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Abstract—The paper presents the derivation of Yule-Walker
equations for the nonlinear autoregressive model NAR(p) of a
time-series. The proposed method allows for easy calculation of
parameters of the model. In the determined equations, higher
order statistics are used, instead of autocovariances. For the
linear autoregressive model AR(p), the standard Yule-Walker
equations are directly based on autocovariances of time-series,
or equivalently autocorrelations if the equations are rescaled.
Unfortunately, it does not apply for nonlinear model. The authors
show a compact matrix notation of Yule-Walker equations for
the nonlinear autoregressive model with the nonlinearity of
polynomial type of degree 2, with the use of higher order statistics
up to 4th order, and numerical examples for electromyography
signals for different hand movements.

Index Terms—nonlinear model, autoregressive model, Yule-
Walker equations, time-series, higher order statistics

I. INTRODUCTION

The autoregressive (AR) model, all together with the mov-
ing average (MA) process, are the most basic model types,
very well-known and widely used in statistics and signal pro-
cessing. The linear prediction problem is overall the estimation
of the linear model parameters by minimizing mean square
error. Generally, the Yule-Walker equations [7], [21] leads to
parameter estimation problem using the covariance matrix of
the time-series. If the time-series is stationary in wide sense,
then the linear prediction is based only on covariance function
of the signal, ie. the covariance matrix is Toeplitz now, and
can be efficiently solved by the Schur algorithm [3], [4] and
the Levinson algorithm [1], [10].

The mostly known, specific, nonlinear autoregressive mod-
els are the following two: the threshold autoregressive (TAR)
model [5], [19] and the smooth transition autoregressive
(STAR) model [18], [20]. Mainly, they are used for financial
forecasting to predict the dynamics of various market indices.
The first one, TAR model is piecewise linear with switching
of model parameter values. The switching behaviour depends
on achieving the threshold value by a time-series. The second
– STAR model – can be explained as a ’smooth’ version of
TAR model, with switch in parameter values controlled by a

known distribution function. In fact, the TAR and the STAR
models are nonlinear only because of the use of the parameter
values switching.

In scientific literature, we can also find other attempts to
derive nonlinear autoregressive models for particular cases,
as in [13] for a very specific and simple nonlinear case,
but the paper focuses rather on increasing the accuracy of
minimizing a model error. The separate group provide kernel
autoregressive models [8], [9], for which we have the freedom
for choosing a mapping function, but but at the same time we
do not get a simple interpretation of the dependency based
on second- and higher-order statistics [14], as it is for the
proposed nonlinear method.

The nonlinear autoregressive (NAR) model, proposed in the
paper, drops the standard assumptions of Gaussian innovations
[2] for linear autoregressive (AR) model. The assumption that
holds in our paper is zero-mean independent innovations, ie.
independence of innovation at a given time instance from
its previous lags. In literature, eg. [6], we can find also
considerations about the first-order nonlinear autoregressive
model with dependent innovations, but the present paper focus
strictly on independent innovations. The formal details about
necessary assumptions can be found in the following Sections
I-A, II and III.

A. Assumptions and denotations

Let {yt}t be a discrete time-series. Without loss of general-
ization, we can fix the time instance t and operate only on the
delays. Then, we assume that the time-series has mean value
Eyt−i = hi and finite variance E(yt−i − Eyt−i)2 = ci;i <∞
for each i ≤ t. We also introduce the following denotations
for second- and higher-order statistics (HOS) [14]:

hik = Eyt−iyt−k, (1)

hijk = Eyt−iyt−jyt−k, (2)

hijkl = Eyt−iyt−jyt−kyt−l. (3)
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The order of indices i, j, k, l is not important due to the alter-
nation of multiplication of first- and second-degree expressions
as yt−i and yt−iyt−j . On the other hand, the autocovariances
can be expressed by those statistics:

ci;k = Cov(yt−i; yt−k)

= Eyt−iyt−k − Eyt−iEyt−k (4)
= hik − hihk,

cij;k = Cov(yt−iyt−j ; yt−k)

= Eyt−iyt−jyt−k − Eyt−iyt−jEyt−k (5)
= hijk − hijhk,

cij;kl = Cov(yt−iyt−j ; yt−kyt−l)

= Eyt−iyt−jyt−kyt−l − Eyt−iyt−jEyt−kyt−l (6)
= hijkl − hijhkl.

The autocovariances for different permutations of indices are
also equal, but with respect to the division for the initial
expressions. And so, the symmetry for second-order autoco-
variance is ci;k = ck;i, third-order cij;k = cji;k = ck;ij = ck;ji

and fourth-order cij;kl = cji;kl = ckl;ij = ckl;ji = cij;lk =
cji;lk = clk;ij = clk;ji.

Let {εt}t be discrete-time white noise, i.e. the random
variables εt, εt−1, εt−2, . . . are independent and identically
distributed (i.i.d.) through time, with zero mean Eεt−i = 0
for each i, and autocovariance is E(εt−iεt−k) = σ2δik for
each i, k, where δik is Kronecker delta and σ <∞.

If we additionally assume that time-series {yt}t is weak-
sense stationary, then of course it is possible to simplify the
proposed denotations. We resign intentionally from simpli-
fying the indices in order to maintain the transparent struc-
ture of the ’flat’ matrix {2×2}H of higher order statistics,
which will be presented in the Section III. In spite of all,
for stationary time-series we need to remember that mean
value is constant hi = hi+∆ and we have the following
types of equalities for second-order autocovariances ci;k =
ci+∆;k+∆, third-order cij;k = ci+∆,j+∆;k+∆, and fourth-order
cij;kl = ci+∆,j+∆;k+∆,l+∆. The same apply for second and
higher order statistics: hik = hi+∆,k+∆, third-order hijk =
hi+∆,j+∆,k+∆, and fourth-order hijkl = hi+∆,j+∆,k+∆,l+∆.

II. LINEAR AUTOREGRESSIVE MODEL

Assume that discrete time-series {yt}t is weakly stationary.
We consider the linear autoregressive model, denoted AR(p),
of order p:

yt =

p∑
k=1

akyt−k + εt, (7)

where innovations {εt}t are zero mean white noise. One of
the methods of finding the model parameters a1, a2, . . . , ap is
based on Yule-Walker equations. For p unknown parameters
ak, k = 1, 2, . . . , p, we construct p equations in the following
way. The first equation is obtained by multiplying the equa-
tion (7) by term yt−1, and next by taking the expected value

of both sides of the equation. The second – by multiplying
the equation (7) by term yt−2 and taking the expected value.
And so on, till the last equation received by multiplying (7)
by yt−p, and as previously by taking the expected value. The
Yule-Walker equations are as follows:

Eytyt−1 = a1Eyt−1yt−1 + · · ·+ apEyt−pyt−1

Eytyt−2 = a1Eyt−1yt−2 + · · ·+ apEyt−pyt−2

Eytyt−3 = a1Eyt−1yt−3 + · · ·+ apEyt−pyt−3

...
Eytyt−p = a1Eyt−1yt−p + · · ·+ apEyt−pyt−p

(8)

The expressions Eεtyt−k = 0 for all k = 1, . . . , p, be-
cause of independence of innovation εt from previous ones
εt−1, εt−2 . . . and zero-mean assumption. The additional
equation can be formed

h00 = a1h10 + · · ·+ aphp0 + σ2. (9)

Denotating the second-order statistics hik as in (1), we obtain
the following matrix form of Yule-Walker equations:

h01

h02

h03

...
h0p

 =


h11 . . . hp1

h12 . . . hp2

h13 . . . hp3

...
. . .

...
h1p . . . hpp




a1

a2

a3

...
ap

 . (10)

The problem of finding model parameters a = [a1, . . . , ap]
T

is completely defined by second-order statistics 1⊕1H =
[hik]i,k=1,...,p:

2h = 1⊕1H · a. (11)

By replacing the theoretical expected value in the term hik =
Eyt−iyt−k with its empirical analog – sample second-order
statistic (in signal processing also called sample autocorrela-
tion), e.g. ĥik = (

∑N
t=0 yt−iyt−k)/(N +1), the problem (11)

transforms to
2ĥ = 1⊕1Ĥ · â, (12)

where all elements of vector 2ĥ and matrix 1⊕1Ĥ can be easily
estimated using the measured data.

III. NONLINEAR AUTOREGRESSIVE MODEL

Now, we will consider the nonlinear autoregressive model,
denoted NAR(p), of order p with polynomial nonlinearity type
of degree 2:

yt =

p∑
k=1

akyt−k +

p∑
k1=1

∑
k26k1

ak1k2
yt−k1

yt−k2
+ εt. (13)

This NAR(p) is the simplest case of more general nonlinear
autoregressive model of polynomial degree n of the form:

yt =

p∑
k=1

akyt−k +

p∑
k1=1

∑
k26k1

ak1k2
yt−k1

yt−k2
+ · · ·+

+

p∑
k1=1

∑
k26k1

· · ·
∑

kn6kn−1

ak1k2...kn
yt−k1

yt−k2
· · · yt−kn

+ εt.

(14)
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All previously introduced assumptions stay.

The NAR(p) model uses p parameters {ak}, k = 1, . . . , p in
the linear part and additional p(p+1)/2 parameters {ak1k2

} in
nonlinear part, where k1 = 1, . . . , p and k2 = 1, . . . , k1, due
to reduce the repeating nonlinear terms. This gives in total

Np = p+ p(p+ 1)/2 (15)

unknown coefficients of the nonlinear model.

To construct the Yule-Walker equations for NAR(p) model,
we act in the same way as in the linear case. Firstly, we
multiply the equation (13) from both sides by linear terms
yt−k for k = 1, . . . , p and then by nonlinear yt−k1yt−k2 for
k1 = 1, . . . , p and k2 = 1, . . . , k1. And next, we put expected
value on all p+ p(p+ 1)/2 equations, what gives:



linear terms:
Eytyt−1 =

∑
akEyt−kyt−1 +

∑∑
aijEyt−iyt−jyt−1

Eytyt−2 =
∑
akEyt−kyt−2 +

∑∑
aijEyt−iyt−jyt−2

Eytyt−3 =
∑
akEyt−kyt−3 +

∑∑
aijEyt−iyt−jyt−3

...
Eytyt−p =

∑
akEyt−kyt−p +

∑∑
aijEyt−iyt−jyt−p

nonlinear terms:
Eytyt−1yt−1 =∑
akEyt−kyt−1yt−1 +

∑∑
aijEyt−iyt−jyt−1yt−1

Eytyt−2yt−1 =∑
akEyt−kyt−2yt−1 +

∑∑
aijEyt−iyt−jyt−2yt−1

Eytyt−2yt−2 =∑
akEyt−kyt−2yt−2 +

∑∑
aijEyt−iyt−jyt−2yt−2

...
Eytyt−pyt−p =∑
akEyt−kyt−pyt−p +

∑∑
aijEyt−iyt−jyt−pyt−p

(16)

Analogously to linear model, the expressions Eεtyt−k dis-
appear and also Eεtyt−iyt−j = 0 for all i, j = 1, . . . , p,
due to independence of innovation εt from random variables
zt,i,j = yt−iyt−j . The set of equations (16) can be extended
by the additional equation

h00 =
∑

akhk0 +
∑∑

aijhij0 + σ2, (17)

obtained by multiplying (13) by yt and taking expected value.
Using a matrix notation of the Yule-Walker equations (16)

for NAR(p) model, we get:

h01

h02

h03

...
h0p

h011

h021

h022

h031

h032

h033

...
h0pp



=



h11 . . . hp1 h111h211 . . . hpp1

h12 . . . hp2 h112h212 . . . hpp2

h13 . . . hp3 h113h213 . . . hpp3

...
. . .

...
...

...
. . .

...
h1p . . . hpp h11ph21p . . . hppp

h111 . . . hp11 h1111h2111 . . . hpp11

h121 . . . hp21 h1121h2121 . . . hpp21

h122 . . . hp22 h1122h2122 . . . hpp22

h131 . . . hp31 h1131h2131 . . . hpp31

h132 . . . hp32 h1132h2132 . . . hpp32

h133 . . . hp33 h1133h2133 . . . hpp33

...
. . .

...
...

...
. . .

...
h1pp . . . hppp h11pph21pp . . . hpppp





a1

a2

a3

...
ap

a11

a21

a22

a31

a32

a33

...
app


(18)

The generalized (block, multi-indexed) higher order statis-
tics matrix {2×2}H , shown in equation (18), consist of 4 main
submatrices

{2×2}H =

[
1⊕1H 1⊕2H
2⊕1H 2⊕2H

]
. (19)

The generalized multidimensional matrix {2×2}H was modi-
fied to be a NpxNp ’flat’ matrix in the following way. The
second-order statistics matrix

1⊕1H = [hik]i,k=1,...,p. (20)

remains as it is. The three-dimensional matrices, containing
of third-order statistics [hijk]i,j,k=1,...,p, are rewritten slice by
slice in the ’flat’ way in a row

1⊕2H = [1⊕2Hk]k=1,...,p (21)

or in a column

2⊕1H = col[2⊕1Hi]i=1,...,p. (22)

The four-dimensional matrix

2⊕2H = [hijkl]i,j,k,l=1,...,p (23)

with fourth-order statistics is transformed to block-matrix of
matrices, and hence, the ’flat’ form is as follows

{2×2}H =


1⊕1H 1⊕2H1 . . . 1⊕2Hp
2⊕1H1

2⊕2H1,1 . . . 2⊕2Hp,1

...
...

. . .
...

2⊕1Hp
2⊕2H1,p . . . 2⊕2Hp,p

 . (24)

Thereafter, the parameters a = [a1, . . . , ap, a11, . . . , app]
T of

the nonlinear model must fulfill the matrix equation

2,3h ={2×2} H · a. (25)

The parameter estimates â can be found by solving the
equation

2,3ĥ = {2×2}Ĥ · â, (26)

where theoretical statistics of second-, third- and fourth-order
are replaced by the sample statistics.
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Fig. 1. Generalized higher order statistics matrices {2×2}Ĥ for exemplary electromyographic signals from database [15] for 6 different hand movements.

IV. PRACTICAL EXAMPLE

In the following section, we will show that extending
the basic linear autoregressive model to the nonlinear one,
presented in Section III, allows to calculate model estimates
based on not only second-order covariances, but on higher-
order statistics {2×2}H . The numerical example was chosen
to portray that nonlinear versions of Yule-Walker equations,
or NAR models, can be more useful comparing to linear ones,
thanks to information hidden in and represented by third- and
fourth-order statistics.

The database used to illustrate higher-order statistics is
a data set of (EMG) electromyographic signals [15]–[17],
openly available at UCI Machine Learning Repository [12].
The data set consist of 6 basic hand movements, such as daily
hand grasps: a) Spherical: for holding spherical tools, b) Tip:
for holding small tools, c) Palmar: for grasping with palm
facing the object, d) Lateral: for holding thin, flat objects,
e) Cylindrical: for holding cylindrical tools, f) Hook: for
supporting a heavy load.

The higher order statistics for EMG signals for 6 different
hand movements show that second-order covariance matrices
1⊕1H are almost always nearly identity matrices (see Fig. 1),

ie. there is no significant distinction between movement classes
if only second-order statistics are considered. On the other
hand, the third- 1⊕2H = [2⊕1H]T and fourth-order 2⊕2H
statistics are more discriminative, what for example can have
crucial impact on movement recognition based on AR(p)
estimates â.

V. CONCLUSION

The proposed methodology of constructing Yule-Walker
equations for nonlinear autoregressive model NAR(p) was
inspired by linear case AR(p) using directly autocovariance
matrix for stationary zero-mean time-series. The Yule-Walker
equations for NAR(p) model with polynomial type nonlinear-
ity of degree 2, defined in equation (13), brings the problem
to solving the matrix equation (26).

The main advantage of the proposed approach using higher-
order statistics, comparing to kernel methods [8], [9], is clear
and easy to interpret correspondence between signal properties
and significant values in generalised block-matrix {2×2}H
– for details see [14]. On the other hand, this method is
redundant for example for stationary Gaussian signals, for
which there is no additional information hidden in higher-
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order statistics, therefore for such signals it is justified to use
the linear AR model.

There are possible further generalizations for NAR(p) model
with polynomial type nonlinearity of degree n, because each
particular matrix i⊕kH can be decomposed to row or col-
umn of its own slices and therefor the generalized matrix
{n×n}H could be also presented in ’flat’ way. However, more
interesting would be investigation on the possible calculations
improvements as the famous LevinsonDurbin recursion for
linear autoregressive model, using the Toeplitz property of
autocovariance matrix.
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