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Distributed Event-Based Control
for Interconnected Linear Systems

María Guinaldo, Dimos V. Dimarogonas, Daniel Lehmann
and Karl H. Johansson

7.1 Introduction

One way to study the control properties of large-scale systems is to consider that the
plant is composed of interconnected systems. The motivation for this assumption is
twofold. On the one hand, physical plants are made up of parts, which can be identified
as different subsystems, and this structural feature can facilitate the control design.
On the other hand, even if the system does not present these physical boundaries,
it might be useful to decompose it into mathematical subsystems which have no
obvious physical identity. These terms of physical and mathematical decomposition
were first introduced by Siljak [236], and since then they have been used in the design
of centralized and distributed controllers.

Practical examples of these large-scale systems are power or traffic networks, in
which a centralized solution would require a very powerful network and an accurate
model of all the interconnections, and moreover, it would be not robust against
node failures, for example. The design of decentralized controllers for this kind of
systems is a suboptimal solution since it does not take into account the interconnection
between the subsystems. Hence, there is a natural interest in applying distributed
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control to these scenarios, and, if the communication between the local controllers
is event triggered, get better usage of the network.

There are some recent contributions on distributed event-triggered control [51, 54,
88, 166, 232, 259]. The basic idea in all these contributions is that each subsystem
decides when to transmit the measurements based only on local information. In the
most common implementations, an event is triggered when the error of the system
exceeds a tolerable bound.

This chapter discusses different control strategies of distributed event-based
controls for linear interconnected systems. Part of these results are based on the
contributions [88, 89, 91]. Section 7.2 provides the mathematical tools used through
the chapter as well as the problem statement. Different distributed trigger functions
are examined in Sect. 7.3: deadband control, Lyapunov approaches, and exponential
bounds, which is the proposal of the authors to the studied problem. Other exist-
ing strategies such as, for example, small-gain approaches [51] do not prevent from
Zeno behavior, and a constant threshold-like condition must be included to overcome
this issue, yielding similar results to the deadband control from the analytical point
of view.

The analytical results are provided in Sect. 7.4. Two aspects are analyzed: Con-
vergence to the equilibria and inter-event times, and the results are illustrated with an
example in Sect. 7.4.3. The extension to discrete-time systems is given in Sect. 7.5.

Model-based approaches has been shown to help to reduce communication in
centralized schemes (see Chaps. 4 and 6). Thus, one of the first improvements pre-
sented in Sect. 7.6 consists of a distributed model-based approach combined with
event-triggered communications. However, reducing the number of transmissions in
the network is not the only aspect that matters in distributed systems. For instance,
the frequency of the control update allows a more efficient usage of the limited
resources of embedded microprocessors. Whereas in a single control loop the reduc-
tion of communication usually implies the reduction of actuator updates, this does not
necessary hold in distributed systems, especially if the number of neighbors is large.
Thus, the second improvement presented in Sect. 7.6 accounts for both phenomena
in the design.

7.2 Background and Problem Statement

7.2.1 Matrix and Perturbations Analysis

Let A ∈ C
n×n be a complex matrix, and let us define

κ(A) = ‖A‖‖A−1‖ (0 /∈ λ(A)), (7.1)

αmax (A) = max{IRe(λ) : λ ∈ λ(A)}, (7.2)

http://dx.doi.org/10.1007/978-3-319-21299-9_4
http://dx.doi.org/10.1007/978-3-319-21299-9_6
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The matrix exponential of A is defined as eAt = ∑∞
k=0

(At)k

k! . Through this chapter,
the stability of the system is proved using some hints that are summarized in this
section to bound ‖eAt‖.

7.2.1.1 Bounding the Matrix Exponential

In [245] various norms are discussed to bound the exponential. Three are of particular
interest:

• Log norms If μmax (A) is defined as μmax (A) = max{μ : μ ∈ λ((A + A∗)/2)},
then

‖eAt‖ ≤ eμmax (A)t .

An interesting corollary can be inferred from the property above. Let Y be an
invertible matrix such that A = Y BY −1. It follows that

‖eAt‖ = ‖Y eBt Y −1‖ ≤ κ(Y )eμmax (B)t , (7.3)

where κ(Y ) is defined according to (7.1).
Thus, assume that A is diagonalizable, i.e., there exists a matrix D, where
D = diag(λi (A)), and a matrix V of eigenvectors, such that A = V DV −1.
From (7.3), it holds that

‖eAt‖ ≤ κ(V )eμmax (D)t = κ(V )eαmax (D)t = κ(V )eαmax (A)t , (7.4)

where αmax (A) is defined according to (7.2).
• Jordan canonical form Recall the Jordan decomposition theorem which states

that if A ∈ C
n×n , then there exists an invertible matrix X ∈ C

n×n such that

X−1 AX = Jm1(λ1) × · · · × Jm1(λp) ≡ J,

where

Jk ≡ Jmk (λk) =

⎛

⎜
⎜
⎜
⎜
⎝

λk 1 0

0 λk
. . .

...
. . . 1

0 0 . . . λk

⎞

⎟
⎟
⎟
⎟
⎠

∈ C
mk×mk , k = 1, . . . , p.

By taking norms and defining m = max{m1, . . . , m p}, it can be proved that [245]

‖eAt‖ ≤ m · κ(X)eαmax (A)t max
0≤r≤m−1

tr

r ! . (7.5)
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Note that X may not be unique but it is assumed that it is chosen such that κ(X)

is minimized.
• Schur decomposition bound The Schur decomposition states that there exists a

unitary Q ∈ C
n×n such that

Q∗ AQ = D + N , (7.6)

where D is the diagonal matrix D = diag(λi ) and N is strictly upper triangular.
The following upper bound can be obtained [245]

‖eAt‖ ≤ eαmax (A)t
n−1∑

k=0

‖Nt‖2

k! . (7.7)

7.2.1.2 Perturbation Bounds

The second aspect that is brought up in this section is the existing perturbation
analysis on the eigenvalues and the matrix exponential, i.e., how the eigenvalues and
the bound on the matrix exponential change when A is perturbed by E .

The following lemma merges classical results from [17, 44] to study the pertur-
bation of the eigenvalues of a matrix A in two situations: when A is diagonalizable
and when it is not.

Lemma 7.1 If A is diagonalizable (V −1 AV = D), the eigenvalues λ̃i of A + E
satisfy

min
λ j ∈λ(A)

|λ̃i − λ j | ≤ κ(V )‖E‖. (7.8)

Otherwise, Let consider the Schur decomposition (7.6). Then for λ̃i ∈ λ(A + E)

min
λ j ∈λ(A)

|λ̃i − λ j | ≤ max{θ1, θ
1/n
1 }, (7.9)

where θ1 = ‖E‖∑n−1
k=0 ‖N‖k .

Finally, a result from semigroup theory (see [126]) states that if ‖eAt‖ ≤ ceβt for
some constants c and β, then

‖e(A+E)t‖ ≤ ce(β+c‖E‖)t . (7.10)

7.2.1.3 Perturbation Analysis and Matrix Powers

In discrete-time systems, the matrix exponential is replaced by the matrix power.
Thus, a bound on (A+E)p is required. We introduce the concept of Fréchet derivative
for this purpose.
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Definition 7.1 [108] Let A, E ∈ C
n×n . The Fréchet derivative of a matrix function

f at A in the direction of E is a linear operator L f that maps E to L f (A, E) such
that

f (A + E) − F(A) − L f (A, E) = O(‖E‖2),

for all E ∈ C
n×n . The Fréchet derivative may not exist, but if it does it is unique.

The following lemma characterize the Fréchet derivative of the function X p.

Lemma 7.2 [3] Let A, E ∈ C
n×n. If L X p (A, E) denotes the Fréchet derivative of

X p at A in the direction of E, then

L X p (A, E) =
p−1∑

j=0

Ap−1− j E A j .

This means that the p power of A + E is

(A + E)p = Ap +
p−1∑

j=0

Ap−1− j E A j + O(‖E‖2).

Then, it is a logical consequence the following

‖(A + E)p‖ ≤ ‖Ap‖ + ‖
p−1∑

j=0

Ap−1− j E A j‖ + O(‖E‖2). (7.11)

7.2.2 Problem Statement

Consider a large-scale system that have been decomposed into Na linear
time-invariant subsystems. The dynamics of each subsystem is given by

ẋi (t) = Ai xi (t) + Bi ui (t) +
∑

j∈Ni

Hi j x j (t), ∀i = 1, . . . , Na (7.12)

where the set of “neighbors” of the subsystem i Ni is the set of subsystems that
directly drive agent i’s dynamics, and Hi j is the interaction term between agent i
and agent j , and Hi j 	= Hji might hold. The state xi of the i th agent has dimension
ni , ui is the mi -dimensional local control signal of agent i , and Ai , Bi , and Hi j are
matrices of appropriate dimensions.

In each node or subsystem, we can distinguish the dynamical part strictly speaking
and a microprocessor in charge of monitoring the plant state and computing the
control signal and the communication tasks (see Fig. 7.1).
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Subsystem i Microprocessor

Event
detector

Controller 

Receive TransmitµC 

Dynamics 

xb,i

ui(t)xi(t)

Fig. 7.1 Scheme of a node, consisting of a digital microcontroller (μC) and dynamics (left), and
block diagram of the tasks carried out by the microprocessor

Due to the limited bandwidth, the communication between subsystems is at
discrete instants of time. The dynamical coupling between subsystems makes it inter-
esting to have access to the state of neighboring agents to include this information
into the control law. Specifically, the agent i communicate with the set of agents in
its neighborhood Ni . The transmission occurs when an event is triggered. We denote
by {t i

k}∞k=0 the times at which an event is detected in the agent i , where t i
k < t i

k+1 for
all k.

The broadcast state is denoted by xb,i . The broadcast states are used in the control
law. Hence, the control signal is updated in a node, at least, when a new measurement
is transmitted and/or received. In particular, the control law for each subsystem is

ui (t) = Ki xb,i (t) +
∑

j∈Ni

Li j xb, j (t), ∀i = 1, . . . , Na (7.13)

where Ki is the feedback gain for the nominal subsystem i . We assume that Ai +Bi Ki

is Hurwitz. Li j is a set of decoupling gains.
Let us define the error εi (t) between the state and the latest broadcast state as

εi (t) = xb,i (t) − xi (t) = xi (t
i
k) − xi (t), t ∈ [t i

k, t i
k+1). (7.14)

Rewriting (7.12) in terms of εi (t) and the control law (7.13), we obtain

ẋi (t) = AK ,i xi (t) + Bi Kiεi (t) +
∑

j∈Ni

(
Δi j x j (t) + Bi Li jε j (t)

)
, (7.15)

where AK ,i = Ai + Bi Ki , and Δi j = Bi Li j + Hi j are the coupling terms. In general,
Δi j 	= 0 since the interconnections between the subsystems may be not well known,
there might be model uncertainties or the matrix Bi does not have full rank.

We also define

AK = diag(AK ,1, AK ,2, . . . , AK ,Na ) (7.16)

B = diag(B1, B2, . . . , BNa ) (7.17)
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K =

⎛

⎜
⎜
⎜
⎝

K1 L12 · · · L1Na

L21 K2 · · · L2Na
...

...
. . .

...

L N1 L N2 · · · KNa

⎞

⎟
⎟
⎟
⎠

(7.18)

Δ =

⎛

⎜
⎜
⎜
⎝

0 Δ12 · · · Δ1Na

Δ21 0 · · · Δ2Na
...

...
. . .

...

ΔNa1 ΔNa2 · · · 0

⎞

⎟
⎟
⎟
⎠

(7.19)

and the stack vectors
x = (xT

1 , xT
2 , . . . , xT

Na
)T (7.20)

ε = (εT
1 , εT

2 , . . . , εT
Na

)T (7.21)

as the state and error vectors of the overall system. Note that Hi j , Li j ,Δi j := 0 if

j /∈ Ni . Let also be n =
N∑

i=1
ni the state and error dimension.

The dynamics of the overall system is given by

ẋ(t) = (AK + Δ)x(t) + BK ε(t). (7.22)

As the broadcast states xb,i remain constant between consecutive events, the error
dynamics in each interval is given by

ε̇(t) = −(AK + Δ)x(t) − BK ε(t). (7.23)

The above definition allows to study the stability of the overall system. These equa-
tions are valid as long as the following three time instances are simultaneous: the
detection of the event, the transmission of the state xb,i from one node, and the
reception in all neighboring nodes. When delays and packet dropouts can occur in
the transmission, (7.22) and (7.23) do not generally hold. The extension to non-
reliable communications is given in Chap. 10.

7.3 Event-Based Control Strategy

The design of distributed trigger functions Fe,i to detect the occurrence of an event
must satisfy the following properties:

• Guarantee the stability of the subsystem, and hence, of the overall system.
• Depend on local information of agent i only, or at most, of the neighbors, and take

values in R.

http://dx.doi.org/10.1007/978-3-319-21299-9_10
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• Determine the sequence of local broadcasting times t i
k recursively by the

event-trigger function as t i
k+1 = inf{t : t > t i

k, Fe,i (t) > 0}.
• Ensure a lower bound for the inter-event times Tk,i = t i

k+1 − t i
k .

In Chap. 1, the existing strategies for event-based control have been presented. Some
of these approaches can be extended easily to distributed implementations. For
instance, trigger functions for deadband control are

Fe,i (t) = ‖εi (t)‖ − δi , δi > 0. (7.24)

The design can be simplified by setting δi = δ,∀i = 1, . . . Na . Large values of δ

allow reducing the number of events but degrades the performance. On the contrary,
small values of δ give better performance but the average inter-event time decreases
considerably. Moreover, this approach fails to ensure the asymptotic stability of the
system, as in the case of centralized schemes.

Lyapunov-based sampling approaches to distributed event-triggering have also
been studied. In this case, an event is enforced whenever

Fe,i (t) = ‖εi (t)‖ − σi‖xi (t)‖, 0 < σi < 1 (7.25)

crosses from negative to positive. The set of parameters σi is determined by imposing
that the Lyapunov function V = ∑Na

i=1 Vi (xi ) is locally positive definite and the time
derivative of the Lyapunov-candidate-function is locally negative definite. For linear
systems, the problem can be solved by solving a local LMI in each subsystem.
See [259] for details. The asymptotic convergence to the equilibrium is guaranteed
but a positive lower bound for the inter-event time may not be guaranteed when
approaching the desired equilibria [79, 259].

In this chapter, the properties of trigger functions of the form

Fe,i (t) = ‖εi (t)‖ − δ0,i − δ1,i e
−βi t , βi > 0 (7.26)

are studied, where δ0,i and δ1,i cannot be zero simultaneously. To simplify the
selection of parameters, we will consider that δ0,i = δ0, δ1,i = δ1, βi = β,

∀i = 1, . . . , Na .

Example 7.1 A trigger function (7.24) is depicted on Fig. 7.2a. The error is bounded
by the constant threshold δ0. Note that the error is reset after the occurrence of an
event and that the inter-event time is always positive, since the error cannot reach the
threshold again at the same time instance.
Trigger functions of the form (7.26) are represented on Fig. 7.2b. Note that the thresh-
old decreases with time and the error is bounded by δ0 + δ1 at t = 0 and by δ0 when
t → ∞. If δ0 = 0, this bound goes to zero when time increases and asymptotic
stability can be achieved. Finally, Fig. 7.2c shows the error bound when events are
enforced with (7.25).

http://dx.doi.org/10.1007/978-3-319-21299-9_1
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(a) (b) (c)

ttt

ε i
(t
)

ε i
(t
)

ε i
(t
)

Fig. 7.2 Error function (solid blue line) and error bound (dashed red line) for trigger functions a
(7.24), b (7.25), and c (7.26)

7.4 Performance Analysis

In this section, the stability properties of the system (7.12) are analyzed by using
some of the results presented in Sect. 7.2.1. First, we briefly discuss the concepts
of perfect and non-perfect decoupling that have some impact over the analytical
treatment of the problem. After that the results are compared with other triggering
mechanisms, and finally, this is also illustrated with a simulation example.

7.4.1 Perfect and Non-perfect Decoupling

If the decoupling gains Li j can be chosen such that the matching condition holds,
i.e., Δi j + Bi Li j = 0, (7.15) is transformed into

ẋi (t) = AK ,i xi (t) + Bi Kiεi (t) +
∑

j∈Ni

Bi Li jε j (t). (7.27)

Hence, this essentially assures the perfect decoupling of the subsystems and allows
to analyze their performance independently, since it holds that

xi (t) = eAK ,i t xi (0) +
∫ t

0
eAK ,i (t−s)

⎛

⎝Bi Kiεi (s) +
∑

j∈Ni

Bi Li jε j (s)

⎞

⎠ ds.

Then, if the error functions εi (s), ε j (s) are bounded according to the trigger function
(7.26), which are independent of the state, the convergence to the equilibrium only
depends on local properties, that is, on the eigenvalues of AK ,i . Because the feedback
gains Ki are designed so that AK ,i is Hurwitz, the stability of each subsystem, and
as a consequence, of the overall system, is guaranteed.
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However, the perfect decoupling is a quite restrictive condition, and in many situ-
ations cannot be achieved because the interconnections between the subsystems may
be not well known, there might be model uncertainties or the matrix Bi does not have
full rank. Therefore, in the following, we assume that, in general, the interconnection
terms Δi j 	= 0.

In (7.22) Δ can be seen as a perturbation to AK which influences the stability
of the overall system. We obviously need to impose some constraints to Δ. Before
doing this, the next assumption will facilitate the calculations in the following, but
the extension to defective matrices is achievable as discussed later in the section.

Assumption 7.1 We assume that AK ,i , i = 1, . . . , N is diagonalizable so that there
exists a matrix Di = diag(λk(AK ,i )) and an invertible matrix of eigenvectors Vi such
that AK ,i = Vi Di V −1

i .
The next lemma provides a bound for ‖Δ‖ that ensures that AK + Δ is Hurwitz.

Lemma 7.3 If κ(V )‖Δ‖ < |αmax (AK )| holds, the eigenvalues λ̃i of AK + Δ have
negative real part.

Proof According to the Bauer–Fike theorem (see (7.8) on p. 154), it follows that

min
λ j ∈λ(AK )

|λ̃i − λ j | ≤ κ(V )‖Δ‖.

Assume that λ̃i = α̃i + i β̃i and λ j = α j + iβ j . Then, it holds that

|λ̃i − λ j | =
√

(α̃i − α j )2 + (β̃i − β j )2 > |α̃i − α j |.

Because AK is Hurwitz, α j < 0,∀ j , and according to the definition of αmax (AK )

(7.2), then it yields |αmax (AK )| ≤ |α j |,∀ j . Moreover, if κ(V )‖Δ‖ < |αmax (AK )|,
κ(V )‖Δ‖ is also upper bounded by |α j |,∀ j . Thus, α̃i is negative, because if it was
positive

|α̃i − α j | = α̃i + |α j | > |α j | ≥ |αmax (AK )| > κ(V )‖Δ‖,

that would contradict the theorem of Bauer–Fike. Hence, α̃i is negative, and this
concludes the proof.

The previous result imposes a constraint over ‖Δ‖ to guarantee stability, and
hence, an additional assumption is required.

Assumption 7.2 The coupling terms Δi j are such that κ(V )‖Δ‖ < |αmax (AK )|
holds.

The following theorem states that if Assumptions 7.1 and 7.2 hold, the system (7.22)
with trigger functions defined as in (7.26) converges to a specified region around the
equilibrium point which, without loss of generality, is assumed to be (0, . . . , 0)T .
Moreover, if δ0 = 0 the convergence is asymptotical to the origin. The functions
(7.26) bound the errors ‖εi (t)‖ ≤ δ0 + δ1e−βt , since an event is triggered as soon as



7 Distributed Event-Based Control for Interconnected Linear Systems 159

the norm of εi (t) crosses the threshold δ0 + δ1e−βt . The proof can be found in
Appendix A.

Theorem 7.1 Consider the closed-loop system (7.22) and trigger functions of the
form (7.26), with 0 < β < |αmax (AK )| − κ(V )‖Δ‖. Then, if Assumptions 7.1 and
7.2 hold, for all initial conditions x(0) ∈ R

n, and t > 0, the state of the overall
system is upper bounded as follows:

‖x(t)‖ ≤κ(V )
( ‖BK‖√Naδ0|αmax (AK )|−κ(V )‖Δ‖ + e−(|αmax (AK )|−κ(V )‖Δ‖)t(‖x(0)‖−

‖BK‖√Na

(
δ0|αmax (AK )|−κ(V )‖Δ‖ + δ1|αmax (AK )|−κ(V )‖Δ‖−β

) )

+ e−βt ‖BK‖√Naδ1|αmax (AK )|−κ(V )‖Δ‖−β

)
. (7.28)

Furthermore, the inter-event times are lower bounded by

Tmin = δ0

k1 + k2 + k3
, (7.29)

where

k1 = κ(V )‖AK + Δ‖‖x(0)‖ (7.30)

k2 = ‖BK‖√Naδ1

(
κ(V )‖AK + Δ‖

|αmax (AK )| − κ(V )‖Δ‖ − β
+ 1

)

(7.31)

k3 = ‖BK‖√Naδ0

(
κ(V )‖AK + Δ‖

|αmax (AK )| − κ(V )‖Δ‖ + 1

)

. (7.32)

Remark 7.1 The results of Theorem 7.1 can be particularized to the perfect decou-
pling case. The state is upper bounded by

‖x(t)‖ ≤κ(V )
( ‖BK‖√Naδ0|αmax (AK )| + e−|αmax (AK )|t(‖x(0)‖−

‖BK‖√Na

(
δ0|αmax (AK )| + δ1|αmax (AK )|−β

))

+ e−βt ‖BK‖√Naδ1|αmax (AK )|−β

)
,

and the minimum inter-event times lower bounded by

δ0

κ(V )‖AK ‖‖x(0)‖ + ‖BK‖√Na

(
δ1

(
κ(V )‖AK ‖

|αmax (AK )|−β
+ 1

)
+ δ0

(
κ(V )‖AK ‖
|αmax (AK )| + 1

)) .

Thus, when the matching condition holds, the rate of convergence to the equilibrium
is faster and the minimum inter-event times larger.



160 M. Guinaldo et al.

Remark 7.2 If Assumption 7.1 does not hold, the results can be extended noting
that ‖eAK t‖ can be bounded by either using the Jordan Canonical form, and hence
(7.5) holds, or the Schur decomposition bound (7.7). In both cases the bound is
governed by the exponential of αmax (AK ), which is negative. Thus, the stability of
the system is guaranteed though the speed of convergence to the equilibria decreases.
Moreover, if AK is defective, then the restraint over Δ that guarantees that the
eigenvalues of AK +Δ have negative real part can be obtained from (7.9), enforcing
max{θ1, θ

1/n
1 } < |αmax (AK )|.

7.4.2 Comparison with Other Triggering Mechanisms

The results derived previously can be compared to the most frequently used event-
triggered control strategies. We also particularized the results for the case δ0 = 0,
which is interesting since yields asymptotic stability.

7.4.2.1 Deadband Control

In deadband control, an event is triggered whenever the state crosses some levels
defined by a constant. From the analytical point of view, this is equivalent to have
trigger functions (7.26) with δ1 = 0 and the error bounded by ‖εi (t)‖ ≤ δ0. Thus,
from Theorem 7.1 bound for the state is

‖x(t)‖ ≤κ(V )
( ‖BK‖√Naδ0|αmax (AK )|−κ(V )‖Δ‖ + e−(|αmax (AK )|−κ(V )‖Δ‖)t(‖x(0)‖−

‖BK‖√Na
δ0|αmax (AK )|−κ(V )‖Δ‖

))
,

and a lower bound for the inter-event time is

Tmin = δ0

k1 + k3
.

7.4.2.2 Pure Exponential Trigger Functions

A particular case of trigger functions (7.26) is when δ0 = 0. For this situation, the
state is upper bounded as

‖x(t)‖ ≤κ(V )
(

e−(|αmax (AK )|−κ(V )‖Δ‖)t(‖x(0)‖ − ‖BK‖√Naδ1|αmax (AK )|−κ(V )‖Δ‖−β

)

+ e−βt ‖BK‖√Naδ1|αmax (AK )|−κ(V )‖Δ‖−β

)
.

Note that ‖x(t)‖ → 0 when t → ∞.
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The expression that provides the solution of the minimum inter-event times is not
derived directly from (7.29), and is given by

(
k1
δ1

e(β−|αmax (AK )|)t∗ + k2
δ1

)
T = e−βT . (7.33)

The right-hand side of (7.33) is always positive. Moreover, for β < |αmax (AK )| the
left-hand side is strictly positive as well, and the term in brackets is upper bounded
by k2+k1

δ1
and lower bounded by k2/δ1, and this yields to a positive value of T for all

t∗ ≥ 0. The proof can be found in Appendix A.

7.4.2.3 Lyapunov-Based Sampling

In [257], the problem presented in this chapter is addressed with trigger functions
(7.25). The asymptotic stability of the system is guaranteed if there exists positive
definite matrices Pi , Qi such that

AT
K ,i Pi + Pi AK ,i ≤ −Qi

Wi =
∑

j∈Ni

||PjΔ j i ||2 ≤ λmin(Qi )

8(|Ni | + 1)
.

Moreover, the parameters are σi = √
αi/βi and must hold

0 < αi < λmin(Qi ) − (1 + |Ni |)δ − 2Wi

δ

βi = ‖Pi Bi Ki‖2

δ
+

∑

j∈Ni

2‖Pj B j Li j‖2

δ

δ < mini

{
λmin(Qi )

2(1 + |Ni |)

(

1 +
√

1 − 8(|Ni | + 1)Wi

λ2
min(Qi )

)}

.

Note that the number of constraints are larger and, hence, the design is more
complicated.

As far as the inter-execution times, there is now positive lower bound independent
of the state x(t) in [257]. Thus, it is unclear what happens when the system approaches
the origin. However, the existence of a positive lower bound is guaranteed in [239]
at least for the centralized case and linear systems.
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7.4.3 Simulation Example

7.4.3.1 System Description

In order to demonstrate the effectiveness of the event-based control strategy, let us
consider the system consisting of a collection of N inverted pendulums of mass m
and length l coupled by springs with rate k as in Fig. 7.3. This setup will be used
throughout this and Chap. 10.

The problem of coupled oscillators has numerous applications in such fields as
medicine, physics, or communications [53, 237], and the inverted pendulum is a
well-known control engineering problem. The inverted pendulums are physically
connected by springs and we desire to design control laws to reach the equilibrium
as well as to decouple the system. The state of a pendulum i is broadcast to its
neighbors in the chain at discrete times given by the communication strategy.

Each subsystem can be described as follows:

ẋi (t) =
(

0 1
g
l − ai k

ml2 0

)

xi (t) +
(

0
1

ml2

)

ui +
∑

j∈Ni

(
0 0

hi j k
ml2 0

)

x j (t)

where xi (t) = (
xi1(t) xi2(t)

)T is the state, ai is the number of springs connected
to the i th pendulum, and hi j = 1,∀ j ∈ Ni and 0 otherwise.

State-feedback gains and decoupling gains are designed so that the system is
perfectly decoupled, and each decoupled subsystem poles are at −1 and −2. This
yields the following control law:

ui (t) =
(
−3ml2 ai k − ml2

4

(
8 + 4g

l

))
xb,i (t) +

∑

j∈Ni

(−k 0
)

xb, j (t)

where xb,i (t) = (
xb,i1(t) xb,i2(t)

)T . In the following, the system parameters are set
to g = 10, m = 1, l = 2, and k = 5.

x1 x2 x3 xNa

Fig. 7.3 Scheme of the network of the inverted pendulums

http://dx.doi.org/10.1007/978-3-319-21299-9_10
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7.4.3.2 Performance and Comparison

The output of the system and the sequence of events for N = 4 and the same initial
conditions than in the previous example when the trigger function is defined as in
(7.26) with parameters δ0 = 0.02, δ1 = 0.5, and β = 0.8 are shown in Fig. 7.4.

The convergence of the system to a small region (δ0 = 0.02) around equilibrium is
guaranteed due to the time dependency in the trigger functions. The event generation
is shown in Fig. 7.4b. The system converges to zero with few events. Note that the
agent that generates the highest number of events is Agent 2 (in red) and this value is
24 over a period of 15 s. Table 7.1 compares the proposed event-triggered approach
to periodic control.

The bandwidth of the closed-loop subsystem is 0.8864 rad/s and the sampling
period should be between (0.1772, 0.3544) s, according to [74], i.e., (42, 85) trans-
missions in a 15 s time, whereas the value for the minimum and maximum inter-event
times are 0.1690 and 2.260, respectively. Furthermore, this comparison is even unfair
with the event-based approach, since once the system is around the equilibrium point,
the broadcasting periods take values around 1–2 s.

Observe also that the control signals are piecewise constant (Fig. 7.4c). They are
updated if an event is triggered by the agent or its neighbors.

Table 7.2 extends this study for a larger number of agents. Several simulations
were performed for different initial conditions for each value of Na . Minimum and
mean values of the inter-event times T i

k were calculated for the set of the simulations
with the same number of agents. We see that the broadcasting period remains almost
constant when the number of agents increases. Thus, the amount of communication
for the overall network grows linearly with Na .
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Fig. 7.4 Simulation results with trigger functions (7.26) with δ0 = 0.02, δ1 = 0.5, β = 0.8

Table 7.1 Comparison of time-triggered and event-triggered strategies

No. updates {T i
k }min (s) {T i

k }max (s)

Time-triggered (42, 85) 0.177 0.3544

Event-triggered 24 0.1690 2.260
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Table 7.2 Inter-event times for different N

N (s) 10 50 100 150 200

Trigger condition (7.26) {T i
k }min 0.053 0.031 0.015 0.019 0.009

{T i
k }mean 0.565 0.565 0.567 0.572 0.568

Trigger condition (7.24) {T i
k }min 0.008 0.005 0.004 0.002 0.001

{T i
k }mean 0.183 0.132 0.129 0.121 0.116

Trigger condition of [257] {T i
k }mean 0.115 0.118 0.115 0.118 0.118

Moreover, these results are compared to other event-trigger functions: (7.24) with
δ = 0.02, and (7.25). For this later case, the results are taken from [257]. We see
that trigger functions (7.26) can provide around five times larger broadcast periods.
For example, for a number of pendulums of Na = 100, trigger functions of the form
(7.26) give a mean broadcasting period of 0.567, whereas trigger functions of the
form (7.24) provide 0.129 and the result given in [257] is 0.115.

7.5 Extension to Discrete-Time Systems

7.5.1 System Description

The previous analysis considers that the state of the subsystems is monitored contin-
uously. However, in practice, most of the hardware platforms only provide periodical
implementations of the measurement and actuation tasks.

Hence, let us consider that each subsystem i is sampled at predefined instances of
time given by a sampling period Ts . The discrete-time dynamical equation describing
each subsystem is

xi (� + 1) = Ai xi (�) + Bi ui (�) +
∑

j∈Ni

Hi j x j (�). (7.34)

The control law is given by

ui (�) = Ki xb,i (�) +
∑

j∈Ni

Li j xb, j (�), (7.35)

where xb,i (�) is the last-broadcast state, Ki is the feedback gain, and Li j are the
decoupling gains for the discrete-time subsystem i . The error is defined again as the
difference between the last-broadcast state and the measured state. Thus,

εi (�) = xb,i (�) − xi (�), (7.36)
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and (7.34) can be rewritten in terms of the error εi (�) as

xi (� + 1) = AK ,i xi (�) + Bi Kiεi (�) +
∑

j∈Ni

Δi j x j (�) + Bi Li jε j (�), (7.37)

where AK ,i = Ai + Bi Ki and Δi j = Bi Li j + Hi j . Ki are designed so that all the
eigenvalues of AK ,i lie inside the unit circle.

If we define the block matrices AK, B, K , and Δ as in (7.16)–(7.19), and the
stack vectors x and e as in (7.20) and (7.21), respectively, then the overall system
dynamics is

x(� + 1) = (AK + Δ)x(�) + BK e(�). (7.38)

7.5.2 Discrete-Time Trigger Functions

Trigger functions of the form (7.26) are difficult to implement in digital platforms
since they involve a decaying exponential. Therefore, for discrete-time systems, we
propose the following functions

Fe,i (εi (�), �) = ‖εi (�)‖ − (δ0 + δ1β
�), 0 < β < 1 (7.39)

since they can be assimilated to (7.26) for discrete-time instances.
The instances of discrete time at which events are detected are denoted as �i

k and
are defined recursively as follows:

�i
k+1 = inf{� > �i

k, Fe,i (εi (�), �) ≥ 0}.

Example 7.2 Let us consider a trigger function Fe,i (εi (t), t) = ‖εi (t)‖ − (0.01 +
0.5e−0.8t ) in continuous time t , which bounds the error ‖εi (t)‖ ≤ (0.01+0.5e−0.8t ).
This bound is depicted in Fig. 7.5 (blue line). Assume that this system is sampled:

• With a sampling period Ts = 0.1.
• With a sampling period Ts = 0.2.

Trigger functions of the form (7.39) can be defined with the same values for δ0 and δ1
and with β = e−0.8Ts . This yields values β = 0.9231 and β = 0.8521, respectively.
The error bounds for both cases are shown in Fig. 7.5. Note that this bound is a
piecewise constant function and changes at the sampling time instances.

7.5.3 Stability Analysis

Theorem (7.1) sums up the stability results for the continuous time system. Equivalent
results can be derived for the discrete-time system (7.38).
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Fig. 7.5 Comparative of time-continuous (blue) and discrete-time (red) trigger functions, Ts = 0.1
(left), Ts = 0.2 (right)

However, a remark should be pointed out first. Whereas in continuous time the
state is monitored continuously and this ensures that the error εi (t) is strictly upper
bounded by δ0 + δ1e−βt , in discrete-time systems it might occur that for a given �,
‖εi (�)‖ < δ0 + δ1β

�, but ‖εi (� + 1)‖ > δ0 + δ1β
�+1, so that the error reached the

bound in the inter-sampling time.
In order to deal with this phenomenon, we state the following assumption.

Assumption 7.3 Fast sampling is assumed [109] so that events occur in all proba-
bility at the sampling times �. Hence, ‖εi (�

i
k)‖ ≈ δ0 + δ1β

�i
k for some � = �i

k .

The next theorem states that the system (7.38), when trigger functions (7.39) are
used, converges to a region around the origin, which depends on δ0.

The proof of the theorem can be found in Appendix A, being two the clues to fol-
low the proof. First, all the eigenvalues of AK lie inside the unit circle, so that

|λmax (AK )|� < 1,∀� ≥ 0 and |λmax (AK )|� �→∞−−−→ 0, being λmax (AK ) the maxi-
mum of the eigenvalues of AK . Second, the perturbation analysis for matrix powers,
and in particular (7.11), can be applied. Before enouncing the theorem, the following
assumption is required:

Assumption 7.4 AK is diagonalizable so that AK = V DV −1, and the coupling
terms are such that κ(V )‖Δ‖ < 1 − |λmax (AK )|, where κ(V ) = ‖V ‖‖V −1‖ and
λmax (AK ) is the eigenvalue of AK with the closer magnitude to 1. Furthermore, it
is assumed that Δ is such that the second-order terms can be approximated to zero
O(‖Δ‖2) ≈ 0.

Note that when β 	= 0, and additional constraint is imposed to the coupling
terms. Specifically, the condition |λmax (AK )| + κ(V )‖Δ‖ < β < 1 ensures the
convergence to the equilibria.
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Theorem 7.2 Consider the closed-loop system (7.38) and trigger functions of the
form (7.39), where |λmax (AK )| + κ(V )‖Δ‖ < β < 1. If Assumptions 7.3 and 7.4
hold, then, for all initial conditions x(0) ∈ R

n and � > 0, it holds

‖x(�)‖ ≤ κ(V )

(
‖BK‖√Naδ0

1−|λmax (AK )|γ0 + |λmax (AK )|�
(
‖x(0)‖ − ‖BK‖√Naδ0

1−|λmax (AK )|γ0

− ‖BK‖√Naδ1
β−|λmax (AK )|γ1 + κ(V )‖Δ‖

|λmax (AK )|�
(
‖x(0)‖ − ‖BK‖√Naδ0

1−|λmax (AK )| − ‖BK‖√Naδ1
β−|λmax (AK )|

) )

+ β� ‖BK‖√Naδ1
β−|λmax (AK )|γ1

)

, (7.40)

where

γ0 = 1 + κ(V )‖Δ‖
1 − |λmax (AK )| (7.41)

γ1 = 1 + κ(V )‖Δ‖
β − |λmax (AK )| . (7.42)

Remark 7.3 If perfect decoupling can be achieved, then ‖Δ‖ = 0, which yields
γ0, γ1 = 1. Thus, (7.40) is simplified:

‖x(�)‖ ≤ κ(V )

(
‖BK‖√Naδ0

1−|λmax (AK )| + |λmax (AK )|�
(
‖x(0)‖ − ‖BK‖√Naδ0

1−|λmax (AK )|

− ‖BK‖√Naδ1
β−|λmax (AK )|

)
+ β� ‖BK‖√Naδ1

β−|λmax (AK )|
)

.

7.6 Improvements

The objective of this section is the proposal of some improvements to the design
described previously in the chapter. First, a novel implementation is presented to
reduce the number of control updates allowing a more efficient usage of the lim-
ited resources of embedded microprocessors. In the previous design, the adaption
frequency of the control input may be high when the neighborhood is large even if
each agent is not transmitting so often. The design is based on two sets of trigger
functions. The first set decides when to transmit an update for the broadcast state
and the second set checks a predefined control error at broadcasting events, updating
only when this error exceeds a given threshold.

The second improvement of the discrete-event-based control (DEBC) has a
different goal, which is to reduce as much as possible the communication through
the network even if the load of the microprocessor is increased. We present a
distributed model-based control design in which each agent has certain knowl-
edge of the dynamics of its neighborhood. Based on this model, the subsystem
estimates its state and its neighbors’ continuously and computes the control law
accordingly. Model uncertainty is assumed and the performance of the Sect. 7.4’s and
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model-based designs are compared, showing that a model-based controller allows
larger inter-event times.

7.6.1 Reducing Actuation in Distributed Control Systems

This section presents a distributed control design where the goal is not only to reduce
communication but also the number of control updates in each node. Note that in a
single control loop the reduction of communication usually implies the reduction of
actuator updates [68, 239], which does not necessary hold in distributed systems.

The control law is computed in (7.13) based on the broadcast states. Thus, u(t) is a
piecewise constant function. Accordingly, the control law of agent i is updated when
an event is triggered by itself or any of its neighbors. This might lead to very frequent
control updates if the number of neighbors was large. However, the change of the
control signal ui (t) might be small due to, e.g., a weak coupling. In this situation, an
update of the control signal is generally not needed.

We propose a new control law in which ui (t) is not updated at each broadcasting
event, but when an additional condition is fulfilled. We consider two mechanisms
driven by events. The first one is the transmission of information between nodes
(transmission events), and the second one is the update of the control law (control
update events). Note that the transmission events correspond to the considered events
up to now. The description of both sets of trigger functions is given next.

7.6.1.1 Trigger Functions

Transmission Events

The occurrence of a transmission event is defined by trigger functions Fx,i which
only depend on local information of agent i and take values in R.

The sequence of broadcasting times t i
k are determined recursively by the event-

trigger function as
t i
k+1 = inf{t : t > t i

k, Fx,i (t) > 0}.

We define the error between the current state xi and the most recently broadcast state
xb,i as

εx,i (t) = xb,i (t) − xi (t), (7.43)

and we consider time-dependent trigger functions defined by

Fx,i (t, εx,i (t)) = ‖εx,i (t)‖ − δx,0 − δx,1e−βt , (7.44)

with δx,0 > 0, δx,1 ≥ 0, and α > 0. An event is detected when Fx,i (t, εx,i (t)) > 0,
and the error εx,i is reset to zero. Note that the error remains bounded by

‖εx,i (t)‖ ≤ δx,0 + δx,1e−βt . (7.45)
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This type of trigger functions has been shown to decrease the number of events while
maintaining a good performance of the system. The case δx,0 = 0 is excluded. The
reason is discussed later. However, the case δx,1 = 0 is admitted leading to static
trigger functions.

Control Update Events

Let us denote the time instants at which the control update of the agent i occurs as
{t i

�}∞�=0,∀i = 1, . . . , Na .
The control law is defined for the inter-event time period as

ub,i (t) = Ki xb,i (t
i
�) +

∑

j∈Ni

Li j xb, j (t
i
�), t ∈ [t i

�, t i
�+1). (7.46)

In order to determine the occurrence of an event, we define

εu,i (t) = ub,i (t) − ui (t), (7.47)

where ui (t) is given by (7.13). The set of trigger functions is given by

Fu,i (εu,i (t)) = ‖εu,i (t)‖ − δu, δu > 0. (7.48)

The sequence of control updates is determined recursively. However, whereas the
transmission events can occur at any time t because xi (t) is a continuous function,
ui (t) in (7.13) is not continuous but piecewise constant and only changes its value
at transmission events. This means that the events on the control update are a subse-
quence of the transmission events.

Denote ¯Ni = i ∪ Ni and {t ¯Ni
k } the set {t i

k} ∪ {t j
k }, j ∈ Ni . Thus,

t i
�+1 = inf{t ¯Ni

k : t
¯Ni

k > t i
�, Fu,i (t

¯Ni
k ) > 0}.

Hence, it holds that {t i
�} ⊂ {t ¯Ni

k }.
Example 7.3 An example of the proposed design is given in Fig. 7.6. Assume that
Agent 1 sends and receives information to/from its neighborhood through a network.
At t = t2

k it receives a broadcast state xb,2 from Agent 2. Agent 1 computes u1
according to the new value received. For example, if Agent 2 is its unique neighbor,
u1(t2

k ) = K1xb,1(t2
k ) + L12xb,2(t2

k ) = K1xb,1(t1
k−1) + L12xb,2(t2

k ), where t1
k−1 is

assumed to be the last broadcasting event time for Agent 1. After computing u1, Agent
1 checks whether the difference between this value and the current control signal
applied exceeds the threshold δu . Since this threshold is not exceeded, it does not
update ub,1. At t = t1

k , Agent 1 detects an event because εx, 1 reaches the threshold
δx . x1(t1

k ) is broadcast through the network and u1 is computed again. Given that
‖εu,1‖ < δu , ub,1 is not modified. Finally, a new event occurs at t = t1

k+1 resulting
in a broadcast and a control update since ‖εu,1‖ ≥ δu . Note that ub,1(t) = u1(t).
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Fig. 7.6 Illustrative example
of transmission and control
update events between a
system compound of two
agents
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7.6.1.2 Performance Analysis

The dynamics of the subsystems (7.12) with control law (7.46) is

ẋi (t) = Ai xi (t) + Bi ub,i (t) +
∑

j∈Ni

Hi j x j (t).

It can be rewritten in terms of the errors εx,i (t) and εu,i (t) handled by the trigger
functions (7.44) and (7.48). respectively, as

ẋi (t) = AK ,i xi (t) +
∑

j∈Ni

Δi j x j (t) + Bi Kiεx,i (t) + Bi

∑

j∈Ni

Li jεx, j (t) + Biεu,i (t).

Let us define the stack vectors

εT
x = (

εT
x,1 . . . εT

x,N

)

εT
u = (

εT
u,1 . . . εT

u,N

)
, (7.49)
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and consider the usual definitions for x(t) and the matrices AK, B, K , and Δ given
in (7.16)–(7.19).

Accordingly, the overall system dynamics is given by

ẋ(t) = (AK + Δ)x(t) + BK εx (t) + Bεu(t). (7.50)

As the broadcast states xb,i remain constant between consecutive events, the dynam-
ics of the state error in each interval are given by

ε̇x (t) = −(AK + Δ)x(t) − BK εx (t) − Bεu(t). (7.51)

The state error of the overall system is bounded by

‖εx (t)‖ ≤ √
Na(δx,0 + δx,1e−βt )

according to (7.45). However, εu(t) is not strictly bounded by δu because ui (t) is not
a continuous function but piecewise constant. To find an analytical bound, we assume
that that the occurrence of simultaneous transmission events in any neighborhood

¯Ni is not allowed, i.e., two neighboring nodes cannot transmit at the same instance
of time. Moreover, in case that two broadcast states were received by one agent
simultaneously, it could enqueue the data and do the computation of the control
law sequentially. This might induce delays in the case where two nodes attempted
to transmit at the same time. However, we assume that this delay is negligible in
this section. The effect of delays and packet losses on event-triggered control of
distributed control systems will be studied in Chap. 10.

Lemma 7.4 The control error of the subsystem i is bounded by

‖εu,i (t)‖ ≤ δ̄u,i (t), (7.52)

with

δ̄u,i (t) = δu + (δx,0 + δx,1e−βt ) · max{‖Ki‖, ‖Li j‖ : j ∈ Ni }.

Moreover, the control error of the overall system is bounded by

‖εu(t)‖ ≤ √
Na(δu + ‖μ(K )‖max(δx,0 + δx,1e−βt )) = δ̄u(t), (7.53)

where

μ(K ) =

⎛

⎜
⎜
⎜
⎝

‖K1‖ ‖L12‖ · · · ‖L1N ‖
‖L21‖ ‖K2‖ · · · ‖L2N ‖

...
...

. . .
...

‖L N1‖ ‖L N2‖ · · · ‖KN ‖

⎞

⎟
⎟
⎟
⎠

, (7.54)

and ‖ · ‖max denotes the entry-wise max norm of a matrix.

http://dx.doi.org/10.1007/978-3-319-21299-9_10
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Proof The proof can be found in Appendix A.

We next present the main result of the section.

Theorem 7.3 Consider the interconnected linear system (7.50). If trigger functions
(7.44) are used to broadcast the state with 0 < β < |αmax (AK )| − κ(V )‖Δ‖, and
trigger functions (7.48) for the control update, then, for all initial conditions x(0)

and t ≥ 0, it follows that

‖x(t)‖ ≤σ1 + (κ(V )‖x(0)‖ − σ1 − σ2)e
−(|αmax (AK )|−κ(V )‖Δ‖)t + σ2e−βt , (7.55)

where

σ1 = κ(V )
√

Na
(‖BK‖ + ‖B‖‖μ(K )‖max)δx,0 + ‖B‖δu

|αmax (AK )| − κ(V )‖Δ‖ (7.56)

σ2 = κ(V )
√

Na
(‖BK‖ + ‖B‖‖μ(K )‖max)δx,1

|αmax (AK )| − κ(V )‖Δ‖ − β
. (7.57)

Furthermore, the system does not exhibit Zeno behavior, being the lower bound for
the inter-execution times

Tx,min = δx,0

γ1 + √
Na(γ2 + γ3 + γ4)

, (7.58)

where

γ1 = κ(V )‖x(0)‖‖AK + Δ‖
γ2 = (‖BK‖ + ‖B‖‖μ(K )‖max)δx,0

(
1 + κ(V )‖AK +Δ‖

|αmax (AK )|−κ(V )‖Δ‖

)

γ3 = (‖BK‖ + ‖B‖‖μ(K )‖max)δx,1

(
1 + κ(V )‖AK +Δ‖

|αmax (AK )|−κ(V )‖Δ‖−α

)

γ4 = ‖B‖δu

(
1 + κ(V )‖AK +Δ‖

|αmax (AK )|−κ(V )‖Δ‖

)
.

Proof The proof can be found in Appendix A.

The previous analysis is based on two sets of trigger functions to detect transmis-
sion and control updates events. One concern that can be raised is how the values of
the parameters of these trigger functions can be selected or if there is any relationship
between them.

Let us first assume the case δx,1 = 0 yielding to static trigger functions. It follows
that ‖εx,i (t)‖ ≤ δx,0 and ‖εu,i (t)‖ ≤ δu + δx,0 ·max{‖Ki‖, ‖Li j‖ : j ∈ Ni } ∀t ≥ 0,
according to (7.45) and (7.52), respectively.

Assume that the last control update event occurred at t = t∗ and denote the
number of transmission events between t∗ and the next broadcast as ne. A lower
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bound for ne can be derived following the ideas of Lemma 7.4:

‖εu,i (t) − εu,i (t
∗)‖ = ‖εu,i (t)‖ ≤

ne∑

k=1

δx,0 · max{‖Ki‖, ‖Li j‖ : j ∈ Ni }

= neδx,0max{‖Ki‖, ‖Li j‖ : j ∈ Ni }

and the next control update event will not be triggered before

‖εu,i‖ = δu ≤ δu + δx,0max{‖Ki‖, ‖Li j‖ : j ∈ Ni }.

Thus,

ni
e ≥ δu

δx,0max{‖Ki‖, ‖Li j‖ : j ∈ Ni } . (7.59)

Equation (7.59) shows the trade-off between δu and δx,0 and gives insights on how
one of these parameters should be chosen according to the other one.

Moreover, (7.59) can be translated into a relationship between the inter-execution
times of the control law (7.46), denoted T i

u,min , and the minimum broadcasting period
(7.58). It holds that

T i
u,min ≥ ni

eTx,min ≥ δu

(γ1 + √
Na(γ2 + γ4))max{‖Ki‖, ‖Li j‖ : j ∈ Ni } .

Note that γ3 = 0 because we are analyzing the case δx,1 = 0. Let Tu,min be Tu,min =
min{T i

u,min}. It yields

Tu,min ≥ δu

(γ1 + √
Na(γ2 + γ4))‖μ(K )‖max

.

Hence, δx,0 and δu can be chosen to meet some constraints on Tx,min and Tu,min .
In the design of Sect. 7.6.1.1 the case δx,0 = 0 was excluded and the reason is

given next. Assume that δx,0 = 0. Thus, following the steps of the previous case,
‖εu,i (t)‖ ≤ neδx,1e−βt∗max{‖Ki‖, ‖Li j‖ : j ∈ Ni }, where ne is the number of
broadcasting events and t∗ the time of the last control update event. Moreover, the
next event is not triggered before ‖εu,i‖ reaches the threshold δu . In this case, it holds
that

ne ≥ δu

δx,1e−βt∗max{‖Ki‖, ‖Li j‖ : j ∈ Ni } . (7.60)

Note that the lower bound for ne in (7.60) goes to infinity when t∗ → ∞, which
means that when the time values are large, many transmission events are required to
trigger a new control update and may lead to small inter-event times. One possible
solution is to accommodate the threshold δu to the decreasing bound on the state
δx,1e−βt .
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7.6.1.3 Simulation Example

Let us consider the system presented in Sect. 7.4.3 but with a different topology.
Specifically, the mesh of inverted pendulums is depicted in Fig. 7.7. The dynamics of
the subsystem change in this scheme, and three types of agents can be distinguished:
the ones in the corners with two neighbors, the ones in the borders (excluding the cor-
ners) with three neighbors, and the inner pendulums with four nodes to communicate
with. Moreover, movement is assumed to be in the XY plane. Hence, the dimension
of the state is n = 4 and there are two control inputs (m = 2), which are the forces
acting in the X and Y directions, respectively.

Figure 7.8 shows the output of the system in a 3D space for a mesh of 6 × 6
pendulums. The coordinates in the XY plane over time are plotted. Trigger functions
with δx,0 = 0.02, δx,1 = 0.5, β = 0.6, and δu = 0.1 are considered.

Let us focus on one particular subsystem, for example the agent (2,2) (second
row, second column). The number of broadcasting events in all the neighborhood of
this particular agent, which has four neighbors, is 170, while the number of control
updates in the agent (2,2) is 90, so that 47 % of the transmissions do not end into a
control update because the threshold δu is not reached.

Fig. 7.7 Scheme of the
coupled pendulums mesh

Na

Na

Fig. 7.8 xi1 (θx ) and xi3 (θy)

for a 6 × 6 mesh of inverted
pendulums
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If this experiment is repeated for the case in which trigger functions (7.48) are
not considered, the number of broadcasting events in the neighborhood of (2,2) is
140, which is equal to the number of control updates. Thus, the proposed design with
trigger functions (7.48) as expected might cause an increase of network transmissions,
in this case 21 % while saving almost half of the changes on the control signal.
Moreover, if we compute the average broadcasting period for the entire network as

T̄x = N 2
a tsim

No. events it yields 0.5202 s for the first case and 0.5954 s for the case without
using the event-triggered control update. Hence, for the overall network the difference
is not relevant. These results are extended for different values of Na in Table 7.3. Note
that the variations of the average period with the number of agents are not significant.

The influence of the parameter δu for given parameters δx,0 = 0.02, δx,1 = 0.5,
and β = 0.6 can be analyzed and the results are illustrated in Table 7.4. For a mesh
of 6 × 6 subsystems, the following values are computed for each value of δu and
simulation time t = 15 s:

• Average number of transmissions through the network defined as n̄x =
∑N2

a
i=1 |{t i

k }|
N 2

|Ni |, where |{t i
k}| is the cardinality of the set {t i

k} and |Ni | is the average for the
number of neighboring agents.

• Average number of control updates defined as n̄u =
∑N2

a
i=1 |{t i

�}|
N 2

a
.

Note that the best choice of the values of δu, δx,0 and δx,1 depends on the commu-
nication and actuation costs of the implementation, and the lower bounds on the
inter-event times that should be guaranteed in the system. We can say that a value
δu ∈ [0.05, 0.1] would be a good option because the decrease of the control events
is notable while the increase in communication events is assumable. If δu = 0.02 all
broadcasting events lead into a control update (n̄u is actually larger than n̄x , but this
is due to the error induced by the statistical treatment of the data).

Table 7.3 Average broadcasting period variations with Na

Na × Na 16 36 64 81 100

T̄x 0.5422 0.5202 0.4813 0.4676 0.4765

Table 7.4 Average transmission and control update events with cu

δu 0.02 0.05 0.1 0.2

n̄x 86.20 83.98 95.46 181.48

n̄u 93.11 75.00 67.28 57.58
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7.6.2 Model-Based Design

Model-based event-triggered control has been shown to reduce the amount of com-
munication in a control loop [154]. Ideally, if the plant is stable, there are no model
uncertainties or external disturbances, the control input u(t) can be determined
in a feedforward manner, and no communication over the feedback link is nec-
essary [139].

The distributed approach presented in this section shows that if the model uncer-
tainty fulfills a certain condition, the model-based approach gives larger minimum
inter-event times than the zero-order hold approach of Sect. 7.4. We assume that each
agent has knowledge of the dynamics of its neighborhood.

In particular, let us define the model-based control law for each agent as

ui (t) = Ki xm,i (t) +
∑

j∈Ni

Li j xm, j (t), (7.61)

where xm,i now represents the state estimation of xi given by the model (Am,i , Bm,i )

of each agent, and AmK ,i = Am,i + Bm,i Ki . Let us define AmK = diag(AmK ,1, . . . ,

AmK ,Na ).
The error εi (t) is redefined as

εi (t) = xm,i (t) − xi (t), (7.62)

and is reset at events’ occurrence. In particular, xm,i (t) is computed in the inter-event
times as

xm,i (t) = eAmK ,i (t−t i
k)xi (t

i
k), ∀t ∈ [t i

k, t i
k+1). (7.63)

Note that (7.63) does not include the coupling effect since the decoupling gains Li j

are designed to compensate the model of the interconnections Hi j . Thus, if Δi j 	= 0
it is because these interconnections are partially unknown or perfect decoupling may
not be possible due to, e.g., the matrix Bi not having full rank.

Therefore, each agent i has a model of its dynamics and of its neighborhood Ni .
Based on this model, it estimates its state denoted as xm,i (t) to compute ui (t) in (7.61).
This idea is illustrated in Fig. 7.9. Note that this is an extension of a conventional
model-based controller. In the distributed approach, the controller C has Ni + 1
inputs and one output. A block that represents the model of a subsystem is reset
when a new broadcast state is received.

When the state estimation xm,i (t) differs a given quantity from xi (t), which
depends on the trigger function, a new event is generated and the estimation is reset
to the new measured state. For instance, xm,i might deviate from xi due to model
uncertainties on AK ,i , disturbances, and the effect of the non-perfect decoupling.
Furthermore, the agent i broadcasts the new measurement to its neighbors, which
also update their estimations according to the new value received from agent i .
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Fig. 7.9 Model-based control scheme for the node i

7.6.2.1 Main Result

If we consider the trigger function defined in (7.26) and for the new error defined in
(7.62), the state will be also bounded by (7.28). However, the lower bound for the
inter-event time will have a different expression.

Definition 7.2 Let us define

δA := Am − A

δB := Bm − B

δAK := AmK − AK = δA + δBK , (7.64)

i.e., the model uncertainty of the overall system without interconnections.

Assumption 7.5 We assume that the values of δ0 and δ1 and the initial conditions
x(0) satisfy the following constraint:

√
Na(δ0 + δ1)

‖x(0)‖ + ‖BK‖√Naδ0
αΔ

+ ‖BK‖√Naδ1
αΔ−β

< κ(V )
‖AK + Δ‖ − ‖δAK ‖ − ‖Δ‖

‖AmK ‖ ,

(7.65)
where αΔ = |αmax (AK )| − κ(V )‖Δ‖.

Remark 7.4 Equation (7.65) is feasible only if the right-hand side is strictly positive,
since δ0 + δ1 > 0. This gives a maximum value of the model uncertainty for a given
bound on the norm of the coupling terms matrix or vice versa.
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Theorem 7.4 If Assumption 7.5 holds, the lower bound of the broadcasting period
for the system (7.22), under the control law (7.61), and with triggering functions
(7.26), 0 < β < |αmax (AK )| − κ(V )‖Δ‖, is greater than (7.29).

Proof The proof can be found in Appendix A.

7.6.2.2 Simulation Example

Next, the performance of the model-based approach is demonstrated and compared
to the results of Sect. 7.4.3. Let us consider trigger functions Fe,i (t, εi (t)) = 0.02 +
0.5e−0.8t . Figure 7.10 compares the output of Agent 1 of a chain of four inverted
pendulums. Observe that, for this case, the model-based approach reduces the number
of events in more than a third (from 23 (in red) to 9 (in blue)). Note that the control
law is not a constant piecewise function.

Table 7.5 compares the results of the first row of Table 7.2 with the model-based
design. Note that when the controller uses a model, the average and the minimum
values of the inter-event times are enlarged, as predicted by Theorem 7.4.
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Fig. 7.10 Simulation result with trigger functions (7.26) for the design of Sect. 7.4 (red) and the
distributed model-based control (blue). The dashed line (magenta) represents the piecewise function
xm1,1
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Table 7.5 Inter-event times for different Na

Na (s) 10 50 100 150 200

Trigger condition
(7.26), Sect. 7.4

{T i
k }min 0.053 0.031 0.015 0.019 0.009

{T i
k }mean 0.565 0.565 0.567 0.572 0.568

Trigger condition
(7.26), MB control

{T i
k }min 0.6816 0.3025 0.219 0.0963 0.132

{T i
k }mean 1.430 1.500 1.477 1.668 1.581

7.7 Conclusions

A distributed event-based control strategy for interconnected subsystems has been
presented. The events are generated by the agents based on local information only,
broadcasting their state over the network. The proposed trigger functions preserve
the desired convergence properties and guarantee the existence of a strictly positive
lower bound for the broadcast period, excluding the Zeno behavior.

Because most of the hardware platforms only provide periodical implementations
of the measurement and actuation tasks, the analysis has been extended to discrete-
time systems.

Additionally, the way in which the actuation rate can be reduced in an intercon-
nected system if triggering functions are also used in the update of the control law
has been illustrated. The existing trade-off between communication and actuation
has been shown analytically and through simulations.

Finally, a model-based approach has been proposed showing that the minimum
inter-event times can be enlarged if the model uncertainty satisfies certain conditions.
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