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Abstract— Modeling abstraction and time-scale separation
in the design of complex systems often leads to hybrid
dynamics. Discontinuities in the continuous evolution of a
hybrid system may however create difficulties in the formal
analysis, as well as in numerical simulation and verification.
Here we study a class of hybrid systems that are excited by
high-frequency external signals. These systems arise in the
modeling of switched power converters, mechanical systems
with friction and quantized systems. For a quite general class
of excitation signals, an averaging result is shown stating
that the hybrid system can be approximated by a Lipschitz-
continuous system. The approximation is in the order of the
maximal repetition interval of the excitation signal.

I. INTRODUCTION

To find abstract models of technological phenomena is

essential in many areas of engineering. For control system

design, a good model is one that is complex enough

to capture the important system characteristics (dynamics,

disturbances, measurement noise etc.), but simple enough

to allow application of existing analysis and design meth-

ods. Hybrid systems provide a tempting framework, which

extracts desired properties of a system while ignoring irrel-

evant details. Due to discontinuities in the continuous-time

evolution of hybrid systems, the formal analysis of these

systems is sometimes tricky. Over the past decade, there

has been a major development in the understanding of the

dynamic behavior of hybrid and switched systems, such as

existence and uniqueness of discrete and continuous evo-

lution (e.g., [1], [2]) and Zeno phenomena (e.g., [3]). Still

the dynamics of these systems are not fully understood and

several interesting phenomena have recently been studied

for very simple hybrid systems [4], [5].

In this paper we study a class of hybrid systems with

high-frequency external excitation. The study is motivated

by applications in mechanical friction [6], such as stick-

slip drives [7], power electronics [8], such as pulse-width

modulated converters [9], feedback systems [10] and quan-

tized systems [11]. For instance, excitation signals are used

for power electronics converters in order to ensure a finite

and constant switching frequency and in relay feedback

systems for quenching undesired oscillations such as limit

cycles. Following our earlier work on dithered feedback
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systems [12], we consider a quite general class of piecewise

smooth systems in this paper. The systems are excited by

so called F -repetitive high-frequency excitation signals, in-

troduced by Zames and Shneydor [13] as being signals with

periodic amplitude distribution functions. These signals are

of rather general form (e.g., not necessarily periodic), and

well tailored to the theoretical analysis. The main result

of the paper is an averaging result for this class of hybrid

systems. It states that the (typically discontinuous) hybrid

system can be approximated by a Lipschitz-continuous

system. The approximation is in the order of the maximal

repetition interval of the excitation signal. Averaging is a

classical mathematical tool for analyzing time-scale sepa-

ration in dynamical systems. Related work on averaging

applied to discontinuous and hybrid system was recently

presented in [7], [10], [14], while the case of Lipschitz-

continuous systems was thoroughly treated already in the

70’s [13].

The outline of the paper is as follows. The problem

formulation and some preliminaries are given in Section II.

The main result is then presented in Section III, where it is

stated that the averaged system is Lipschitz continuous and

that its solution is at most of order p from any corresponding

solutions of the hybrid system, where p is the maximal repe-

tition interval of the excitation signals. Section IV presents

three illustrative examples. Some concluding remarks are

given in Section V.

II. PRELIMINARIES

A. Autonomous hybrid system

Consider a convex polyhedron Ω ⊂ R
n, defined as the set

Ω � {x |Ax + B � 0} with x ∈ R
n, A ∈ R

m×n and B ∈
R

n, n,m > 0. Here the symbol “�” means component-

wise inequality. Let us consider a minimal cover of Ω that

consists of N ≥ 1 convex polyhedra ω1, . . . , ωN ⊂ Ω with

disjoint interior defined as

ωq � {x |Aqx + Bq � 0}, q = 1, . . . , N,

with Aq ∈ R
m×n and Bq ∈ R

n. Introduce indicator

functions Iq : R
n �→ {0, 1}, q = 1, . . . , N , for these sets:

Iq(x) =

{
1, x ∈ ωq,

0, otherwise.
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A class of hybrid systems can then be defined as

ẋ(t) =
N∑

q=1

Iq(x(t))fq(x(t)), x(0) = x0, (1)

where each vector field fq is supposed to have Lipschitz

constant Lf in Ω. The class of systems we deal with is

obtained from (1) by introducing an external excitation

signal. Before showing that, for our further development,

it will be convenient to have a more explicit formulation of

the indicator function in the system (1).

Proposition 2.1: Let aj
q be the j-th row of the Aq matrix

and bj
q be the j-th component of the Bq vector. Further, let

n(z) be the reverse unit step function (= 1 if z ≤ 0 and 0
if z > 0). Then system (1) can be written in the following

way:

ẋ(t) =
N∑

q=1

n[gq(x(t))]fq(x(t)), x(0) = x0, (2)

where

gq(x) = max
i=1,...,m

(ai
qx + bi

q).

is Lipschitz continuous with Lipschitz constant Lg =
maxi |ai

q|.
Proof: Omitted.

B. Excitation signal

The excitation signal δ : [0,∞) �→ R is an high-

frequency signal, which is characterized through its am-

plitude distribution function (ADF):

Definition 2.1: The amplitude distribution function of δ :
[0,∞) �→ R on (t0, t1) is the real valued function Fδ : R �→
[0, 1]

Fδ(ξ) =
1

t1 − t0
µ{t ∈ (t0, t1) : δ(t) ≤ ξ} (3)

where µ denotes Lebesgue measure.

We introduce the notion that the amplitude distribution

function of δ is F -repetitive, following Zames and Shney-

dor [13].

Definition 2.2: A signal δ : [0,∞) �→ R is F -repetitive if

there exists an unbounded sequence {tk}, 0 = t0 < t1 . . .,
of partition points such that

1) the maximal repetition interval p � maxk(tk − tk−1)
is bounded

2) Fδ on (tk, tk−1) is equal to Fδ on (t0, t1) for all

k > 0.

Note that an F -repetitive δ needs not itself be periodic. We

make following standing assumption.

Assumption 2.1: The signal δ is F -repetitive, bounded by

Mδ (i.e., ‖δ‖∞ ≤ Mδ), and its amplitude distribution func-

tion Fδ is absolutely continuous and Lipschitz continuous

with

|Fδ(ξ1) − Fδ(ξ2)| ≤ LF |ξ1 − ξ2|. (4)

Remark 1: We will use that the ADF is monotonically

increasing. We will sometimes also use that Lipschitz

continuity of Fδ is equivalent to the existence of a bounded

density function fδ such that Fδ(ξ) =
∫ ξ

−∞ fδ(ζ)dζ and

ess supζ fδ(ζ) = Lf . Note that fδ(ζ) is positive since Fδ

is monotonically increasing.

Remark 2: Signals that fulfill the assumption on the

amplitude distribution function include periodic triangular

and sawtooth signals, while square wave signals have dis-

continuous amplitude distribution function, see [10], [12].

C. Hybrid system with excitation

The hybrid system under investigation is obtained

from (1) by introducing an F -repetitive excitation signal

δq for each mode q = 1, . . . , N :

ẋ(t) =
N∑

q=1

Ĩq(x(t), δq(t))fq(x(t)), x(0) = x0 (5)

where

Ĩq(x, δq) =

{
1, x ∈ ω̃q(t) � {x |Aqx + Bq + δq(t)1 � 0},
0, otherwise.

where 1 =
[
1 . . . 1

]T
. By Proposition 2.1 this system

can be rewritten as

ẋ(t) =
N∑

q=1

n [gq(x(t)) + δq(t)] fq(x(t)), x(0) = x0.

(6)

Throughout the paper we make the assumption that sys-

tem (5) is well-posed in the sense that a solution according

to the following definition always exists. We denote a

solution x(t) and sometimes x(t, x0).
Definition 2.3: A solution x(t) of (5) is an absolutely

continuous function x : [0, tf ) �→ Ω that satisfies the

equation

x(t) = x(0) +
N∑

q=1

∫ t

0

Ĩq(x(s), δq(s))fq(x(s))ds, (7)

almost everywhere. Further, we assume that x(t) does not

belong to any ∂ω̃j for a time interval of Lebesgue measure

different from zero and that the sequence of (switching)

time instants {ti} such that x(ti) belongs to some ∂ω̃j does

not have an accumulation point.

Since the definition of solution does not incorporate slid-

ing modes and accumulation points, in some cases solutions

may not exist. Furthermore the value of the vector field on

∂ω̃q does not affect the solution since by assumption x(t) ∈
∂ω̃q only at distinct points in time. A possible interpretation

of the influence of the excitation signals on the behavior

of the hybrid system can be obtained by considering the

effects of δq on the boundaries of the polyhedron ωq with

q = 1, · · · , N . One can imagine that each δq induces a time-

varying, or vibrating, polyhedron ω̃q whose boundaries are

not static.

Note that the union of the polyhedra ω̃1, · · · , ω̃N ∈ Ω
will not necessarily be a cover of Ω: it could exist some time
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interval during which x /∈ ω̃q for all q, i.e., Ĩq(x, δq) = 0
for all q. There could also exist time intervals during

which for some i 
= j the interiors of ω̃i and ω̃j are not

disjoint. In all these situations, the solution is typically

still well defined. However, such situations are typically

avoided in real applications. For instance, in pulse-width

modulated power converters, both the excitation signals

δq and the functions gq(x) are chosen so that there is

only one active mode almost everywhere. From a more

general point of view, there are cases when well-posedness

depends critically on the choice the excitation signals. In

Section IV we illustrate this dependency with a couple of

simple examples.

D. Averaged system

Define the averaged indicator function Aq(x) : R
n �→

[0, 1] as

Aq(x) �
∫

R

Ĩq(x, ξ)dFδq
(ξ), (8)

where the integral is a Lebesgue-Stieltjes integral. By using

our assumptions and Proposition 2.1 we get

Aq(x) = Nq(gq(x)) =
∫

R

n(gq(x) + ξ)dFδq
(ξ). (9)

Averaging (5) gives

ẇ(t) =
N∑

q=1

Aq(w(t))fq(w(t))

=
N∑

q=1

Nq[gq(w(t))]fq(w(t)), w(0) = w0, (10)

In Section III it is shown that the averaged system approx-

imates the behavior of system (6) for a sufficiently small

maximal repetition interval for the excitation signal δ. The

importance of this result is that the averaged system can be

shown to be Lipschitz continuous and is thus well suited

for mathematical analysis and simulation.

III. AVERAGING THEOREM

The main results are presented in this section.

Theorem 3.1: The averaged nonlinearity in (9) is

Lipschitz-continuous.

Proof: In the following we will neglect the dependence

on the mode q. The averaged unit step function N (z) is

computed as

N (z) =
∫

R

n(z + ξ)dFδ(ξ) =
∫

ξ≤−z

dFδ(ξ) = Fδ(−z).

Thus N (z) is Lipschitz continuous in z with Lipschitz

constant

LF := ess sup
ζ

fδq
(ζ) (11)

Since g is Lipschitz from Proposition 2.1,

|N (g(x1)) −N (g(x2))| ≤ LF Lg|x1 − x2|. (12)

Furthermore we can derive the boundedness of N since

|N (z)| = Fδ(−z) ≤ 1.

The result implies that the averaged system in (10) has a

Lipschitz continuous right hand side and thus there exists

a unique Lipschitz-continuous solution of the averaged

system on any finite time horizon (as long as we stay inside

the domain of definition Ω). We now have the following

approximation result.

Theorem 3.2: Consider the hybrid system (5) and the

averaged system (10). For any given T > 0 and x0 ∈ Ω,

x(t, x0) − w(t, x0) = O(p), ∀t ∈ [0, T ],

where p is the maximal repetition interval of Fδ .

Proof: This was proven for the case of periodic exci-

tation signals in [12]. All details for the generalization to

F -repetitive signals is given in [15].

IV. ILLUSTRATIVE EXAMPLES

A. Relay feedback systems

Let us consider the relay feedback system

ẋ = Lx + γsgn(hT x + δ) (13)

with

L =
[−2 −1

1 0

]
, γ =

[
1
0

]
, hT =

[
1 −1

]
. (14)

The system (13) without external excitation signal, i.e

δ(t) ≡ 0, can be modelled as a hybrid system on the

form (1) with Ω = ω1∪ω2, where ω1 = {x ∈ R
n : −hT x ≤

0}, ω2 = {x ∈ R
n : hT x ≤ 0},

f1(x) = Lx + γ and f2(x) = Lx − γ

The system (13) with external excitation signal, can be

modelled on the form (5) in which the same excitation

signal is used for both polyhedra.

When no external excitation is present (δ(t) ≡ 0), the

relay feedback system presents a limit cycle as reported

in Figure 1(a). The signal −hT x is plotted for a solution

with initial condition x0 =
[
2 1

]T
. If we apply a triangle

excitation signal δ with amplitude Mδ = 1 and period

p = 1, the limit cycle in Figure 1(a) is reduced as shown in

Fig. 1(b). Hence, the external signal in a sense attenuates

the oscillations present in the original system. Fig. 1(b)

shows also the output −hT w of the averaged system. If we

decrease the period p (e.g. p = 1/50) the averaged system

and the relay feedback system have practically identical

outputs. Hence the averaged system provides an accurate

approximation of the relay feedback system for p = 1/50.

Fig. 1(b) shows the responses when the excitation signal

has a larger period: p = 1. The responses are no longer

close and the output of the relay feedback system (solid)

is oscillating. This confirms that the period p is related

to how accurately the averaged system approximates the

hybrid system with the excitation signal.
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(a) Output −hT x of the relay feedback system (13) with (14) but
without excitation signal (δ ≡ 0).
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(b) Outputs of the relay feedback system (13) (solid) and the averaged
system (dashed). Note the deviation between the responses. If we
decrease the period (e.g. p = 1/50) the responses are almost
identical.

Fig. 1. Outputs of the relay feedback system without and with the
excitation signal, and the averaged system.

B. Well-Posedness?

We now extend the previous example in order to make

some considerations on the well-posedness of the hybrid

system (5). We first consider two different p-periodic exci-

tation signals with amplitude Mδ

δ1(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

4Mδ

p
t, t ∈ [0, p/4]

−4Mδ

p
t + 2Mδ, t ∈ [p/4, 3p/4]

4Mδ

p
t − 4Mδ, t ∈ [3p/4, p]

and δ2(t) = δ1(t − p/4). Then points near the hyperplane

H = {x : hT x = 0} can belong to either of the two modes,

both modes, or no mode. By introducing the vibrating
polyhedra

ω̃1(t) = {x ∈ R
n : −hT x + δ1(t) ≤ 0}

ω̃2(t) = {x ∈ R
n : hT x + δ2(t) ≤ 0}

we obtain the excited dynamics

ẋ(t) =(Lx(t) + γ)Ĩ1(x(t), δ1(t))

+ (Lx(t) − γ)Ĩ2(x(t), δ2(t)). (15)

We see that for example

x = 0 ∈

⎧⎪⎨
⎪⎩

ω̃2(t), t ∈ [0, p/4]
ω̃1(t), t ∈ [p/2, 3p/4]
ω̃1(t) ∩ ω̃2(t), t ∈ [3p/4, p]

and in particular x = 0 does not belong to either of ω̃1

and ω̃2 for t ∈ [p/4, p/2]. If the frequency of the excitation

signals is high we can expect that solutions within a distance

Mδ from the hyperplane H will have a high frequency os-

cillation due to the rapid switching between the polyhedra.

This example shows that even a simple hybrid system with

an external excitation may have very complicated behaviour.

However, under the assumption that (15) is well-posed it can

be approximated by the averaged dynamics. In particular,

it is easy to see that in this case (10) can be written as the

saturated system

ẇ(t) = Lx + γsat
(

hT w

Mδ

)
.

The question is when the excited system (15) will be

well-posed. The dynamics is affine in the interior of the

vibrating polyhedra ω̃1(t) and ω̃2(t) so the solution can be

continued until we reach either of the boundaries ∂ω̃1 or

∂ω̃2. Suppose x(t) ∈ int ω̃1(t) ∩ Ω, where Ω is a bounded

open set. Then the state vector has a Lipschitz constant

Lx ≤ supx∈Ω |Lx±γ|. We will show that if the period p is

sufficiently small then x(t) cannot belong to ∂ω̃1 for a time

interval of Lebesgue measure different from zero. Thus, if

the state reaches this switching boundary it will immediately

be moved inside a polyhedron region thus allowing the

continuation of the solution. This shows that the solution

can be continued until it reaches the boundary of Ω.
To illustrate that our arguments hold for more general

situations we assume that the excitation signals are general

F -repetitive signals satisfying Assumption 2.1 with the

addition that they are piecewise continuous. Let us consider

the particular realization

δ1(t) = F−1
δ1

(t/(tk − tk−1)), t ∈ (tk−1, tk),

This signal is strictly monotonically increasing in each

repetition interval and it thus has the smallest possible slope.

We will use that the slope of this excitation signal has a

lower bound different from zero and this construction is

thus the worst case excitation.
To derive the minimum slope we consider the derivative

d

dt
δq(t) =

1
(tk − tk−1)F ′

δ1
(δ1(t))

which is well defined almost everywhere. Hence

min
t

∣∣∣∣ d

dt
δ1(t)

∣∣∣∣ ≥ 1
p · ess supζ fδ1(ζ)

=: Lδ > 0

We will assume that

p < 1/(|h|Lx · ess sup
ζ

fδ(ζ)) (16)

Assume x(t) ∈ ∂ω̃1(t) on the interval I = (t1 − ε, t2 + ε).
This implies

hT x(t) + δ1(t) = 0, t ∈ I

It is no restriction to assume that δ1 is monotonic on [t1, t2].
By (16)

0 = hT x(t) + δ1(t) − hT x(t1) − δ1(t1)

≥ |δ1(t) − δ1(t1)| − |hT x(t) − hT x(t1)|
≥ (Lδ − |hT | · Lx)|t − t1| > 0.
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for t ∈ (t1, t2], which is a contradiction. This implies that

hT x(t) + δ1(t) moves strictly into either side of ∂ω̃1(t).

C. Gain scheduling

Let us consider the linear system

ẋ = Lx + γu (17)

with the following control law:

u(x) =

⎧⎪⎨
⎪⎩
−kT

1 x hT x > +1
−kT

0 x −1 < hT x < +1
−kT

−1x hT x < −1
(18)

We can see system (17)–(18) as a hybrid system (1) with

q ∈ {−1, 0, 1} and

fq(x) = Lqx = (L − γkT
q )x (19)

and

I ′1(x) =n(−hT x + 1), (20a)

I ′0(x) =n(−hT x − 1)n(hT x − 1) = n(|hT x| − 1),
(20b)

I ′−1(x) =n(hT x + 1). (20c)

The above closed loop hybrid system can be implemented

by using a scalar quantizer whose input is the scalar function

hT x and whose output is the gain of the state feedback.

In quantized systems the injection of external excitation

signals at the input of the quantizer is a typical solution

for attenuating the distortion [11]. Thus, we consider to

inject a scalar excitation signal at the quantizer input and,

for the analysis of the system, it will be useful to apply

the averaging theory presented so far. Actually we have the

problem that, by adding the signal δ at the quantizer input

(hT x) then we will get δ inside the absolute value of (20b)

and that does not fit our model (5). It is not difficult to show

that

n(|hT x| − 1) = n(hT x − 1) − n(hT x + 1)

and so doing we can reformulate our hybrid system in the

following way:

I1(x) =n(−hT x + 1), (21a)

I0(x) =n(hT x − 1), (21b)

I−1(x) =n(hT x + 1), (21c)

with

f1(x) =L1x, (22a)

f0(x) =L0x, (22b)

f−1(x) =(L−1 − L0)x. (22c)

Now if we add the excitation signal δ at the signal hT x,

we will get

Ĩ1(x, δ) =n(−hT x + 1 − δ), (23a)

Ĩ0(x, δ) =n(hT x − 1 + δ), (23b)

Ĩ−1(x, δ) =n(hT x + 1 + δ). (23c)

0 0.5 1 1.5 2 2.5 3 3.5
−4

−2

0

2
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8

0 0.5 1 1.5 2 2.5 3 3.5
−4

−2

0

2

4

6

8

p = 2

p = 0.5

x1

x2

x1

x2

Fig. 2. State space plane of the excited hybrid system (solid) and the
averaged (dotted) system with a sawtooth excitation signal with Mδ = 1
and p = 2 (top diagram) and p = 0.5 (bottom diagram).

Let us consider a double integrator:

L =
[
0 1
0 0

]
, γ =

[
0
1

]
, (24)

with

hT =
[
1 1

]
. (25)

We would like to stabilize the system by using the control

law (18) with

k1 =
[
7.5
6.5

]
, k0 =

[
25
20

]
, k−1 =

[
3.25
3

]
. (26)

In this case

L1 =
[

0 1
−7.5 −6.5

]
, L0 =

[
0 1

−25 −20

]

L−1 =
[

0 1
−3.25 −3

]
. (27)

We added a sawtooth excitation signal with amplitude

Mδ = 1 and period p = 2 and p = 0.5 as explained above

and Figure 2 and Figure 3 report the behaviors of the hybrid

excited system and the averaged system.

D. Sliding induced by external excitation

Let us consider the previous example with different

matrices Lq:

L1 =
[

0 1
−38 −2

]
, L0 =

[
0 1

−26 −2

]
, L−1 =

[
0 1
−5 −1

]
.

The chosen set of matrices does not allow sliding modes

when there is no external excitation signal (see Figure 4

and Figure 5 top diagrams) but if we add a sawtooth signal

δ of amplitude Mδ = 1 and period p = 0.1 then the solution

exists only over a finite time interval t ∈ [0, tf ) with tf �
1.9 (see Figure 4 and Figure 5 middle diagrams). Note that

if we consider a solution in the sense of Filippov for t > tf

we would have sliding. On the other hand, if we increase

the frequency to p = 0.05 this behavior disappears (see

Figure 4 and Figure 5 bottom diagrams).
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Fig. 3. Output hT x of the excited hybrid system (solid) and the averaged
(dotted) system with a sawtooth excitation signal with Mδ = 1 and p = 2
(top diagram) and p = 0.5 (bottom diagram).
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Fig. 4. Output hT x (solid) of the gain scheduling example without
external excitation signal (top diagram), with a sawtooth excitation signal
(dashed) with p = 0.1 (middle diagram) p = 0.05 (bottom diagram).

V. CONCLUSIONS

We have shown that a class of hybrid systems when

forced with high frequency excitation signals can be ap-

proximated by an averaged system. The approximation is

shown to be of order of the maximum repetition time

interval of the excitation signal. We also indicated with

an example that for sufficiently high excitation frequency,

the existence of solution seems to be guaranteed even if

it does not exist for low frequencies. Hybrid systems with

excitation hence suggest interesting classes of systems for

further well-posedness studies.The result can be exploited

both for analysis and control design purposes, motivated by

realistic engineering applications.
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tering in relay feedback systems,” IEEE Transactions on Automatic
Control, vol. 47, no. 9, pp. 1414–1423, 2002.

[6] B. Armstrong-Helouvry, P. Dupont, and C. C. de Wit, “A survey
of models, analysis tools and compensation methods for control of
machines with friction,” Automatica, vol. 30, no. 7, pp. 1083–1138,
1994.

[7] B. Sedghi, “Control design of hybrid systems via dehybridization,”
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