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Abstract: Dither signals are commonly used in electronics for implementing different type
of modulations in power converters, which represent a very interesting class of hybrid
systems. It was recently shown that a nonsmooth dithered system can be approximated
by an averaged system provided that the dither frequency is sufficiently high and that the
amplitude distribution function of the dither is absolutely continuous and has bounded
derivative. This result is exploited in this paper for power converters. Averaged models
corresponding to various shapes of dither signal are analyzed, showing that dither with
Lipschitz continuous amplitude distribution function can be used to adapt the equivalent
gain of the power converter.

1. INTRODUCTION

In power electronics a large class of systems can be
modeled as hybrid dynamical systems due to the pres-
ence of switching devices (for instance diodes or tran-
sistors) that “instantaneously” change the dynamical
behavior of the system. This class of systems can be
adequately represented by hybrid systems or nonlinear
differential equations with discontinuous nonlineari-
ties. One of the standard approaches for designing
control algorithms for power converters, is to use mod-
ulation schemes (e.g. pulse width modulation, PWM).
In this case the feedback controlled power converter
is a hybrid system with one (possible more) external
forcing signal(s).
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Analysis of forced nonlinear feedback systems can
be very difficult. One approach for the analysis is
to accept some approximation and base the analysis
on the averaged dynamics. Averaging theory provides
theoretical justification for this idea in many important
cases. Averaging is applied, for example, in studying
effects of dither signals that are commonly used to
compensate for nonlinearities in feedback control sys-
tems. The idea is that by injecting a suitably chosen
high-frequency signal in the control loop, the nonlin-
ear sector is effectively narrowed and the system can
thereby be stabilized. For the case when the original
nonlinearity is Lipschitz continuous, it was shown in
the 70s that if the dither frequency is sufficiently high,
the behavior of the dithered system will be qualita-
tively the same as an averaged system, see Zames and
Shneydor (1976). However, the Lipschitz continuity
assumption on the nonlinearity of the dithered system
is often violated in practice. This is the case in many
pulse width modulated systems and power converters.
These systems can be modeled as nonlinear dithered
systems in which the high frequency signal is added



at the input of a discontinuous nonlinearity of signum
or step function type. It is well known that complex
phenomena such as bifurcations and chaos can appear
in these systems, e.g., di Bernardo and Tse (2002), Tse
et al. (2000), Banerjee and Verghese (2001).

Rigorous analysis of nonsmooth systems with dither
excitation is complicated. It is only recently that rigor-
ous results on stability and approximation have been
obtained, e.g., Gelig and Churilov (1998), Teel et al.
(2004), Iannelli et al. (2003), Iannelli et al. (2006).
In this paper we will recap and apply to power elec-
tronics systems the averaging result in Iannelli et al.
(2006). The result shows that a general class of nons-
mooth dithered systems can be approximated by a cor-
responding class of averaged systems, provided that
the dither has sufficiently high frequency and its am-
plitude distribution function is absolutely continuous
with bounded derivative. We will discuss how usual
modulation schemes (that use dither signals satisfying
the averaging result) work well while other modula-
tion schemes that use dither signals not satisfying the
assumptions in Iannelli et al. (2006) may fail. Simula-
tions on a buck converter show the effects of different
(dither) signals used in the modulation, while exper-
iments show that the averaging result does not hold
when zero-slope signals (like square or trapezoidal
waveforms) are used for feedback control of a DC
motor. The experiments illustrate how it is possible to
control the motor shaft at a desired angular position
by applying high frequency dither signals that satisfy
the assumption of the averaging theorem, while other
dither signals that do not fulfill the conditions do not
give a stable closed-loop system, despite their high
frequency content.

2. PRELIMINARIES

Consider the dithered feedback system

ẋ(t) = f0(x(t), t)+
m

∑
i=1

fi(x(t), t)ni(gi(x(t), t)−δi(t)),

(1)
wherex(0) = x0, fi : Rq×R→ Rq, i = 1, . . . ,m, are
assumed to be globally Lipschitz with respect to both
x and t, and f0 is piecewise continuous with respect
to t, Lipschitz in x, and f0(0, t) = 0 for all t ≥ 0.
Similarly, the functionsgi : Rq×R→ R, i = 1, . . . ,m,
are globally Lipschitz with respect to bothx andt. The
nonlinearitiesni : R→ R, i = 1, . . . ,m, are supposed
to be of bounded variation. Each dither signalδi :
[0,∞) → R is a p-periodic measurable and bounded
function.

The averaged system is defined as

ẇ(t) = f0(w(t), t)+
m

∑
i=1

fi(w(t), t)Ni(gi(w(t), t)),

(2)
wherew(0) = w0, Ni is the averaged nonlinearity

Ni(z) ,
∫

R
ni(z−ξ)dFδi

(ξ).

Here the integral is a Lebesgue–Stieltjes integral and

Fδ(ξ) , 1
p

µ({t ∈ [0, p) : δ(t)≤ ξ})

is the amplitude distribution function with Lebesgue
measureµ and dither periodp.

The following averaging result was proved in Iannelli
et al. (2006).

Theorem 2.1.(Iannelli et al. (2006)).Consider the dithered
system (1) and the averaged system (2) under the fol-
lowing assumptions:

(i) the dithered system has an absolutely continuous
solution,

(ii) fi andgi are globally Lipschitz,
(iii ) f0 is globally Lipschitz with respect tox and

f0(0, t) = 0,
(iv) ni is a function of bounded variation,
(v) each ditherδi is p-periodic, |δi | ≤ Mδ, and

has absolutely continuous amplitude distribution
functionFδi

with bounded derivative.

Then, the averaged nonlinearitiesNi are globally Lip-
schitz continuous and the averaged system (2) has
a unique absolutely continuous solution on[0,∞).
Moreover, for any compact setK ⊂Rn and anyT > 0,
there exists a positive constantc(K ,T) such that

|x(t,x0)−w(t,x0)| ≤ c(K ,T)p, ∀x0 ∈K , t ∈ [0,T].
(3)

The main result of this paper is to show that if the
conditions of the theorem are violated, then the av-
eraged system does not necessarily approximate the
dithered system. It suffices to consider a subclass of
the general nonsmooth systems introduced above, that
will be discussed in the following and that represent a
wide class of power electronics systems.

3. AVERAGED MODELS OF POWER
ELECTRONICS SYSTEMS

3.1 PWM power converters

A typical approach for modeling converters in the
power electronics framework is based on the assump-
tion that switches (such as diodes, thyristors, transis-
tors, mosfets) are ideal in the sense that their current-
voltage relationship can be modeled as a piecewise
linear characteristic. Under such hypothesis a wide
class of PWM power converters can be modeled in the
following way:

ẋ(t)= A0x(t)+b0+
m

∑
i=1

(Aix(t)+bi)n(r i(t)−cix(t)−δi(t))

(4)
wherex(0) = x0, Ai , bi andci are constant matrices of
appropriate dimensions andm is the number of modes



of the converter. The step nonlinearityn : R→ R is
given by

n(z) =

{
1, z> 0

0, z< 0.
(5)

The external reference signalr i(t) is assumed to be
Lipschitz continuous and theδ(t) signal is a high
frequency signal of periodp.

It is now possible to derive the averaged system for the
feedback PWM system (4) (see Iannelli et al. (2004)
for the details).

Proposition 3.1.The averaged system of the pulse
width modulated feedback system (4) is given by

ẇ(t)= A0w(t)+b0+
m

∑
i=1

(Aiw(t)+bi)Ni(r i(t)−ciw(t)),

(6)
wherew(0) = w0 andNi(z) = Fδi

(z).

PROOF. Follows simply from (2) and

N(z) =
∫

R
n(z−a)dFδ(a) =

∫ +z

−∞
dFδ(a) = Fδ(z).

Note that, sincen(z) is discontinuous in0, the av-
eraged nonlinearityN(z) is well defined except at
possible discontinuity points ofFδ. It means that the
right-hand side of (6) is not necessarily well-defined
everywhere. The averaged system can have a well-
defined generalized solution even if the right-hand
side is almost everywhere well-defined. This is the
case in the sequel of the paper.

3.2 Dither effects interpreted through averaged models

An interesting class of PWM power converters which
can be modeled through (4) is represented by DC/DC
converters. For instance the voltage-mode controlled
buck converter reported in Fig. 1 can be modeled by
consideringm= 1, A1 = 0, b0 = 0, r1 = kpVre f and

A0 =



−R1

L
−1

L
1
C

− 1
R2C


 , b1 =

[
E
L

0

]T

, c1 =
[
0 kp

]

whereVre f is the output reference voltage,kp the gain
of the proportional controller andδ(t) may be the
sawtooth signal reported in Fig. 2. It is simple to show
that the DC/DC buck converter can be represented
by using the block scheme reported in Fig. 3 with
α = 0 andG(s) = c1(sI−A0)−1b1. The corresponding
block scheme of the averaged model is reported in
Fig. 4. Let us now consider a DC/DC buck converter
with the following parameters:R1 = 0.1Ω, L = 1mH,
C = 220µF, R2 = 8.9Ω E = 6V, p = 100µs, kp = 1.1
and the reference voltage equal to6V and after0.03s
to 8V. By using as dither signals a sawtooth the re-
sults reported in Fig. 5 are obtained. By increasing
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Fig. 1. DC/DC buck converter.
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Fig. 2. Sawtooth dither with its amplitude distribution
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Fig. 3. Equivalent block scheme of a class of power
electronic systems; for power convertersdx rep-
resents the so-called duty cycle.
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Fig. 4. Block scheme of the averaged model corre-
sponding to Fig. 3.
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Fig. 5. Capacitor voltage and inductor current of the
voltage mode controlled DC/DC buck converter
by using a sawtooth dither signal withMδ = 0.4.
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Fig. 6. State variables for the buck converter by using
a sawtooth dither signal withMδ = 4.

the amplitude of the sawtooth dither signal, the av-
erage analysis predicts that the average gain will de-
crease. Therefore one might expect a degradation of
the closed loop performance. This is confirmed by the
simulation results reported in Fig. 6. By simulating
the power converter and the corresponding averaged
model in the presence of a sinusoidal dither, similar
results are obtained. Thus, the average analysis seems
to work properly also if the averaged nonlinearity
is non Lipschitz continuous, so as for the case of
the sinusoidal dither to which corresponds an ampli-
tude distribution function with unbounded derivative
at±Mδ. This motivates a further investigation in the
need for the assumptions made on the dither signal for
the proof of Theorem 2.1.

4. SUBTLETIES IN AVERAGING RESULTS DUE
TO INAPPROPRIATE CHOICE OF DITHER

SHAPE

In this section we will show that when conditions on
the amplitude distribution function are not satisfied, it
is possible to find systems for which conclusions of
Theorem 2.1 do not hold. Our first result shows that
we cannot ensure the existence of a unique solution to
the averaged system unless we impose the bounded-
ness of the derivative ofFδ.

Proposition 4.1.Suppose the amplitude distribution
functionFδ is absolutely continuous but its derivative
is not bounded. Then there exists a dithered system (1)
for which the corresponding averaged system (2) does
not have a unique solution.

PROOF. Consider the dithered nonsmooth feedback
system (4) withm= 1, A0 = A1 = 0, b0 = 0, b1 = 4,
c1 = −1, x(0) = −1, r ≡ 0 and δ is the following
p−periodic quadratic dither signal

δ(t) =





−4Mδ

(
t
p

)2

+Mδ, t mod p∈ (0,
p
2
]

+4Mδ

(
t
p

)2

−8Mδ
t
p

+3Mδ, t mod p∈ [
p
2
, p).
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Fig. 7. Trapezoidal dither and the corresponding am-
plitude distribution function.

The corresponding amplitude distribution function is

Fδ(z) =





0 z≤−Mδ
1
2

√
1+

z
Mδ

−Mδ ≤ z≤ 0

1− 1
2

√
1− z

Mδ
0≤ z≤Mδ

1 z≥Mδ.

(7)

Note that the amplitude distribution function is ab-
solutely continuous but its derivative is not bounded.
The averaged system is then (6) whereN(z) can be
obtained from (7) and Proposition 3.1. Note that this
averaged system is not globally Lipschitz becauseFδ
is not globally Lipschitz. It is easy to show that when
Mδ = 1 the averaged system has a nonunique solution.
In fact, there are infinitely many solutions parameter-
ized byτ ∈ [0,∞) and given by

w(t) =

{
−1 0≤ t ≤ τ
(t− τ)2−1 t ≥ τ.

The next result states that if the amplitude distribution
function is not absolutely continuous then the conclu-
sions of Theorem 2.1 cannot be guaranteed.

Proposition 4.2.Suppose the amplitude distribution
function Fδ is discontinuous. Then there exists a
dithered system (1) for which the uniform bound in (3)
of Theorem 2.1 does not hold.

PROOF. Let us consider the nonsmooth feedback
system (4) withm= 1, A1 is a null matrix of adequate
dimensions,

A0 =
[−1 −1

0 −2

]
, b0 =

[
0
−1

]
, b1 =

[
0
2

]
, c1 =

[
1 0

]
.

The external constant reference isr1(t) = R= 0.5 and
δ is a square wave dither of amplitudeMδ = 0.5. It
is easy to show that the averaged system is (6) where
N is the averaged nonlinearity corresponding to the
amplitude distribution function in Fig. 7 with∆ = 0
andMδ = 0.5. Let us partition the state space of the
dithered and the averaged systems into the following
three regions, see Fig. 8:

• RegionΩ1 = {x : x1 < 0}. In this regionn(R−
c1x−δ) = 1. The dithered system coincides with
the averaged system and they have dynamics
ẋ = A0x− b0. The equilibrium point isP1 =
+A−1

0 b0 = (−0.5,0.5)T .



• RegionΩ2 = {x : x1 > 1}. In this regionn(R−
c1x−δ) = 0. The dithered system coincides with
the averaged system and they have dynamics
ẋ = A0x + b0. The equilibrium point isP2 =
−A−1

0 b0 = (0.5,−0.5)T .
• RegionΩ0 = {x : 0< x1 < 1} with subsetsΩ+

0 =
{x : 0< x1 < 1, x2 > 0.5} andΩ−

0 = {x : 0< x1 <
1, x2 < −0.5}. In Ω0 the state does not affect
the output of the step nonlinearity. The dithered
system can be represented by the linear system

ζ̇(t) = A0ζ(t)−b0u(t) (8)

with u a periodic signal that switches between
−1 (whenR−δ(t) = 0) and1 (whenR−δ(t) =
1). The averaged system has an input equal to
zero in this region, i.e.,̇w(t) = A0w(t).

Considerx(0) = w(0), with 0< x1(0) < 1, 0< x2(0) <
0.5 andx1(0) > x2(0). It is easy to show that the av-
erage trajectory will tend to the origin without leaving
the set indicated for the possible initial conditions. The
dithered trajectory will oscillate about the averaged
solution. By considering the vector fields indicated in
Fig. 8, it follows that the dithered trajectory cannot
leave the setΩ0− {Ω+

0
⋃

Ω−
0 } but by crossing the

segment{x : x1 = 0, 0 ≤ x2 ≤ 0.5}. This can, for
example, be seen by inspecting the phase-plane in
Fig. 8. Moreover inΩ0 the solution of the dithered
system can be represented as

x(t) = eA0t(x(0)−ζ0)+ζss(t),

whereζss is the steady-statep-periodic solution of (8)
and

ζ0 = (I −eA0p)−1
∫ p

0
eA0(p−s)bu(s)ds.

SinceA0 is Hurwitz,x(t) will thus converge toζss(t),
which is a counter clockwise oscillation around the
origin. It is always possible to choose a small enough
dither periodp such thatζss(t) never intersectsΩ2,
sinceζss→ 0 when p→ 0. It is then clear thatx(t)
eventually will cross thex2 axis for some0≤ x2≤ 0.5.
¿From Fig. 8, it is easy to see that the second orthant is
an invariant set under the dynamics of the dithered and
averaged systems. Moreover, since the system matrix
A0 is Hurwitz, the dithered solutionx(t) will tend
toward the equilibrium pointP1.

We have thus shown that the dithered and the averaged
systems behave qualitatively very different since they
converge to two different points,P1 and the origin, re-
spectively. This is a contradiction to the condition (3)
of Theorem 2.1. Indeed, if the compact setK includes
the origin, we would need to makep smaller and
smaller the closerx0 is to the origin (on the trajectory
indicated in Fig. 8) in order to get the inequality sat-
isfied, because it always exists ap such that (3) does
not hold. Hence, there is no uniform bound onp that
holds for allx0 ∈K .

Fig. 8. Phase plane trajectories and vector fields for the
dithered system (4) and the averaged system (6)
with p = 0.1 and initial conditionsx0 = w0 =
[0.6 0.2]T . The trajectory of the dithered system
converges toP1 while the trajectory of the aver-
aged system converges to the origin.

5. EXPERIMENTAL RESULTS

In this section we illustrate how the complex behav-
iors discussed in previous section may also appear
in practical power electronics applications. The ex-
perimental setup consists of a power electronic drive
with a position controlled DC motor and a full bridge
DC/DC power converter. The control objective is to
put the motor shaft at a desired angular positionθref.
The angular position of the shaftθ is measured by
using a rotational potentiometer whose gain iskpot.
The motor supply voltage±Va is obtained through a
full bridge DC/DC converter. By introducing the state
vectorx= (θ,ω, ia)T , the dynamic model of the whole
power electronic system can be represented as the
dithered nonsmooth feedback system (4) withm= 1,
A1 is a null matrix of adequate dimensions,

A0 =




0 1 0

0 −β
J

kt

J

0 − ke

La
−Ra

La


 , b0 =




0
0

−Va

La


 ,

b1 =−2b0, c1 =
[
kpot 0 0

]
.

It is simple to show that such system can be repre-
sented through the block diagram reported in Fig. 3
with α =−0.5 andG(s) = c1(sI−A0)−1b1. The exter-
nal constant reference isr(t) = R= Vref. The DC mo-
tor has the following parameters:Ra = 2.510Ω, La =
0.530mH, kt = ke= 5.700mV/(rad·s−1), β = 0.411mN·
cm/(rad·s−1), J = 31.400g·cm2, kpot= 3/(2π)V/rad,
Va = 2.500V. Two dither shapes are considered: a
sawtooth signal and a trapezoidal signal. The dither
amplitude is in all cases equal toMδ = 0.070. It can be
shown (e.g., using the Popov criterion) that the aver-
aged systems corresponding to the sawtooth and trape-
zoidal dither cases are both asymptotically stable. For
sawtooth dither, the approximation error between the
dithered system and the averaged system tends to zero
as the dither frequency goes to infinity, in accordance
with Theorem 2.1. Hence, since the averaged system is
asymptotically stable, the system output goes to zero
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Fig. 9. Angular position for sawtooth dither of three
frequencies.

as we increase the dither frequency. For trapezoidal
dither, the assumptions of the theorem are not fulfilled,
since trapezoidal dither has a discontinuous amplitude
distribution function.

The following experiments support these theoretical
conclusions. The system is stabilized with sawtooth
dither, but not with trapezoidal dither. Experiments
were carried out using sawtooth dither of frequencies
100, 200, and 500 Hz. Fig. 9 reports the angular posi-
tion of the motor shaft under steady-state conditions.
Note that by increasing the dither frequency the behav-
ior of the dithered system converges to the behavior of
the (stable) averaged system (i.e., the system output
goes to zero). The ratio between consecutive averages
of the peak-to-peak values of the output signal is equal
to 3.33 and 2.84 for 100–200 Hz and 200–500 Hz,
respectively. These ratios somehow indicates the con-
vergence rate. The averaging effect of the dither thus
works properly in this case. Fig. 10 shows experiments
with trapezoidal dither. In this case, the system output
shows a slow oscillation with a substantial amplitude
for all three dither frequencies. (Note that the axes
are not the same as in Fig. 9.) The frequency of the
oscillation is low compared to the dither frequency,
and it seems to be relatively independent of the dither
frequency. In particular, note that by increasing the
dither frequency, the system output does not converge
to zero, as was the case with sawtooth dither. Instead
the ratio between consecutive averages of the peak-to-
peak values of the output signal is equal to 1.97 and
0.86 for 100–200 Hz and 200–500 Hz, respectively,
so going from 200 to 500 Hz, the amplitude of the
oscillation is even increasing.

6. CONCLUSIONS

In this paper we have shown that an important class of
power electronics systems (namely pulse width mod-
ulated systems), usually modeled as hybrid dynamical
systems with external periodic forcing, can be recasted
in the framework of dithered nonsmooth systems. By
exploiting recent theory presented by authors on the
averaging of dithered nonsmooth systems, we have an-
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Fig. 10. Angular position for trapezoidal dither of
three frequencies. Note the different scale com-
pared to Fig. 9.

alyzed how the shape of the external forcing might af-
fect the averaging result and the behavior of the overall
system. Simulations and experiments supported the
theoretical discussion and proved the importance of
averaging theory and its subtleties in the case of its
application to hybrid dynamics.
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switching regulator.IEEE Transactions on Circuits
and Systems, Part I, 47(4):448–457, 2000.

G. Zames and N. A. Shneydor. Dither in non-linear
systems.IEEE Transactions on Automatic Control,
21(5):660–667, 1976.


