gains by employing a non-uniform allocation of rates. How to The goal of this work is to arrive at a rate allocation
achieve the optimal rate allocation in control systemswgised scheme for state feedback control of a dynamic system over an
above is a challenging task. One main obstacle is the lack&sfoneous channel. The scalar plant is governed by therlinea
tractable distortion functions, which we need to use asmbjeequation
tive functions for the rate optimization problem. Furthens Tyr1 = axy +ug +vg, a >0, (1)
such an optimization problem is often non-convex and non-
linear, which implies that it is difficult to compute the ap&l wherez;, u;, v; €R. The initial stater, and the process noise
solution. v; are mutually independent. They ared. zero-mean Gaus-
The problem we are addressing here is related to classisi@n with variancesygo and o2, respectively. Following the
rate allocation problems in communications [6], [7], andHii block diagram in Fig. 1, we describe each system component
rate quantization theory [6], [8], [9]. We also contributerate in detail. The state measurementis encoded and transmitted
allocation based on high-rate theory by studying a genetal the controller and decoder units through an erroneous



R+ denotes the total rate. The sequence of rates is denoted by
R={Ry,...,Rr1}. We refer toR asthe bit-rate allocation

The objective (5) is the linear quadratic (LQ) cost from
classical stochastic control [13], whepeis the importance

L B factor of the control input with respect to the state. The
Channel implicit relation of the costE {.J;,:(R)} and the allocation

R is determined by the channel and coding—control scheme.

Throughout this paper, the control is a linear function a& th
Controller Decoder decoded symbol;,

U d ¢
' ’ It Ut = ftdt . (6)

Fig. 1. A block-diagram of a control system where measuremen . . .
are transmitted to the controller over an erroneous channel [Fthe estimatet; is close to the true state then the classical

linear quadratic Gaussian (LQG) theory is expected to give
good results, even though it does not account for chanrmiserr
channel. The encoder is time-varying and memoryless,  and quantization distortion. Accordingly, we uéegiven by

. the LQG theory,
iv = fi(z) € {0,...,2% —1}. ) Q y

. . . i aPiy1
The rate R; is a non-negative integer. The index will b & ———

2 _ —
be mapped to a binary codeword before being fed to a ¢t;21¢ r
binary channel. The mapping from an index to a codeword is ¢y =1+ ﬂ, with ¢op=1.
commonly referred to as thedex assignmenfiA). Finding bt +p

the optimal IA is a combinatorial problem which is knowrProblem 1 below specifies the rate allocation problem in
to be NP-hard [11]. Therefore, in this paper, we average oeqntrol systems studied in this paper.

the deper_ldence on a speci_fic 1A by_ randomization. At eaﬁ?oblem 1. Given the linear planfl), the discrete memoryless
transmission, a random assignment is generated and rdve H’annel(3) the memoryless encoder—decoder p&) and
to the encoder and decoder. Previous work that assume%‘lix the control law(6), find the optimal bit-rate allocatiol.

random IA to facilitate further analysis includes, e.g2][1 minimizing the expected cost ¢6), subject to the total bits
Throughout the paper, the overarroneous channels constraint

composed by the combination of the random IA and a binary min  E {J;o:(R)},
symmetric channel (BSC). The overall symbol error probabil R

|ty Pr(]tlzt) is s. t. 32_01 Rt < Rtota
o[ a(Ry), o # s, where J;:(R) is
PT(]t| Zt) - { 1— (tQRt _ 1)0( (Rt)7 ]Z — z'; (3) T-1 ) )
Jiot(R) = 14 —dy)”. 7
(cf., [12]), wherea (Ry) = (1—(1—¢))/(2"~1), is obtained tor(R) tz((bt*l ) (@ = di) (7)

=0
by averaging over all possible index assignments, and H :
B . - ere we replace/;,.(R) in (5) by the one of (7), because
P, (0| 1)_PT(_1| 0), is the crossover probability of the BSC. we can also write the overall cost (5) as
At the receiver side, the decoder takes the current channe

output as the input, and generates an output, E {Jiot(R)}
-1 T-1
di = Di(ji) € R. @) -E {(¢0—1)$3+Z Gt + Y (S + p)wily + Ut)Q}
t=0 =0

In the following subsections, we pose the rate allocation
problems for linear feedback control and for state estiomati Note that, the new instantaneous cBsf.J;(R:)} becomes

separately.
P y E{J(R:)} =E {Wt(ﬂCt - dt)g} , mE (Pe41 + P)Z?-
A. State Feedback Control (8)
The controlu, is determined by the decoded symbal= In the next subsection, we study a special case of Problem 1
g:(dy) € R. We specify g;(-) after the introduction of the fOr State estimation
control objective, which is the minimization of the expetteB. State Estimation

value of the costo(R), In this subsection we study a special case of Problem 1

T T for state estimationThe rate allocation problem for state esti-
Jiot(R) =Y Jy(Ry-1) = (af+pui,), p>=0,  mation, with slightly modified system equation and objetiv
t=1 t=1 ®) function compared with Problem 1, is

subject to a rate constrahit:t:g1 R: < Ryt Here, J;(Ryy), Problem 2. Given the plant:;;; = ax:+ v, the channe(3),

R:_1 = {Ry,..., R}, denotes the instantaneous cost anahd the memoryless encoder—decoder & and (4), find



the optimal bit-rate allocatiorR that minimizes the overall
distortion below, subject to a total bit-rate constraintamely,

4.5 -
mfitn ZtT:—OlE{Jt(Rt)}a ) ol _\_.-"\""
s. t. Zz;iol Rt S Rtoh 350 ”\—\‘
where J;(R;) is 3| \/*'\
Ji(Ry) = (m — dy)?. (10) M I R

e ——c=0.001, B; =5, ke =5
Note that objective function of Problem 2 is motivated by S 2o gij -
the closed-loop control, cf., (8). Compared with Problem 1,
Problem 2 is considerably simplified becauge does not

depend on the past rat@®;_;. 05

IlIl. HIGH-RATE APPROXIMATION OFMSE 0 2 4 6 8 10

R

One main difficulty of Problem 1 and Problem 2 is that the '
objective functions do not have an analytical expressian. | rig. 2. The impact ofR;, ., 3; ande on the cost functior;.
the next section, we propose an approximation of adequate
accuracy, which will then be used for the solution of the
optimization problems.

By (8), we note that the mean-squared error (MSE) is a
key factor in the overall cost, therefore, a major challenge Proof: Compute the derivative of
lies in deriving a useful expression for the MSE. In general,_ -
it is not possible to derive a closed-form expression, eveQ_ (B, ke, Ry) = — Py 1n(1_6)(1_6) —2In(2)k (2R
in the case of simple uniform quantizers. Therefore, wé
resort to approximations based tigh-rate theory[6] (for and it has at most one critical poift;, which solves
further details, we refer the reader to [12] and [14]). Rdugh « op
speaking, the high-rate assumption requires the probabili =B In (1= e)(1 =) = 2In (2) 272 = 0.
distribution function (PDF) of the source to be approximate compute the second order derivativeJpfwith respect taR;,
constant within a quantization cell. L&Y,,,; denote the PDF .
of the sourcex;, which is zero-mean and with vanano@ 03, By, ki, Re) =B In2 (1_6)(1_6)Rt+4ln2 (2)k, 2728
Essentially, we are in need of a useful expression to descripRz T T ! '
the relation between the MSE and the rate Therefore, we The critical point is a global minimum, since

|s a quasi-convex function and has a unique global minimum.

impose2™a(R;) ~ 1—(1—¢)™ on the high-rate MSE from 5, . 52 J,/OR?>0. -
[14] and arrive at In Fig. 2, some examples of, are depicted to show the
E {(:ct _ dt)Q} ~ jt(ﬁt, ke, Ry) impact of the variableg,, x; and R;. Generally speaking, as

the rate increases, the quantization distortion decreadele

L _ _ A\ R —2Ry
= (L= (1= )™) + 2 ’ the distortion caused by transmission errors grows. Beyond

B 2 o2 +/ v (y)dy, (11) the critical point, the latter distortion dominates, andréfore
the overall distortion will increase with the rate. Moregve
e /3/)\ )Py (z)da. for the same quantizer, _t_he higher j[he crossover probﬁ_bilit
@) €, the closer to0 the critical point is. As shown later in

The constant is the volume of a unit sphere. The functioroection IV, Lemma 1 is instrumental in solving the rate
\(z) is referred to as theuantizer point density function allocation problems. Finally, we mention a classJgf which
This function is used to specify a quantizer in terms of thg®n be written as

density of the reconstruction points. It holds thatz) > 0, j, — o2 (@( —(1—e)f) + ,;&t2—2Rt) = 023,(By, Fu, Ry)

for all z;, andf At(z)dz = 1, which resembles a probablhty !

density function. FlnaIIy, the parameteK o, < 27 specifies Here, jt(BhKth) 2 Bt(l — (1 — e)B*)+ 7,272R where
the number of codewords the encoder will chose. In this papg 3, < co and0 < #; < co are independent aR; and ofo?

we consider only the encoder-decoders for whigh= 2" This class of], is central to our solutions to the state feedback

The distortion (11) has certain useful property that wiloal  control problems. Owing to the fact that is a special case
us to solve the rate allocation problem, as shown by thg j, Lemma 1 applies directly td,.

following lemma.
IV. RATE ALLOCATION
In this Section, we solve the rate allocation problems for
= B:(1— (1 —e)*) 4+ k2728 0 < By < 00,0 < Ky < 00, state feedback control and state estimation.

Lemma 1. The distortion function



A. Rate Allocation for State Feedback Control Problem 4. Find R that solves

Optimizing rate allocation for state feedback control is o=
challenging mostly because that the instantaneousG¢Rt; ) e Z E{Ji(Re)},
depends on all previous ratd®;. We notice that the terms T:_1
E {2?} andE {(z;—d;)?} are essential to the instantaneous st Z R <R
cost (8). In order to proceed, we will approximate by a ' .t:O ¢ tot>

zero-mean Gaussian source, because the initial state and th )
process noise are zero-mean Gaussian. By imposing suchViih E {J:(R¢)} given by(13).
approximation, we only need to estimate the variance, whichBy recursively replacing2, with 62, , back tog?2 0-30,

we denote bysZ . The next challenge lies in the derivation ofye are able to express?, as function of R;_; and o2

- In order to facilitate the derivation of a tractable overaln particular,E {.J;(R;)} is a sum of2! terms, as shown in
cost for optimization, we consider an upper bounddgr by | emma 2,

simplifying the correlation between, andd;, so that it holds )
Lemma 2. The cost(13) can be written as

6’5 (At+Bt(ﬁt(1—(1—6)Rtl)+li2 thl) +Uv’ 1 1 o

(12) E{Jt Rt Z Z Wtq/t(b()a---abt71>Jt(ﬂt7/%taRt>
where A, > 0 and B, > 0 are terms independent @&, ; bo=0
andé2 . The following two cases are used to illustrate the

utility :’:\ﬁd motivation of (12). First, consider the decoder nereb, €{0,1}, 0 < s <t — 1, is a binary variable, and
di1 =E{x+1|jsa }, for which the estimation error; ; —d; . - bs
is uncorrelated with the estimaté_,. Therefore (12) is an ~ Yt(bo,---,bi-1) = B H B, (Js(Bs, R, R )) ;
exact expression, with s=5+1
B A{Asa bS:O7 BA{TS 1 >0
Ay =a®> + 07 +2al;_, By=—(l]_1+2al_1). 7| Bs, bs=1, Boo?, §= 14
Second, we in general can WriE{xf} as where 5 is the smallests for which b, = 1, and 75 is

calculated recursively according to
E{z}} =0 \E{(x4_1 —di1)? 6 1)*E {7}
et} = B (e ~d)'} b o+ b) {xt}l} To = AsTs1 + 02, with 9= Ag02 + o2,
—2(a+ b 1)l E{ry (241 —di1)} + 0. _ _ _
Lemma 2 is proved by direct calculations. Theorem 1
The term E{z,(z;1—d.1)} depends on the sourcespecifies the solution to Problem 3 and Problem 4.
the quantizer and the channel. In the special case t

E {01 (w1 —dia)} = (e E{:vt 1} where(c) does not t]%eorem 1. SupposeR € R”. The solution to Problem 4 is

depend onz;, ; andd; 4, then a2t can be expressed in the s follows: _— _ )
form of (12), with 1) If Ryt >3, Ry, whereR* is a solution to the system
of equations
Ay = (a+li1)* = 2(a+ b—1)l—1v(€), B =174, 8Jt
0= (ﬁt,nt,Rt) t=0,....,7—1, (15)
Based on the above Gaussian approximation, we arrive at the
instantaneous cost thenR* also solves Problem 4.
2) If Ryt < 21:0 R}, whereR* is the solution to(15),
E {J;(Ry)} = m62 (Be(1 — (1 — €)ftr) + k272, then the solutio R, 6} to
(13)
where 62 is recursively calculated according to (12). Z U, = 0,
practice, (13) can be applied generally to all systems from (16)
Sect_lon Il by finding suitabled; and B, to approxmate the tTOl Ry = R,
true instantaneous costs. Therefore, the unconstrairdedam ith defined
strained rate allocation problems based on (13) are fortedila with W, , defined as
as the following approximate versions of Problem 1.
U, s = s (b, ..., bs),
Problem 3. Find R that solves " bOX:O btzl Z 0 bs)
I t =0,...,T—1, solves Problem 4, wheré is the

min S E{L(R)}, associated Lagrange multiplier, and
t=0

with E {J;(R;)} given by(13). U (bo, ..., bs) ﬁB( 1:[ Bm> ( ]:[ (On>b">,
n=s+1

m=35+1



whereC,, is whereJ, is as given in(11).

2 %(ﬁn,%n,}%ﬂ), n=t Here we solve the constrained optimization problem for
Jn(Bn,fns R),  n#t. state estimation as shown in Theorem 2.

Here, 8J,/0R,=—3; In(1—¢)(1—e)* —21n(2)7,2 2R+, Theorem 2. SupposeR € R”. The solution to Problem 6 is
is the derivative off; with respect toR;. as follows.

Proof: Theorem 1 is proved in two steps. First, we can _ _ )
show that Problem 3 has a unique global minimum, which 1) If Rit>> g R;, whereR* is the solution to(15)
solves the system of equations (15). Especially, we can show thenR* als:ﬁ)_lsolves Proble*m 6. .
that 9( glE{Jt(Rt)})/aRk =0 < 0Jy/0R: = O At 2) If Ryt <>, R;, whereR* is a solution to(15), then

the critical point, the Hessian matrix is positive definite, the solution{R, 6} to

particular, all the elements at the diagonal are positivetae 5

other elements are zero. 0 = —57BukR), t=0,....,T -1,
Second, based on Lagrange dual theory we can show the Ript = f:_ol R;.

solution to (16) solves Problem 4. We notice that strongitual (17)

holds because the constraint is positive linearly indepand solves Problem 6, wheré is the associated Lagrange

of R,, and the Mangasarian-Fromowitz constraint qualification ~ multiplier.

applies [15]. Minimize the Lagrangian Proof: We prove Theorem 2 also in two steps. First,

-1 =1 we show that Problem 5 has a global minimum Rt,
n(R,0) = > E{L(R)}+0 (Z Ry — Rtot) ; which solves the system of equations (15). This can be
=0 ) =0 realized by computing the critical point, at which the geadi
then (16) follows immediately. B s a zero vector, and (15) follows immediately. According
B. Rate Allocation for State Estimation to (15), the variableR are separable. From Lemma 1, it

According to the system equation in Problem 2, the staf@llows that J.(, &, Re) is a quasi-convex function and
«, can be expressed in terms of the initial stateand the '35 ON€ unique minimum. Therefore, the overall distortion
process noises’” as w0 Jt(Bi, ke, Ry) has a unique global minimum. Second,

- we show that the solution to (17) solves Problem 6. The

21 = alwy + Zat**sv proof is based on Lagrange (_jual the_o_ry. _Strong _duality still
s holds, because the constraint is a positive linearly inddpst
s=0 . . . . .

1 combination of R;, the Mangasarian-Fromowitz constraint

Sincezo andv;,~ arei.id. zero-mean Gaussian distributedgyajification applies. Next, we minimizes the Lagrangian,
consequently, is also zero-mean Gaussian with the variance

i1 T-1 T—1
02 =ao? + Z (atflfs)Q o2. n(R,0) = ; Ji+ 0 <; R — Rtot>
s=0 - -
Under the high-rate assumption, the distortiBn{.J;(R:)} \yherel], is as given in (11). Straightforward calculation of the

from (9) can be approximated by the expression (11). We tgarivatives ofi)(R., 4) with respect taR, andé yields (17). m
formulate Problem 2 and solve the rate allocation probleth wi

respect to the instantaneous cB5{J,(R;)} = J; (5, ke, Ry).
In particular, the rate unconstrained and constrainedvopa-

tion problems based on (11) are formulated as the following|n this section we deal with the assumption of Theorem 1

V. PRACTICAL CONSIDERATIONS

approximate versions of Problem 2. that R, is allowed to be real and negative. If Theorem 1 and
Problem 5. Find R which solves the problem, Theorem 2 give negative rates, we set them to zero, which
_— is equivalent to excluding the corresponding instantaseou
. 3 distortions from the overall distortion. Then, we resolhe t
min Z Ji

optimization problem with respect to the new overall distor

A ) =0 tion. A rounding algorithm of the rates is then formulated as
where J; is given in(11). a binary optimization problem, where the rounded r&ieis
Problem 6. Find R which solves related to the real-valued rafg; as,

T-1 -
min Z jt Ri=bi[Re] + (1= be) [ Re],
R =0

b, €{0,1}, where[-] and|- | denote the rounding upwards and
s.t. 5 Ri < Riot, downwards to the nearest integer, respectively. We opéimiz
the rounding by finding the binary sequerh;T,ﬂf1 which solves

S
L

~
Il
=)



the problem 5 bits for everyt, cf., RA;—RAs. The allocationdR Ag—R A3

T-1 - are used to represent the strategies that more bits araadsig
g}ifll E {Jt(Rt)} ; to the initial states. Obviously, this strategy is not eéfitiin
o =0 the current example partly because of the following fadistF
= as discussed, the additional bits exceeding the criticaltpo
s t. ; Rt < Rior- do more harm than good. Second, the degradation caused by

reducing one bit at a lower rate is much significant than the

A solution to this binary optimization problem can alway$mprovement along with adding one bit at a higher rate.
be obtained by applying exhaustive search or combinatorial

algorithms [16]. B. State Estimation
VI. NUMERICAL EXPERIMENTS In Fig. 4, we demonstrate the simulation results corre-
In this section, we present numerical experiments perfdrmgponding to state feedback control for the state estimation
to verify the performance of the proposed bit-rate allamati problem. Here, the optimized rate allocation is obtained by
algorithms for state feedback control and state estimation applying Theorem 2 and the binary rounding algorithm. The
involved system parameters are the same as in Section VI-A.
A. State Feedback Control The performance for the samel allocations, RA;—RA14
The optimized rate allocation is obtained by applying Thé@s in Fig. 3, are depicted. In particulaRA, is still the
orem 1, together with the binary rounding algorithm fronglobal optimum which solves the unconstrained optimizatio
Section V. In particular, we optimize the allocation by mgarproblem; whileR A, is the optimized rate allocation for state
of the objective (13) of Problem 4. The overall performarsce pstimation. Performance in Fig. 4 is measured by the obgecti
on the other hand evaluated in term of the objective functidanction of Problem 2, and it is obtained by averaging over
(5) of Problem 1, which is achieved numerically. We choosi)0 IA's and each IA150 000 samples. Compared with the
to use time-varying uniform quantizers where the quantizeniform allocation RAs, we see that our method gives an
range[—v; 4] is related to the estimated signal variance &vident gain. Note that, het@ A4 outperformsRA;», which
v; = 46,, and the distortion caused by the signals outside the optimized allocation for state feedback control. An
the support of the quantizer is negligible. Moreover, (1) explanation for the gain aR A1 is that without control action
utilized, whereE {z; (x4 —di 1)} = Y(e)E {ngl} with  the trajectory approachesro slowly which requires more bits
~(¢) heuristically obtained by numerical experiments (acgualin the initial states.
the exact value ofy(¢) is not influent since a multiplicative  Finally, we assess the Gaussian assumption of the state. In
constant of the cost function does not change the optinfdp. 5, a comparison of the PDF’s of the estimatgdand
solution). the truex; is depicted, for three values:p = 0.1, p = 1
In Fig. 3 we demonstrate the performance of the proposeddp = 10. The other parameters retain the same values, i.e.,
scheme by comparing it with several other allocations. The= 0.5, T = 10, Rt = 30, € = 0.001, 02 =10, 02 = 0.1.
system parameters are chosen in the interest of demongtrae could observe that for large-valugd the influence of
non-uniform rate allocations, in particular, the systertuge control is moderate. Consequently, the system behaved more
isia = 05, p = 01T = 10, Ry = 30, ¢ = 0.001, like the open-loop system. Therefore the Gaussian assompti
o2 =10, ando? = 0.1. The simulated costs are obtaineds highly accurate. On the other hand, for small-valpethe
by averaging oveit00 IA's and each I1A150 000 samples. In influence of control is significant, which reduces the accyra
Fig. 3, we compare the optimized allocation scheme, denoteldthe Gaussian assumption of the state However, the
by RA;5, which was obtained by the method proposed in thigaussian assumption worked well in practice.
paper, with13 other schemes, denoted BA,—R A1, RA;3,
and RA4. All 14 allocations are listed in the same figure. VIl. CONCLUSION
Especially, the allocatio® A, was achieved with our method
by solving the unconstrained rate allocation problem. Riéga In this paper, we posed two problems to assign optimally
ing the optimized allocationR; is fairly evenly distributed R;,; bits to T time units for control and estimation over
overt, and compared with the uniform allocatidtde, there erroneous channels. First, we approximated the objeative-f
is certain performance improvement. The uniform alloegio tions by means of high-rate quantization theory. Second, we
RA;—RAg have a time-invariant rate fror bits to 1 bit. showed that the unconstrained optimization problem has a
Among these allocation® Ag, for which R, = 1, Vt, has the global minimum, which solves the rate allocation problem if
worst performance, whileRA,4, for which R, = 5, Vt, has such a global minimum does not violate the rate constraint.
the best performance. In fact, based on our analysiss 3, On the other hand, if the global minimum violates the rate
k¢ = R, and the solution to Problem 3 B} = 5, Vt. In the constraint, then we solved the rate constrained optintinati
presence of channel errors, more bits can sometimes do mareblem by means of Lagrangian duality for non-convex non-
harm than good. This is consistent with the simulation tesuinear problems. Numerical results obtained by Monte Carlo
that RAs5 is superior to allocations that are assigned more thaimulations showed good performance of our approach.
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satisfy the total rate constraint.
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