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Abstract— In this article, a new method to assess stability
and to design static state feedback controller for linear time-
delay systems is introduced. The method based on linear
differential equations allows considering explicit Lyapunov-
Krasovskii functionals with non constant matrix parameters.
The stability conditions considering constant delays are delay-
dependent and expressed using easy computable linear matrix
inequalities. An example is introduced to show the efficiency of
the stabilization criteria.

I. INTRODUCTION

During the last decades, a great attention attracted re-
searchers on the stability analysis of time delay systems
[10], [20], [22]. The study of the time-delay systems is
motivated by the apparition of delays phenomenon in many
processes such as biology, chemistry, economics, as well as
population dynamics [16], [20]. Moreover, processing time
and propagation in actuators and sensors generally induce
such delays. In particular, the recent and intense activities
around networked controlled systems for which actuators and
sensors exchange data through a network highly motivate
this research. Many phenomena induced by the network as
communication delays [12] or samplings [5], [19] can be
interpreted by a delay modeling. In the case of devices which
are remotely installed, delays may increase dramatically. As
they usually have a disturbing effect, the problem of stability
with respect to the time-delays is fundamental.

Note that there exist some systems which are not asymp-
totically stable for small delays but becomes for sufficiently
large delays (in high-speed networks, biological systems and
some examples [16]). For this class of systems, the stabil-
ity cannot be performed using simple Lyapunov-Krasovskii
functionals (LKF), ie. functionals parameterized with con-
stant matrices (see, among the less conservative results,
[7], [8], [11], [23]). To deal with them, the introduction
of more complex and amenable LKF has been introduced
to overcome these difficulties. The discretization method
introduced by K. Gu [9], [10], allows constructing piecewise
linear functions as the LKF parameters by dividing the
delay interval into several smaller intervals on which the
parameters of the LKF are linearly varying. The stability
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analysis leads to less conservative than in the case of constant
parameters but extensions to the time-varying delay case are
not straightforward. Another interesting method introduced
in [21], suggested a way to build LKF with varying pa-
rameters based on sum of squares tools. Another method
which takes a lot of attention nowadays is based on Integral
Quadratic Constrains (IQC) [13], [14]. It allows having a
better understanding of the terms of the LKF and to have
a better idea of where the conservatism is introduced [2]
and especially obtaining less conservative results. In [15],
a complete LKF (ie. which corresponds to necessary and
sufficient conditions of stability) is constructed by solving a
functional differential equation. This approach is useful to
derive robustness conditions with respect to delay variations
[4] or parameters uncertainties [17], [18].

In this article a novel method to construct LKF with
varying parameters over the delay interval is introduced. The
LKF is provided by a simple and arbitrary linear differential
equation and leads to sufficient stability conditions. This
technic together with the descriptor representation [6] leads
to suitable criteria to design static state feedback gain which
ensures stability of the system with constant delay. The paper
is organized as follows: Section II is devoted to the formu-
lation of the problem. The form of the LKF is examined in
Section III. Section IV and V concern the stability analysis
and the stabilization of linear systems with constant delay.
Section VI discuses the choice of linear differential equation.
An example is provided in Section VII to show the efficiency
of the method.

Notations. Throughout the article, the function xt corre-
sponds to xt(θ) = x(t + θ), ∀θ ∈ [−τ2, 0]. The superscript
’T ’ stands for the matrix transposition. The notation P > 0
for P ∈ R

n×n means that P is a symmetric and positive
definite matrix. The symbol In represents the n× n identity.
For any square matrices A and B, the notation diag(A,B)
denotes the block diagonal matrix where the first diagonal
block is A and, B the second. Given any positive integers n,N
and M, consider a matrix A ∈ RnN×nM. The notation An,i j
corresponds the matrix of size n×n located in the between
the in + 1 and (i + 1)n rows and the jn + 1 and ( j + 1)n
columns of A. We denote ⊗, by the Kronecker product.

II. PROBLEM FORMULATION

Consider the controlled system:{
ẋ(t) = Ax(t)+Aτ x(t − τ)+Bu(t)+Bτ u(t − τ)
x(θ) = φ(θ), θ ∈ [−τ, 0] (1)
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where x ∈ Rn and u ∈ Rm represents the state and the input
vectors. The function φ ∈ [−τ 0] → Rn corresponds to the
initial conditions of the time-delay system. The matrices
A,Aτ ,B and Bτ are assumed to be known and constant. The
delay is assumed to be constant. The control law is a linear
state-feedback of the form:

u(t) = Kx(t) (2)

where K is a m×n matrix. In [9], a general form of LKF’s
is introduced:

V (xt) = xT (t)Px(t)+2xT (t)
∫ 0
−τ Q(ξ )xt(ξ )dξ

+
∫ 0
−τ xt(T (ξ )S (ξ )xt(ξ )dξ

+
∫ 0
−τ

∫ 0
−τ xT

t (s)R(s,ξ )dsxt(ξ )dξ
(3)

where P > 0, Q(ξ ), R(s,ξ ) = RT (ξ ,s), S (ξ ) ∈ R
n×n

are continuous matrix functions. The integral terms in V
represent the influence of the state xt on the stability. In [13],
it was proven those integral terms corresponds to the robust-
ness of the system with respect to the delay operator e−τs.
This article introduces a new method to explicitly construct
continuous functions Q, R and S . These variations in the
parameters allow considering more accurate LKF’s and will
lead to less conservative conditions.

III. PARAMETRIZATION OF LYAPUNOV-KRASOVSKII
FUNCTIONALS

A. Introduction

Consider some scalar functions f i defined on [−τ 0] where
i = 1, . . . ,N and the following functions Q, R and S such
that for all s and ξ in [−τ 0]:

Q(ξ ) = ∑N
i=1 f i(ξ )Qi,

S (ξ ) = ∑N
i=1 ∑N

j=1 f i(ξ ) f j(ξ )Si j,

R(s,ξ ) = ∑N
i=1 ∑N

j=1 f i(s) f j(ξ )Ri j,

where Qi, Si j and Ri j for i, j = 1, . . . ,N are con-
stant matrices. Introducing the vector function W f (ξ ) =
[ f 1(ξ ), . . . , f N(ξ )]T , a nice expression of the functions can
be derived:

Q(ξ ) = QW f (ξ ),
S (ξ ) = (W f )T (ξ )SW f (ξ ),

R(s,ξ ) = (W f )T (s)RW f (ξ )
(4)

where W f = W f ⊗ In, Q, R and S are such that Qi = (Q)n,i1,
Ri j = (R)n,i j and Si j = (S)n,i j. The functions which defined
the LKF are thus expressed in a simple way. A lemma to
ensure the LKF is positive definite is thus formulated:

Lemma 1: For given τ > 0, the LKF (3) with (4) is
positive definite if there exist P = PT > 0 in Rn×n, S = ST > 0
in RNn×Nn, Q ∈ Rn×Nn and R = RT in RNn×Nn such that the
following LMI holds:

Ξ =
[

P Q
QT R+S/τ

]
> 0. (5)

Proof: Consider the functional (3) where the functions
Q, R, S are defined in (4). Consider the vector Φ f (t) =∫ 0
−τ W f (ξ )xt(ξ )dξ . The second and the last terms of V

can thus be rewritten as 2xT (t)QΦ f (t) and ΦT
f (t)RΦT

f (t).
Provided that S > 0, the Jensen’s inequality ensures that

∫ 0

−τ
xT

t (ξ )W f T (ξ )SW f (ξ )xt(ξ )dξ ≥ ΦT
f (t)S/τΦ f (t)

Denote ξ0(t) = [xT (t) ΦT
f (t)]

T , the LKF satisfies V (xt) ≥
ξ T

0 (t)Ξξ0(t). Then if (5) holds V is positive definite.

In [1], [2], it was proven that increasing the dimension
of the state vector (considering X1 = [xT , ẋT , . . . ,(x(N))T ]T

or X2 = [xT (t),xT (t − τ/N), . . . ,xT (t − τ)]T ) considerably
reduces the conservatism. Instead of considering these two
vectors, we introduce the vector Φ f with appropriate weight-
ing functions f i to design less conservative conditions.

B. Introduction of an arbitrary linear differential equation

For a given integer N > 0, consider a square matrix D
in RN×N . Define the vectorial function W such that for any
ξ ∈ [−τ 0]: {

Ẇ (ξ ) = DW (ξ ),
W (0) = W0

(6)

where W0 ∈ RN . Introduce the vector W (ξ ) = W (ξ )⊗ In and
the consider now the LKF (3) defined by :

Q(ξ ) = QW (ξ ),
S (ξ ) = W T (ξ )SW (ξ ),

R(s,ξ ) = W T (s)RW (ξ )
(7)

where Q is in Rn×nN and S,R ∈ RnN×nN are symmetric
constant matrices. In the latter, we will say that the pair
(D,W0) generates the LKF V if functions Q, R and S
are given by (6) and (7). Apparently, there is no restriction
on the matrix D. Depending on the eigenvalues of D, the
functions Q, R and S could be polynomial, exponential
and/or trigonometric. The choice of (D,W0) is discussed
in Section VI. As W is the solution of linear differential
equations of the type of (6), the functions Q, R and S
are infinitely differentiable over the interval [−τ 0]. Another
advantage is that simple expressions of their derivative and of
their value at some particular instant are simply derived from
the solution of the well known linear differential equation,
using D = D⊗ In and W0 = ⊗In.

Proposition 1: The differentiation of the functions
Q,S ,R is straightforwardly given by:

Q̇(ξ ) = QDW (ξ ),
Ṡ (ξ ) = W T (ξ )[DT S +SD ]W (ξ ),
∂R(s,ξ )

∂ s + ∂RT (s,ξ )
∂ξ = W T (s)(DT R+RD)W (ξ ),

and their evaluation at any instant a and b in [−τ 0]]

Q(a) = QeaDW0,

S (a) = W T
0

(
eaD

)T SeaDW0,

R(a,b) = W T
0

(
eaD

)T RebDW0.
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IV. STABILITY ANALYSIS

Consider system (1) and the controller (2) with a given
state feedback gain K. The dynamics of the system can be
rewritten as:

ẋ(t) = A0x(t)+A1x(t − τ) (8)

where A0 = A + BK and A1 = Aτ + Bτ K. The following
theorem holds:

Theorem 1: For a given N and τ > 0, consider a matrix D
in RN×N and a vector W0. System (8) is asymptotically stable
if there exist a positive symmetric definite matrix P1 in Rn×n,
S0 = ST

0 , P2, P3 in Rn×n, a matrix Q in Rn×nN and R = RT ,
S = ST and T = T T in RnN×nN such that, the following LMIs
hold:

Π1 =
[

P1 Q
QT R+S/τ

]
> 0,

Π2 = DT (S +T )+(S +T )D > 0,

⎡
⎢⎢⎣

π1
3 P1 −PT

2 +AT
0 P3 PT

2 A1 −QEW0 −QD +W T
0 R

∗ −P3 −PT
3 PT

3 A1 Q
∗ ∗ π3

3 −W T
0 ET R

∗ ∗ ∗ π5
3

⎤
⎥⎥⎦

= Π3 < 0

Π4 = S0 +W T
0 ET T EW0 > 0

and
Π5 = DT T +TD > 0

where E = e−τD and where π1
3 , π3

3 and π4
3 are given by:

π1
3 = PT

2 A0 +AT
0 P2 +S0 +W T

0 (S +T )W0
+QW0 +(QW0)T

π4
3 = −S0 −W T

0 (e−τD )T (S +T )(e−τD )W0
π5

3 = −DT (R+1/τ(S +T ))− (R+1/τ(S +T ))D

Proof: Consider the candidate LKF:

V1(xt) = V (xt)+
∫ 0
−τ xT

t (ξ )(S0 +W T (ξ )TW (ξ ))xt(ξ )dξ
(9)

where V is given by (3) and the functions Q, Q and S are
given by (7). Compared to (3), an integral term is added to
take into account to reduce the conservatism.

The proof is divided into two parts. The first ensures
the LKF is positive definite. According to Lemma 1 and
introducing the vector Φ(t) =

∫ 0
τ W (ξ )xt(ξ )dξ , V is positive

definite if Π1 > 0. A careful attention is now required on the
second term of V1. The matrix function S0 +W T (ξ )TW (ξ )
must be positive whatever ξ ∈ [−τ 0]. Consider a non zero
vector v in Rn and the associated function fv such that:

∀ξ ∈ [−τ, 0], fv(ξ ) = vT (S0 +W T (ξ )TW (ξ ))v.

the function fv is continuous and differentiable over [−τ 0].
Using the definition of W , its derivative with respect to ξ
is ḟv(ξ ) = vT W T (ξ )Π5W (ξ ))v. From Theorem 1, it means

that ḟv > 0 and, consequently, that fv is an increasing function
of ξ . Then the following inequality holds:

vT Π4v < vT (S0 +W T (ξ )TW (ξ ))v.

As this inequality holds for any vector v, it means that if
Π4 > 0, the matrix function S0 +W T (ξ )TW (ξ ) is positive
definite over [−τ 0]. Finally, the functional V1 is positive
definite. Note that the matrix S0 or T are not necessary
positive definite as it is usually required in the literature.

The second part of the proof consists in ensuring the
negativeness of the derivative of V1 along the trajectories
of (8). Differentiating V1 leads to:

V̇1(xt) = 2ẋT (t)
[
Px(t)+

∫ 0
−τ Q(ξ )xt(ξ )dξ

]
+2xT (t)

∫ 0
−τ Q(ξ )ẋt(ξ )dξ

+2
∫ 0
−τ

∫ 0
−τ xT

t (s)R(s,ξ )ẋt(ξ )dξ ds
+2

∫ 0
−τ ẋT

t (ξ )(S (ξ )+W T (ξ )TW (ξ ))xt(ξ )dξ
+xT (t)S0x(t)− xT (t − τ)S0x(t − τ)

(10)
Integrating by parts the terms with ẋ(ξ ) in
the previous equation and introducing the term
2 [P2x(t)+P3ẋ(t)]T [−ẋ(t)+A0x(t)+A1x(t − τ)] = 0,
equivalent to the descriptor representation of [6], the
following equality is established:

V̇1(xt) = 2ẋT (t)P1x(t)+ xT (t)(S0 +Q(0)+QT (0)
+S (0)+W T

0 TW0)x(t)−2xT (t)Q(−τ)x(t − τ)
+2ẋT (t)

∫ 0
−τ Q(ξ )xt(ξ )dξ + xT (t − τ)S0x(t − τ)

+2 [P2x(t)+P3ẋ(t)]T [−ẋ(t)+A0x(t)+A1x(t − τ)]
−∫ 0

−τ xT
t (ξ )(Ṡ (ξ )+2Ẇ T (ξ )TW (ξ ))xt(ξ )dξ

−xT (t − τ)(S (−τ)+2W T
0 ET T EW0)x(t − τ)

+2xT (t)
∫ 0
−τ [−Q̇(ξ )+R(0,ξ )]xt(ξ )dξ

−∫ 0
−τ

∫ 0
−τ xT

t (s)( ∂
∂ sR(s,ξ )+ ∂

∂ξ R(s,ξ ))dsxt(ξ )dξ
−2xT (t − τ)

∫ 0
−τ R(−τ,ξ )xt(ξ )dξ

(11)

Replacing the functions Q,R and S by their expression
using Proposition 1, (11) can be rewritten as:

V̇1(xt) = 2ẋT (t)P1x(t)
+xT (t)(S0 +QW0 +W T

0 QT +W T
0 (S +T )W0)x(t)

+2 [P2x(t)+P3ẋ(t)]T [−ẋ(t)+A0x(t)+A1x(t − τ)]
−2xT (t)QEW0x(t − τ)+2ẋT (t)QΦ(t)
−∫ 0

−τ xT
t (ξ )W T (ξ )[DT (S +T )+(S +T )D ]

×W (ξ )xt(ξ )dξ +2xT (t)[−QD +W T
0 R]Φ(t)

−2xT (t − τ)W T
0 ET RΦ(t)−ΦT (t)[DT R+RD ]Φ(t)

−xT (t − τ)(S0 +W T
0 ET (S +T )EW0)x(t − τ)

Since Π2 = DT (S + T ) + (S + T )D > 0, the Jensen’s
inequality ensures that the integral term of the equation above
is bounded by −1/τΦT (t)[DT S +SD ]Φ(t). Introducing the
vector ζ (t) = [xT (t), ẋT (t),xT (t − τ),ΦT (t)]T , the following
inequality holds:

V̇1(xt) ≤ ζ T (t)Π3ζ (t)

Then provided that the conditions of Theorem 1 hold, the
derivative of the LKF V1 is negative definite and the system
is asymptotically stable.
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Remark 1: An extension to the case of uncertainties in
the system parameters can be dealt by considering system
(8) and with A0 and A1 from the uncertain polytope:

∀t ∈ R+, Ω(t) =
M

∑
k=1

λi(t)Ωi,

where ∀t ∈ R+, ∑M
k=1 λi(t) = 1, ∀k = 1, ..,M, 0 ≤ λi(t).

The Ω vertices of the polytope are described by Ωk =
[A0(k) A1(k)]. As the conditions based in Theorem 1 are
linear with respect to the matrices A0 and A1, one has to
solve those LMIs simultaneously for all the Ω vertices.

Remark 2: The use of the descriptor representation does
not reduce the conservatism. However its interest will be
exposed in the following section.

V. STABILIZATION OF TIME-DELAY SYSTEMS

Consider system (1). The objective is now to design the
gain K of the control law (2) such that the closed-loop system
is asymptotically stable. The following result holds:

Theorem 2: For a given N, consider a matrix D in RN×N

and a vector W0. If for a given ε > 0, there exist P̄1 = P̄T
1 > 0,

S̄0 = S̄T
0 , P̄ in Rn×n, a matrix Y in Rm×n, a matrix Q̄ in Rn×nN

and R̄ = R̄T , S̄ = S̄T > 0 and T̄ = T̄ T in RnN×nN such that,
the following LMIs hold:

ϒ1 =
[

P̄1 Q̄
Q̄T R̄+ S̄/τ

]
> 0,

ϒ2 = DT (S̄ + T̄ )+(S̄ + T̄ )D > 0,

⎡
⎢⎢⎣

υ1
3 υ12

3 υ13
3 −Q̄D +W T

0 R̄
∗ −ε(P̄+ P̄T ) ε(Aτ P̄+BτY ) Q̄
∗ ∗ υ3

3 −W T
0 ET R̄

∗ ∗ ∗ υ5
3

⎤
⎥⎥⎦

= ϒ3 < 0

and
ϒ4 = S̄0 +W T

0 ET T̄ EW0 > 0,

ϒ5 = DT T̄ + T̄D > 0

where E = e−τD and where υ1
3 , υ3

3 and υ4
3 are given by:

υ1
3 = AP̄+ P̄T AT +BY +Y T BT + S̄0 + S̄1

+W T
0 (S̄ + T̄ )W0 + Q̄W0 +(Q̄W0)T

υ12
3 = P̄1 − P̄+ εP̄T AT + εY T BT

υ13
3 = Aτ P̄+BτY − Q̄EW0

υ3
3 = −S0 −W T

0 ET (S̄ + T̄ )EW0
υ4

3 = −DT (R̄+(S̄ + T̄ )/τ)− (R̄+(S̄ + T̄ )/τ)D

Then the system (1) with the state feedback control law
(2) with K = Y P̄−1 is asymptotically stable.

Proof: Consider a state feedback gain K. Assume the
conditions from Theorem 1 are satisfied with A0 = A + BK
and A1 = Aτ + Bτ K. Then the controlled system (1) is
asymptotically stable for a delay τ . Assume that:

P2 = εP3

Noting that a necessary conditions for Π3 to be negative
definite is that the matrix P2 is non singular. It is thus possible
to define P̄ = P−1

2 and P̄ = IN ⊗ P̄. From the definition of
the Kroenecker product, it is easy to see that:

P̄W0 = W0P̄, P̄D = DP̄

Introducing the variables P̄1 = P̄T P1P̄, S̄0 = P̄T S0P̄, S̄1 =
P̄T S1P̄, Q̄ = P̄T QP̄ , {R̄, S̄, T̄} = P̄T{R, S, T}P̄ , and
Y = KP̄, it is straightforward to see that ϒ1 = (IN+1⊗ P̄)T Θ1
(IN+1⊗ P̄), ϒ2 = P̄T Θ2 P̄ , ϒ3 = (IN+4⊗ P̄)T Θ3 (IN+4⊗ P̄),
ϒ4 = P̄T Θ4P̄ and ϒ5 = P̄T Θ5 P̄ and the proof is completed.

The interest of the descriptor representation appears in the
stabilization problem. Obtaining constructive LMI conditions
which design the controller gain K not based on descriptor
representation is not as straightforward as the one based on
Theorem 1.

In Theorems 1 and 2, the conservatism is considerably
reduced by the introduction of the matrix T . First the
conditions Π4 > 0 and Π5 > 0 allows the matrices T and
S0 to be not necessarily positive definite. It is also possible
to consider matrices D which only have non zero eigenvalues
since T is not necessarily positive definite. However it is still
required the D does not have zero eigenvalues.

Despite the reduction of the conservatism, the price to
pay concerns the number of variables to solve. As in the
discretization method, it would be possible to reduce the
number of variable by imposing restrictions on the form of
S and T (for instance to consider block diagonal matrices).

A large degree of freedom in the stability conditions
from Theorem 1 are provided since the matrix D (ie. its
dimension, N, and its eigenvalues) and the initial condition
of (6), W0, are arbitrarily chosen. One can see that behind
the general presentation of Theorems 1 and 2, there exists an
infinite number of different stability conditions which lead
to different results in terms of conservatism. The following
section proposes some basic restrictions on the choice of
(D,W0).

VI. DISCUSSIONS ON THE CHOICE OF (D,W0)

This section deals with the influence on the matrix D and
on the initial conditions W0. The following gives a method
to choose (D,W0) in an efficient way. The idea behind the
introduction of the matrix D is to make appear variations in
the functions Q,R,S using the vector function W .

A first constraint comes from the conditions from The-
orems 1 and 2. Since Π2, Π3 and Π5 (and ϒ2, ϒ3 and
ϒ5) are negative definite, it is thus required that D is non
singular. Then possible functions Q, R and S generated
by Theorems 1 or 2 do not contain constant or polynomial
components.

Focuss now on the pair (D,W0). For a given matrix D,
consider the set defined by:

LD = {W0 | ∀X ∈ RN\{0}, ∀ξ ∈ [−τ 0], XT eξ DW0 	= 0}
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The set LD represents the set of initial conditions of (6)
such that all the components of the solutions W are linearly
independent. Then LD has the following properties.

Proposition 2: Consider a matrix D. If there exists a
change of coordinates such that the D is expressed a block
diagonal matrix and such that one of this block is of the form
λ I where λ ∈C, then LD = /0.

Proof: If such a change of coordinates exists, it
means that several components of the solutions W (t) will
be proportional, which makes that the set LD is empty.

For instance, it is easy to see that LIN = /0. Coming back
to the definition of the functions Q, R and S , the choice of
the identity matrix does not give so much interest since all
the components of W will be proportional. Finally the size of
the LMIs would have been increased to solve several times
the same problem which corresponds to Q0et ,R0et ,S0et .

On the other side, the set Ld{1,2} is not an empty
set. However if, for instance, we consider W T

0 =
[1 0] (which does not belong to Ldiag(1,2) = {W0 ∈
R2 | ∀i = 1,2, (W0)1,i,1}), the functions generated by
(diag(1,2),W0 	= 0) will only be Q0et ,R0et ,S0et . One more
the size of the LMIs would have been increasing without
reducing the conservatism. Then it appears that taking W0 ∈
LD (which also ensures that LD 	=) provides an efficient
choice of the pair (D,W0).

The following gives some properties on the functions
Q,R and S with respect of the choice of the pair (D,W0).
Consider the following definition:

Definition 1: Two pairs (D,W0) and (D′,W ′
0) are said

equivalent if there exists a non singular matrix M such that:
∀ξ ∈ [−τ 0], W (ξ ) = MW ′(ξ ).

The following propositions hold:

Proposition 3: Assume that the pairs (D,W0) and (D′,W ′
0)

are equivalent. If there exist Q, R and S of appropriate
dimension such that V generated by (D,W0) is a LKF for
system (8), then there also exists a LKF V ′ generated by
(D′,W ′

0) for system (8).
Proof: Assume that V generated by (D,W0) is a LKF

for system (8) with some constant matrices Q,R and S. Then
consider

V ′(xt) = xT (t)P1x(t)+2xT (t)
∫ 0
−τ QM−1W ′(ξ )xt(ξ )dξ

+
∫ 0
−τ xT

t (ξ )W ′T M−T SM−1W ′(ξ )xt(ξ )dξ
+

∫ 0
−τ

∫ 0
−τ xT

t (s)W ′T (s)M−T RM−1W ′(ξ )dsxt(ξ )dξ ,

where M = M⊗ In. It is easy to see that V ′ = V . Then V ′ is
also a LKF for system (8).

Proposition 4: Consider a matrix D in RN×N such that
LD 	= /0 and a non singular matrix M. Then the two following
statement hold:

• For any W0 ∈ LD, the vector MW0 is in LMDM−1 and the
two pairs (D,W0) and (D′,W ′

0) = (MDM−1,MW0) are
equivalent;

Theorems τmax Theorem 1 τmax
Fridman et al [7] 4.47 D6, N = 2 5.06
Fridman et al [8] 1.63 D6, N = 4 5.98

Wu et al [23] 4.47 D6, N = 6 6.14
Kao et al [13] 4.47 D1, N = 6 4.00
He et al [11] 4.47 D2, N = 6 5.69

Ariba et al [1] 5.12 D3, N = 6 3.35
Papachristodoulou et al [21] - D4, N = 6 5.38

Kao et al [14] 6.11 D5, N = 6 6.15

Ariba et al (N=6) [3] 6.12 D6, N = 6 6.14
Gu (N=6) [9] 6.17 D7, N = 6 5.71

- D8, N = 6 6.13

TABLE I
THE MAXIMAL ALLOWABLE DELAY τ

• For any W0 and W ′
0 ∈ LD, the two pairs (D,W0) and

(D,W ′
0) are equivalent.

Proof: The proof is straightforward since W and W ′
are the solutions of the same differential equations expressed
over a different system of coordinates. Noting that W0 (and
W ′

0) belongs to LD (and LD′ ), the vectorial set of functions
of W and W ′ both are of dimension N.

Then for a given matrix D, it is sufficiently to test if V is
a LKF for (8) for any vector W0 ∈ LD (if there exists one).

VII. EXAMPLES

The stability is analyzed using LKF generated by W =
[ 1 1 . . . 1 ]T and the matrices:

D1 =

⎡
⎢⎣

1 . . . 0
...

. . .
...

0 . . . N

⎤
⎥⎦ ,

D2 = IN +
[

01×N−1 0
diag(1, . . . ,N −1) 0N−1×1

]
,

D3 = diag(1,−1, . . . ,N/2,−N/2),
D4 = −D2,

D5 = 0.05D1, D6 = 0.05D2,
D7 = 0.05D3, D8 = 0.05D4,

In D3, the sign of the term in the last row and last column
depends on wether N is pair or not. The matrices Dk for k =
1,3,4,5,7,8 are diagonal matrices. It thus allows producing
solutions of the form W T (ξ ) = [eDk

1,11ξ , . . . ,eDk
1,NN ξ ]. The

matrices Dk for k = 2,6 produce W T (ξ ) = [edkξ , . . . ,ξ Nedkξ ]
where d2 = 1 and d6 = 0.05.

Consider the following example [7], [9], [13] or [23]

ẋ(t) =
[

−2 0
0 −0.9

]
x(t)+

[
−1 0
−1 −1

]
x(t − τ)

with a constant delay. The upper bounds of the delay τmax
delivered by stability criteria from the literature and by
Theorem 1 for several matrices D are given in Table I.

As a first remark, the results delivered by Theorem 1 and
several matrices D are not equivalent. This also means that
behind the general stability conditions of Theorem 1, an
infinite number of criteria can be considered by changing D.
As Theorem 1 is employed for only few matrices, it would be
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possible that one can find greater upper-bound of the delay
using another matrix.

Compare to the literature, the conservatism of Theorem
1 is better than the other results except the discretization
method by [9]. In this method, the parameters of the LKF
are piecewise linear functions. This allows thinking that
investigating into extensions of Theorem 1 to a discretization
method or to polynomial parameters (which corresponds to
a nilpotent matrix D) could reduce the conservatism.

VIII. CONCLUSION

In this article, a novel approach to construct Lyapunov-
Krasovskii functional using descriptor representation and
linear differential equations is introduced. The proposed
method allows considering continuous varying functions
in the parameters in the LKF. This method leads to less
conservative results than most of the existing results on the
stability of linear systems with constant delays.

An important issue to improve the present method would
be first to extend this approach to time-varying delays.
Another one consists in enlarging the class of functions
Q, R, S . A restriction on the matrices which has to be
non singular, still remains. It thus does not allow considering
constant or polynomial functions. Another possibility would
be to consider time-varying matrices D and thus obtaining
a more general class of LKF. Another interesting issue
concerns the number of variable to solve. It is clear that
at this level of development, this method requires a larger
number of variables to determine especially compare to the
discretization method. It would be interesting to reduce them.
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