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1. Introduction

In industrial control and automation, there is a growing interest
in wireless networks. Control architectures consisting of wireless
sensor and actuator nodes, connected over a shared network,
are appealing due to high flexibility and low installation cost.
Distributed control over wireless networks also plays a major role
in multi-vehicle coordination. However, control over networks
with limited resources is a challenging task. In this paper, we
show that event-based scheduling is beneficial for cooperative
networked control and can facilitate the efficient usage of the
shared resources.

The cooperative control task under consideration is average
consensus, which recently has received major attention in the
field of multi-agent coordination (Olfati-Saber, Fax, & Murray,
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2007). The consensus problem for single-integrator agents is
addressed in Olfati-Saber and Murray (2004). Distributed control
laws for networks with and without communication delays are
introduced and convergence is analyzed for directed networks
with fixed or switching topology, as well as for undirected
networks with communication delays. A consensus protocol for
double-integrator agents is proposed in Ren and Atkins (2007).
In practice, such control laws have to be implemented on digital
platforms. The traditional method is time-scheduled periodic
sampling, i.e.,, measurements are taken periodically according
to a constant sampling period and the controllers are updated
synchronously. The time-scheduled implementation of single-
integrator consensus protocols is investigated in Xie, Liu, Wang,
and Jia (2009) and conditions on the sampling period for asymp-
totic convergence are derived. The case of double-integrator agents
is addressed in Ren and Cao (2008).

For single feedback control loops, event-based sampling is
proposed in Astrém and Bernhardsson (1999) as an alternative to
traditional periodic sampling. The idea is to sample and update
the controller only when measurements cross certain thresholds,
which outperforms periodic sampling for the first-order system
under consideration. An event-based PID controller is proposed
and tested on a double-tank process in Arzén (1999); the CPU
usage is reduced while the performance degradation is only
minor. In Miskowicz (2006) it is shown that for some wireless
sensor networks, event-based sampling is superior to periodic
sampling in terms of the number of samples per time unit.
In Tabuada (2007), a triggering mechanism for state feedback
controllers is presented. An event is triggered and the control
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law re-computed whenever the norm of the measurement error,
i.e,, the difference between the plant’s current state and the state
at the last sampling instant, crosses a threshold depending on
the norm of the current state. A certain level of performance is
guaranteed, while the inter-execution times are lower bounded
by a positive constant. This idea is further developed in Mazo and
Cao (2011) and Mazo and Tabuada (2011) for control over wireless
sensor and actuator networks, where a decentralized event-based
implementation of centralized nonlinear controllers is presented.
In Wang and Lemmon (2008) and Wang and Lemmon (2011),
events are related to measurement broadcasts in distributed
networked control systems. Each subsystem decides itself when
to broadcast state measurements and the local controllers are
updated whenever they receive new state measurements. The
proposed triggering mechanism guarantees asymptotic stability of
the entire system. Both Mazo and Tabuada (2011) and Wang and
Lemmon (2011) suggest that event-based scheduling reduces the
number of transmissions required in networked control systems.
First steps towards a comprehensive theory for event-driven
systems are taken in Heemels, Sandee, and Van Den Bosch (2008).

Event-based scheduling seems to be suitable for coopera-
tive control of multi-agent systems over networks with lim-
ited resources. However, only a few studies have considered this
topic. An event-based implementation of the consensus proto-
col is developed in Dimarogonas, Frazzoli, and Johansson (2012).
Following the ideas of Tabuada (2007), the authors present a de-
centralized event-based strategy to determine the control updates
such that the overall system reaches average consensus asymptoti-
cally. In Dimarogonas et al. (2012), all agents continuously monitor
their neighbors’ states. Each agent updates its control law not only
atits own event-times, but also whenever one of its neighbors trig-
gers an event.

In this paper, we address the limitations of these prior ap-
proaches and propose a novel, event-based control strategy for
multi-agent average consensus. In contrast to Dimarogonas et al.
(2012), measurement broadcasts are scheduled in an event-based
fashion, such that continuous monitoring of the neighbors’ states
is no longer required. Each agent updates its controller whenever
it sends or receives a new measurement. This idea is inspired by
Wang and Lemmon (2011), but a major difference is that in Wang
and Lemmon (2011) each subsystem is aware of the equilibrium
state to be stabilized. In the present work, the consensus point is
unknown to the agents, which makes it more challenging to find
suitable trigger conditions. Each agent decides based on the differ-
ence of its current state and its latest broadcast state, called the
measurement error, when it has to send a new value. An event is
triggered whenever the norm of the measurement error crosses
a certain threshold. We propose trigger functions that realize ex-
ponentially decreasing thresholds in time with nonnegative offset.
This guarantees asymptotic convergence to average consensus or
to a ball centered at the consensus. Furthermore, we derive a posi-
tive lower bound on the inter-event times. We analyze time-delays
in the communication links in networks of single-integrators and
show that the approach is valid in this case. We also propose an
event-based implementation of the double-integrator consensus
protocol, following the same ideas. Time-delays in networks of
double-integrators can be treated analogously and are therefore
not discussed in this paper. Comparisons to the maximum sam-
pling periods for periodic control (see Ren & Cao, 2008; Xie et al.,
2009) show the benefit of our strategy in terms of load on the com-
munication medium.

The rest of the paper is organized as follows. Section 2 con-
tains mathematical preliminaries as well as the problem state-
ment. Section 3 presents the novel event-based control strategy
for single-integrator agents. Communication links subject to
time-delays are addressed in Section 4. Section 5 discusses double-
integrator agents. In Section 6, the novel control strategy is illus-
trated in numerical examples and compared to the time-scheduled
approach. Section 7 concludes this paper.

2. Background and problem statement

This section reviews some facts from algebraic graph theory
(Godsil & Royle, 2001), and describes the problem setup.

2.1. Preliminaries

In the following, || - || denotes the Euclidean norm for vectors
and the induced 2-norm for matrices, respectively.

A scalar continuous function y (r) defined for r € [0, af is said
to belong to class X if it is strictly increasing and y (0) = 0, and
it is said to belong to class K if it is defined for all r > 0 and
y(r) — ocoasr — oo.Ascalar continuous function 8(r, s) defined
forr € [0,a[,s € [0, oo[ is said to belong to class X £ if for each
fixed s it belongs to class X and for each fixed r it is decreasing in
sand B(r,s) — 0ass — oo, cf,, Khalil (2002).

A dynamical system with state x and input w is called input-to-
state stable (ISS) if there exist a class K £ function 8 and a class
J function y such that ||x(t)[| < B(Ix(0)I, ) + ¥ (lwyo,e(]lo0) for
all t > 0, see Sontag (1989). For a signal w, || - ||» denotes the
Loo-norm: || wioslloc = SUPg<¢<s |w(t)||. For linear systems, ISS
is equivalent to global asymptotic stability of the unforced system
(Khalil, 2002).

2.2. Graph theory

Consider a graph § = {V, &} consisting of a set of vertices
(or nodes) V = {1,..., N} and edges &. If there is an edge (i, j)
between nodes i and j, then i and j are called adjacent, i.e.,, § =
{(,j) € V xV : i, jadjacent}. 4 is called undirected if (i, j) €
& & (j,i) € &.The adjacency matrix A is defined by a; = 1 if
i and j are adjacent and a; = 0 otherwise. A path fromitojisa
sequence of distinct nodes, starting from i and ending with j, such
that each pair of consecutive nodes is adjacent. If there is a path
from i to j, then i and j are called connected. If all pairs of nodes
in § are connected, then § is called connected. The distance d(i, j)
between two nodes is the number of edges of the shortest path
fromi toj. The diameter d of § is the maximum distance d(i, j) over
all pairs of nodes. The degree matrix D of § is the diagonal matrix
with elements d; equal to the cardinality of node i's neighbor set
Ni = {j € V : (i,j) € &}. The Laplacian matrix L of 4 is defined
as L = D — A. For undirected graphs, L is symmetric and positive
semi-definite, i.e., L = LT > 0. The row sums of L are zero. Thus,
the vector of ones 1 is an eigenvector corresponding to eigenvalue
A1(4) = 0,i.e,, L1 = 0.For connected graphs, L has exactly one zero
eigenvalue, and the eigenvalues can be listed in increasing order
0=Xx1(%) < A2(8) < --- < An(9). The second eigenvalue A,(4)
is called the algebraic connectivity.

The next lemma follows from the results in Olfati-Saber and
Murray (2004) and will be useful in the remainder of this paper.

Lemma 2.1. Suppose L is the Laplacian of an undirected, connected
graph §. Then, for all t > 0 and all vectors v € RN with 1Tv = 0, it
holds that

le™v]| < e @ o]l
Proof. See Seyboth, Dimarogonas, and Johansson (2011). O

2.3. Problem statement

We consider multi-agent systems consisting of N agents and
a communication graph §. We impose the following standing
assumption.
Assumption 2.2. Graph § is undirected and connected.
Sections 3 and 4 address single-integrator agents
xl(t) - ui(t)’ i€ v5 (1)
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dynamics

Fig. 1. Single agent in the event-based control setup.

where x;(t) € R is the state and u;(t) € R its control input. In
Section 5, double-integrator agents

»‘q(r)=[8 5}xf(t>+[‘1)]ui<t), iev. (2)

are covered, where x;(t) = [£(t), ¢;i(t)]" € R2. In both cases, the
agents are coordinated in a distributed fashion, i.e., u;(t) depends
only on information from neighbors j € N;. The communication
over each edge may be subject to a constant time-delay A > 0.

Each agent consists of a controller and dynamics as shown
in Fig. 1. The controller of agent i monitors its own state x;(t)
continuously. Based on local information, it decides when to
broadcast its current state over the network. The latest broadcast
state of agent i given by Xi(t) = x(t).t € [t t;, [, where
té, t{ , ... is the sequence of event times of agent i. Whenever agent
i transmits its state or receives a new state value from one of its
neighbors, it re-computes its control u; immediately.

Problem. Find a triggering rule that determines, based on local
information, when agent i has to trigger and broadcast a new state
value to its neighbors, such that all agents’ states converge to the
average of their initial conditions.

3. Single-integrator agents

In this section, it is assumed that there is no time-delay in
the communication, i.e., A = 0. With the stack vectors x =
[X1,...,xy]T and u = [uy, ..., uy]", the multi-agent system (1)
can be written as x(t) = u(t), x(0) = xo € RN. Recall that the
continuous distributed control law

w(6) = = (x(0) — %(0)) (3)
JeN;
globally asymptotically solves the average consensus problem,

ie,xi(t) - 1/N) ., x(0) foralli € Vast — oo, see Olfati-
Saber and Murray (2004). The closed-loop system can be written

as x(t) = —Lx(t). We propose the event-based implementation of

(3), given by

() = — Y _(Ri(t) = {(D)), (4)
JeN;

or in stack vector form u(t) = —LX(t). Note that agent i does not

use its true state x;(t) but the last broadcast value X;(t). Otherwise
u(t) might have nonzero average and the agents would not reach
average consensus.

The novel triggering strategy works as follows. We define a
trigger function f;(-) for each agent which takes values in R and
depends on local information only, i.e., on time t and the true
and broadcast states x;(t) and X;(t), respectively. In general it is
conceivable that fi(-) also depends on the neighbors’ broadcast
states X;(t), j € N;, but this is not pursued here. An event for agent
i is triggered as soon as the trigger condition

fi (f, X,’(l’), &I(t)) >0 (5)
is fulfilled. Consequently, the sequence of event-times 0 < t§ <
fi = t; < ... for agent i is defined iteratively as t,‘;H =

inf {t : t > t}, fi(t, x(t), %(t)) > 0}, where ¢ is the first instant

when (5) is fulfilled. The problem formulated in Section 2 is to
find a suitable f;(-), such that the closed-loop system does not
exhibit Zeno behavior (Johansson, Egerstedt, Lygeros, & Sastry,
1999), i.e., there is no trajectory with an infinite number of events
in finite time, and reaches average consensus.

Foreachi € vV andt > 0, we define the measurement error
ei(t) = X(t) — x;(t). With e = [eq, ..., en]", the closed-loop
system is described by

x(t) = —LX(t) = —L(x(t) + e(t)). (6)
Let a(t) = (1/N)17x(t) be the average of all states. The derivative
ofa(t) is a(t) = —(1/N)1Tu(t) = 0 since u(t) = LX(t) has zero
average, i.e., 17u(t) = 0. Thus, a(t) = a(0) = aforallt > 0 and
the state x(t) can be decomposed according to x(t) = al + 4(t),
where §(t) is the disagreement vector of the multi-agent system,
i.e., 178(t) = 0, following the notation of Olfati-Saber and Murray
(2004).

Remark 3.1. From Lemma 2.1 it follows that the rate of con-
vergence for (1) with (3) is at least 1,(%), because ||5(t)|] =
[l exp(—=Lt)6(0)|] < exp(—A2(4)t)[|6(0)]. This has also been
shown in Olfati-Saber and Murray (2004) using Lyapunov meth-
ods.

The original idea of event-based control in Astrém and Bern-
hardsson (1999) is to trigger an event and close the feedback loop
whenever the state deviates from the equilibrium and crosses a
predefined threshold cy, say. Applied to the present problem, this
yields the trigger condition |e;(t)| > co, i.e., fi(ei(t)) = |ei(t)| — co.
Here, we also consider more general time-dependent functions
fi(t, ei(t)) = |ej(t)| — h;(t) with thresholds h;(t) : RBL — RT of
the form h;(t) = co+c; exp(—at). The behavior of the closed-loop
system is characterized in the following theorem.

Theorem 3.2. Consider the multi-agent system (1) with control law
(4). Suppose the trigger function is given by
filt, ei(t)) = le(t)] — (co + cre™") 7)

with constants cg > 0andc; > 0,co+c¢; > 0,and 0 < @ < X5(4).
Then, for all initial conditions x, € RY, the closed-loop system does
not exhibit Zeno behavior. Moreover, the disagreement vector § of
the closed-loop system converges to a ball centered at the origin with
radius

r = |ILIvNco/A2(§). (8)

Proof. From (6) and 8(t) = x(t) — al, it follows that S(t) =
—L&(t) — Le(t) and therefore

t
8(t) =eM8(0) — / e M9 Le(s)ds. 9)
0

The disagreement vector is bounded by ||5(t)| < | exp(—Lt)

SO + fot |l exp(—L(t — s))Le(s)||ds. Since Le(t) has zero average,
Lemma 2.1 can be applied, i.e.,

t
8] < e™"2|8(0)]| + f e 29 Le(s) | ds, (10)
0

where X, = Xy(4). Since ||Le(t)|| < ||L|lle(t)|| and the trigger
condition enforces |e;(t)| < cg + c1 exp(—at), it follows that

18] < e ™2 8(0)]
t
+ ||L||\FN/ e 29 (¢o + cre7%%)ds
0

= et (||6(0)|| - ||L||\/ﬁ<)% n ;chi a))

_wt ILIVNer ILIVNeo
+e + .
)\.2 — )\.2
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,‘7_
Fig. 2. Solution of the implicit equation for t.

In order to exclude Zeno behavior, we show that the inter-event
times are lower-bounded by a positive constant 7, say. Assume that
i triggers at time t* > 0. Then e;(t*) = 0 and f;(t*, e;(t*)) < O.
Between two events the time-derivative of e;(t) is given by é;(t) =
—x;(t) = —u;(t) and thus

t

)] 5/ us(5)] ds (12)
t*

for t between t* and the next event time. Observe that

[uiO] < lu®l = L&) +e®) ] = [ILE(E) + e(®)]]
=< [ILIF AN =+ lle)1D)

= 1L (18O +VN(co + cre™)) (13)

for alli € V. Inequality (13) with (11) gives an upper bound on
agent i’s control input. Using that, we derive a lower bound 7 (t*)
ontheinter-event interval, i.e., the time before f; crosses zero again.
Two different cases are considered (¢y # 0 and cg = 0):

Case 1 Assume ¢y # 0. From (11) follows that ||§(t)|| < [16(0)| +
(||L||Wc]) /(}\z—a)+(||LI|«/IVCo> /%, = 3forallt > 0,and with

(13) (] = I (5 +vNico + <)
positive constants. With (12) it follows that |e;(t)| < (t — t*)u for
t > t* and before the next event time. The next event is triggered as
soon as (7) crosses zero, which does not happen before |e;(t)| = co,
and thus not before (t — t*)ii = c,. Thus, a lower bound on the
inter-event times is given by 7 (t*) = ¢o/1i. This bound holds for all
event times t* and all agents i.

= 1, where § and 1 are

Case 2 Assume ¢y = 0. Then inequality (13) with (11) yields
an upper bound on u;(t) which depends on t*, ie., |u(t)] <
exp(—At*)k; + exp(—at*)k, for positive constants k; = ||L||
18(0)|| and ky = |IL||~/Nci (14 |ILIl/ (A2 — ). With (12), it follows
that

e = (72 ki + ek ) (¢ — 1), (14)

The next event will not be triggered before |e;(t)| = c; exp(—at).
Thus, a lower bound on the inter-event intervals is given by T =
t — t* that solves the equation [exp((a — Ay)t™)k; + k]t =
c1exp(—at). For < A, the term in brackets is upper bounded
by ki + k, and lower bounded by k,. For all t* > 0 the solutions
T(t*) are greater or equal to t given by (k; + k,)t = ¢ exp(—a71),
which is strictly positive, as illustrated in Fig. 2.

Since there is a positive lower bound t on the inter-event
intervals in both cases, there are no accumulation points in the
event sequences so Zeno behavior is excluded and t diverges. Since
the measurement error e(t) is piecewise continuous and the right-
hand side of (6) is globally Lipschitz in &, existence and uniqueness
of the solution is guaranteed (Khalil, 2002). Consequently ||5(t)||
converges exponentially to a ball with radius (8)ast — oco. O

Remark 3.3. The graph § is assumed to be undirected in this
paper. However, it is easy to see that Theorem 3.2 extends to
strongly connected and balanced directed graphs.

Remark 3.4. The disagreement dynamics are asymptotically sta-
ble for e(t) = 0 and therefore ISS w.r.t. e(t). This is consistent with
Theorem 3.2, which shows that ||8(t)|| is bounded for bounded
|le(t)|| and converges to zero asymptotically if e(t) vanishes. The
ISS property is exploited in the analysis of the delayed case in
Section 4.

Remark 3.5. The radius (8) can be chosen arbitrarily small since it
scales with cp. For c; = 0 the density of events is independent of
co for large t, but for small t the inter-event intervals are short if ¢y
is small. This motivates why c¢; > 0 might be suitable in practice.

Remark 3.6. Theorem 3.2 states that (8) vanishes for ¢, = 0. The
closed-loop system reaches average consensus asymptotically in
this case. The condition @ < X,(4) is intuitive, because the states
should converge faster than the threshold decreases. However, if
co > 0, a positive lower bound on the inter-event times exists
fora > Ay(4) as well, cf,, Case 1 in the proof of Theorem 3.2.
Consequently, knowledge of A,(4) is not necessary if c; > O.

The class of time-dependent trigger functions can be extended to
fi(t, ei(t)) = |eij(t)| — h;(t) with suitable thresholds h; : Rg — RT
as stated in the next corollary.

Corollary 3.7. Consider the multi-agent system (1) with control law
(4). Suppose the trigger function is given by

fi(t, ei(t)) = lei()] — hi(t)

with c;exp(—at) < hi(t) < cyexp(—at),i € V,where0 < ¢ < ¢,
and 0 < a < Xy(9). Then, for all initial conditions x, € RN,
the closed-loop system does not exhibit Zeno behavior. Moreover, the
disagreement vector § of the closed-loop system converges to the
origin asymptotically.

Proof. With |e(t)| < VNey exp(—at) and (10), it follows that
18O < exp(=220180)11 + (ILIVNe, ) /(32 — ) exp(—art) -
exp(—Aat)). Assume that agent i triggers at time t* > 0.
Analogously to (14), the following bound is obtained: |e;(t)| <
(exp(—Azt")ky + exp(—at*)k;)(t — t*) for t > t* with k; =
ILI118(0)[ and k, = [IL]v/Ney(1 4 [ILIl /(A2 — @)). The next event
is not triggered before |e;(t)| = c;exp(—at). The same argument
as in the proof of Theorem 3.2 shows that the inter-event times
are lower-bounded by the positive solution 7 of (k; + k)T =
cgexp(—art). O

Remark 3.8. Corollary 3.7 enlarges the class of suitable trigger
functions compared to Theorem 3.2 and shows that the agents do
not need to share the same trigger function. However, in order to
choose an appropriate trigger function, each agent has to be aware
of X,(4). This assumption can partly be avoided by the following
observation. In Mohar (1991), a lower bound on X, (4) in terms of
N and diameter d is given: A;($) > 4/(Nd) > 4/(N(N — 1)).If
« is chosen smaller than this bound, then obviously o < X,($).
Therefore it is sufficient that each agent is aware of N or an upper
bound thereof. A more advanced method to resolve this issue is
through distributed estimation of A,(4), see Yang et al. (2010).
In Aragues, Shi, Dimarogonas, Sagues, and Johansson (2012) it is
indicated how such an estimation can be used in order to adapt
the trigger condition.
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4. Single-integrator agents with delayed communication

From a practical point of view, the effect of communication
delays needs to be accounted for. The consensus problem in
presence of delays and with continuous feedback is treated, e.g., in
Bliman and Ferrari-Trecate (2008), Lestas and Vinnicombe (2007),
Miinz, Papachristodoulou, and Allgéwer (2010) and Olfati-Saber
and Murray (2004). We show that the event-based control strategy
is still applicable in this case since the closed-loop system with
delays is still ISS. Assuming a delay of A > 0 in all channels, the
control law is u(t) = —Lx(t — A) and we obtain

5(t) = —L8(t — A) — Le(t — A). (15)
The ISS concept has been extended to time-delay systems in Pepe

and Jiang (2006), Teel (1998) and is therefore suitable for the
analysis of this system.

Lemma 4.1. System (15) is ISS w.r.t. e(t — A), ie., there exist
functions B € XL and y € K such that forallt > 0,

181 < BUBSOIL ) + ¥ (lef—ai-arllc) - (16)
ifandonlyif 0 < A < /(2An(§)).

Proof. From Pepe and Jiang (2006, Proposition 2.5), it follows that
(15) is ISS w.r.t. e(t — A) if and only if the unforced system
8(t) = —L3(t — A) is asymptotically stable. This is the case if
andonly if 0 < A < m/(2AN(4)), see Olfati-Saber et al. (2007,
Theorem 4). O

Since an upper bound on |e(t)|l is enforced by the triggering
mechanism, it follows from Lemma 4.1 that ||§(t)|| converges to
a ball around the origin if A € [0, 7/(2AN(%))[. This ball scales
with the bound on ||e(t)||. It remains to show that Zeno behavior is
excluded. For the sake of simplicity we restrict ourselves to trigger
functions with constant threshold.

Theorem 4.2. Consider the multi-agent system (1) with control law
ut) = —Lx(t — A), A € [0,7/(2An())[. Suppose the trigger
function is given by fi(t, e;(t)) = |ej(t)] — co with cg > 0. Then,
for all initial conditions x(0) = xo € RN, x(s) = 0 fors € [—A, 0],
the closed-loop system does not exhibit Zeno behavior. Moreover, the
disagreement vector § of the closed-loop system converges to a ball
centered at the origin.

Proof. From Lemma 4.1, we know that there exist 8 € XL
and y € X such that (16) holds. The event-based control
strategy assures [le[—ar—a[lloc < «mco. The control |u;(t)|
is therefore bounded by |u;(t)] < Ju(®)] = |L5(t —

2) + tet — A = (1€ = D +VNeo) =L

(ﬂ (18]I, 0) + y (Wco) + Wco) — fiforallt > 0.Analo-

gously to the proof of Theorem 3.2, it can be concluded that the
inter-event times are lower bounded by T = ¢y/ii. The disagree-

ment §(t) converges to a ball with radiusr = y (Wc()). O

Remark 4.3. A similar result can be obtained for more general
trigger functions such as (7), as long as « is picked smaller than the
rate of convergence of the time-delay system 8(t) = —L§(t — A).
Estimates of the convergence rate and also the ISS gains 8 and y in
(16) may be obtained using an LMI approach Fridman, Dambrine,
and Yeganefar (2008).

Remark 4.4. In Bliman and Ferrari-Trecate (2008) and Lestas and
Vinnicombe (2007), it is shown that in the continuous feedback
case consensus is achieved under non-identical symmetric delays
Aj = Aj < Ainthelinks, if A < 7 /(2Ay(4)). Using the results
from Pepe and Jiang (2006), it can be concluded that the disagree-
ment dynamics are ISS with respect to additive disturbances in this
case. Consequently, the assumption of identical delays in the links
can be relaxed to A; = Aj; < A.

5. Double-integrator agents

In this section, agents with double-integrator dynamics (2) are
addressed. We assume that there is no time-delay, i.e., A = 0. We
consider the distributed control law proposed in Ren and Atkins
(2007) given by

w(t) = — Y (&) — &) — Y (&) = (1) (17)
JeN; JeN;
with ;> 0. With stack vectors £ = [£,...,&]" and ¢ =

[¢1, ..., ¢n]T, the closed-loop dynamics can be written as

[/l s <[22

In Ren and Atkins (2007) it is shown that consensus is reached
asymptotically if and only if I" has exactly two zero eigenvalues
and all the other eigenvalues have negative real parts. In case of
undirected connected 4, all eigenvalues of L are real, and thus,
by Ren and Atkins (2007, Lemma 4.2), it follows that consensus
is achieved for all u > 0. Define the initial averages a =
1/NY iy &(0) and b = 1/N )", £i(0). Then, for alli € V, it
holds that &;(t) — a + bt, ¢i(t) - bast — oo.

Analogously to the single-integrator case, the broadcast states
are described by &(t) = &(tl) and &i(t) = ¢(th), t € [t], tiil,
with corresponding stack vectors é and g: . As event-based imple-
mentation of (17), we propose

u(t) = —L (é(r) +diag(t —t), ...t — ) + ué(r)) . (18)

Note that this control law incorporates a first-order hold instead of
azero-order hold for the position &;(t), i.e., &(t) is approximated by
&(t) + (t — t)¢i(t) in the interval ¢ € [t}, t} . ,[. In order to express
(18) in terms of (17), we define the measurement errors

e (t) = E(t) + diag(t —t, ..., t —ti)Z(t) — &(t)
ec(t) = (1) — £ (o).

This yields u(t) = —L(&(t) + ug(t) + es(t) + pe,(t)). Conse-
quently, the closed-loop dynamics of the second-order multi-agent
system (2) with control law (18) are

HROHRHIT ©

with overall measurement error e = [ef ey ]". It can easily be ver-
ified that the average velocity b of all agents remains constant over
time and the average position is a + bt. Thus, the state vector can
be decomposed as

E(t) = al + bt1+ 8:(t)
c(t) = b1+ 8.(¢), (20)

such that the disagreement vectors J¢ (t) and 8, () have zero aver-
age, i.e, 178¢(t) = 178, (t) = 0. From (19) and (20) we obtain

S| [ar+bt146; 00 b1
=[] Heo=[5)
With § = [8{6;]" the disagreement dynamics are

5(t) =rIs@) — [(L’ (L)} e(t). (21)

The following lemma is a counterpart to Lemma 2.1 for the double-
integrator case, based on the results in Ren and Atkins (2007).
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Lemma 5.1. Suppose L is the Laplacian of an undirected, connected
graph § and p > 0. Then, for all t > 0 and all vectors v € R?N with
[1707Jv = [0"17]v = 0, it holds that

le" ]| < ef My |y,

where cy = |[V7||IV].

Proof. The matrix I" has exactly two zero eigenvalues and only
one linearly independent eigenvector corresponding to the zero
eigenvalues (Ren & Atkins, 2007). The eigenvalues are denoted by
0 = M(I') = (") > Re(A3(IM)) > --- = Re(Apn(I). It
can be verified that v; = 1/+/N[170"]" and v, = 1/+/N[0717]"
are a left eigenvector and generalized left eigenvector of I', re-
spectively, corresponding to eigenvalue zero. Using a non-singular
matrix V consisting of v{, v], and normalized eigenvectors v/ cor-
responding to eigenvalues A;(I"),j = 3,...,2N, matrix I" can
be transformed to Jordan normal form J. Therefore it holds that
exp(I't) = V- Texp(Jt)V. It can be verified that || exp(I't)v|| <
exp(Re(s(INOV-IIVIIv] for all vectors v € RN with
[170"Jv = [0"1"]v = 0, since viv = Vv =0. O

Theorem 5.2. Consider the multi-agent system (2) with control law
(18). Suppose the trigger function is given by

filt, eci(t), e i() = H [ ,fg;fg)} H — (co+1e™) (22)

with constants c¢ > Oand c; > 0,c0 + ¢ > 0, and 0 <
a < |Re(A3(I"))|. Then, for all initial conditions &, ¢y € RN,
the closed-loop system does not exhibit Zeno behavior. Moreover, the
disagreement vector § of the closed-loop system converges to a ball
centered at the origin with radius

r = cocv ILIV2N/[Re(hs ()] (23)

Proof. The analytical solution of the disagreement dynamics (21)
is given by

t
5(t) = el8(0) — / el =9 [(L’ (L)} e(s)ds.
0

Lemma 5.1 yields | 8(t)|| < exp(Re(A3(I")t)cy[|8(0)]| + cvv/2]IL|
fot exp(Re(A3(I"))(t — s))|le(s)||ds. The trigger function enforces
le®|l < ~/N(co + ¢; exp(—at)) and therefore

I8 < efe® ey |15(0)|
t
+cyV2N|IL| / RO (0 4 07 di
0

< ky + kye% 4 kgeRetst (24)

with positive constants k; = cocyv/2N||L||/|IRe(A3(I"))|, ka =
cicyv/2N|IL||I/IRe(A3(I")) + al, k3 = cy||8(0)|. Note that
Re(A3(IN)) < —a < 0.

Next, Zeno behavior is excluded. Assume that i triggers at time
t* > 0. Observe that for t > t* and before the next event time,

ec.i(t) <ft é.i(s)
weei(© ||| = S ||| #Ec.i(s)

In this interval the time-derivative of e(t) is given by

e(t) = é§(t) - Z(t) —¢(t) _| e®
e (6) —pu(t) —pu(t)
and therefore [le(t)| < 1/ulle(®)] + pu(®)]. The control

u(t) is bounded by flu(t) = [I[-L — uLls(t) — [LLle(D)] =
V1+2ILIISOI + ~2ILllle()]l. With (24) and [le(t)]] <

t
dSS/ lle(s)llds.
t*

o006

Fig. 3. Communication graph § of the multi-agent system.

VN(co+cr exp(—at)), u(®)|| < /14 p?||L[|(ki+k; exp(—at)+
ks exp(Re(As(IM))t)) + «/WHLH(CO + ¢y exp(—at)). Therefore it

holds that [e()l| = (1/s¢ + uv2ILI ) VN(co + c1 exp(—at)) +

uy/ 14 2Ll (k1 4 kyexp(—at) + ks exp(Re(A3(I"))t)). Two
different cases are considered (co # 0 and ¢y = 0):

Case 1 Assume ¢y # 0.Then ||é(t)]| < (l/u + /LﬁIILH) VN(co+

c1) + w+/1+ u2||L||(ky + ko + k3) = C = const. An upper bound
on the measurement error for t > t* and before the next event
time is given by [|[ez.i(t). e (D1 || <[5 [é(s)llds < (¢ — £*)C.
The next event will not be triggered before (22) crosses zero, and
not before (t — t*)C = ¢p. Thus, a positive lower bound 7 on the
inter-event times is given by T = ¢ /C.

Case 2 Assume ¢cg = 0. Then k; = 0 and it holds that

e < (1/M + uﬁllLII) VNeyexp(—at®) + puy/1+ p2|L|
(ky exp(—at™) + ksexp(Re(A3(I7))t*)). Denote this bound by
C(t*) since it depends on t*. The measurement error is bounded
by Il[ec.i(t), wec i O < [Llle®llds < (¢t — )C(t").
The next event will not be triggered before (22) crosses zero,
i.e., before (t — t*)C(t*) = c; exp(—at). This leads to the implicit
equation ¢y exp(—at) = u+/1+ u?||L||(ky+ks exp((Re(A3(I"))+
at Nt + <1/,lL + ,uﬁ||L||> Ncit for T = t — t*. Note that

Re(A3(I")) + @ < 0 by assumption. By the same graphical
argument as in the proof of Theorem 3.2, it can be concluded that
a lower bound on the inter-event times is given by the positive
constant t, which solves the implicit equation for t* = 0.

Since there is a positive lower bound on the inter-event times
in both cases, Zeno behavior of the closed-loop system is excluded.
Since e(t) is piecewise continuous and the right-hand side of
(21) is globally Lipschitz in §, existence and uniqueness of the
solution is guaranteed (Khalil, 2002). Therefore ||5(t)| converges
exponentially to the ball ||§]| < k; ast — o0, which is equivalent
to(23). O

6. Simulations

In this section, the theoretical results are illustrated through
simulations and the event-based control strategy is compared to
traditional time-scheduled control. A network of five agents with
g as in Fig. 3 is considered.

6.1. Single-integrator agents

The initial conditions x(0) are chosen such that all modes of
the system are excited, i.e., if v; is the normalized eigenvector
corresponding to A;(4),i € 7V, the initial conditions are set to
x(0) = (v2+---4vn)/|lva+- - -+ vn]|. Fig. 4 shows the simulation
result for trigger functions (7). As expected, the states converge
close to consensus. Due to the exponentially decreasing threshold
in (7), the events are not dense for small times t. Note that ¢y can
be chosen arbitrarily small without increasing the event density.

The effectiveness of event-based control becomes clear in the
following comparison. In the time-scheduled implementation of
(3), the controllers are updated periodically according to a constant
sampling period g, i.e.,
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Fig.4. Simulation result for single-integrator agents and trigger functions (7) with
cp = 0.0001, ¢; = 0.2499, and o = 0.91,($) = 0.46609.
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Fig. 5. Comparison of time-scheduled control with constant sampling period t; =
0.35 and event-scheduled control.

u(t) = _Lx(tk)s t e [tks tk+1[ (25)

where ty 1 = t; + 75, to = 0. In Xie et al. (2009) it is shown that
(25) globally asymptotically solves the average consensus prob-
lem if and only if 0 < 73 < 2/An(4). We set t; = 0.35, which
yields similar performance to event-based control. Fig. 5 shows a
comparison of the control strategies. The average inter-event time
over all agents and over time resulting from event-based control is
Tavg = 1.2139, which is more than three times higher than ;. The
maximum stabilizing sampling period is 2/Ayn(4) = 0.4796. Con-
sequently, time-scheduled control with average sampling period
Tavg Would render the system unstable. This illustrates the superi-
ority of event-based control in terms of load on the communication
medium.

6.2. Double-integrator agents

Simulation results for double-integrator agents with random
initial conditions are shown in Fig. 6. The results are consistent
with Theorem 5.2, as the overall system converges to a small region
around the average consensus in both velocity and position coordi-
nates. The time-scheduled implementation of (17) is investigated
in Ren and Cao (2008). If (17) is updated periodically with con-
stant sampling period s, then, for given w, consensus is achieved
if and only if &, < min{2u, 2/(uAn(4))}. Analogously to the

3

&i(t)

—

= 0 1
&

-0.5

5w XX ES X-X Tox XX % XX

430 XXX XK XK KRR KK K XX XX - XXX *

é 3 xx XX XRX XX XX XK XK XX R

2 2%x - x XX XX XXX KKK XK XX - XX XK X% - - -

© 18- % XX X X % XX XX XX XX XXN

0 5 10 15

time £

Fig. 6. Simulation result for double-integrator agents and trigger functions (22)
with ¢g = 0.0001, c; = 0.2499, @ = 0.9|Re(A3(I"))| = 0.4669, and p = 2.

single-integrator case, numerical examples show that the average
sampling period resulting from event-based control is significantly
bigger than the maximum stabilizing sampling period for time-
scheduled control. In the present example, the average sampling
period is T,yg = 0.7874, while 2/(uiyn($)) = 0.2398. Thus, event-
based control also outperforms time-scheduled control in terms of
network load for the double-integrator case.

7. Conclusions

In this article, a novel event-based control strategy for dis-
tributed multi-agent coordination is proposed. Each agent decides
based on local information, mainly on the difference between its
actual state and its latest broadcast state, when a new measure-
ment has to be transmitted over the network. Time-dependent
trigger conditions with exponentially decreasing thresholds on the
measurement errors guarantee asymptotic convergence to average
consensus, while Zeno behavior is excluded. Small non-vanishing
thresholds help to cope with numerical problems or measurement
noise, while the convergence to an arbitrarily small region around
the consensus point is guaranteed. The proposed strategy extends
to networks subject to time-delays as well as groups of double-
integrator agents. The effectiveness is illustrated in simulations, in-
cluding comparisons to traditional time-scheduled control, which
demonstrate the superiority of the novel approach in terms of load
on the communication medium.

Future work will address networks with time-varying topolo-
gies and study the effects of disturbances acting on individual
agents.
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