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Abstract— In several multi agent control problems, the con-
vergence properties and speed of the system depend on the
algebraic connectivity of the graph. We discuss a particular
event-triggered consensus scenario, and show that the availabil-
ity of an estimate of the algebraic connectivity could be used
for adapting the behavior of the average consensus algorithm.
We present a novel distributed algorithm for estimating the al-
gebraic connectivity, that relies on the distributed computation
of the powers of matrices. We provide proofs of convergence,
convergence rate, and upper and lower bounds at each iteration
of the estimated algebraic connectivity.

I. INTRODUCTION

Consensus problems are connected to diverse applications
in multi-agent systems, including sensor fusion, flocking,
formation control or rendezvous among others [1]. Event-
triggered control strategies [2], [3] are appropriate for sce-
narios where the state variables evolve in continuous time
but where the agents may exchange data only at specific time
instances. The algebraic connectivity is an important network
property for all the previous systems to reach convergence
and it characterizes the convergence rate. We propose a
distributed method for estimating this algebraic connectivity.

Connectivity control methods establish agent motions that
preserve or maximize some network connectivity property.
The k−connectivity matrix of the graph is computed in
a centralized fashion in [4]. Several distributed methods
compute spanning subgraphs [5], specific Laplacian eigen-
vectors [6], moments (mean, variance, skewness and kurto-
sis) of the Laplacian eigenvalue spectrum [7], or maximize
the algebraic connectivity trough motion control without
actually computing it [8]. Although these control methods
improve the network connectivity, they do not characterize
any particular Laplacian eigenvalue, as required in our case.

A Laplacian eigenvalues estimation method is given in [9].
Nodes execute a local interaction rule that makes their states
oscillate at frequencies corresponding to these eigenvalues,
and use the Fast Fourier Transform (FFT) on their states
to identify these eigenvalues. The main limitation of this
work is that the proper adjustment of the FFT, so that
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the eigenvalues can be correctly identified, is nontrivial. In
addition, some nodes may observe only a subset of the
eigenvalues and thus they need to execute additional coordi-
nation rules for propagating their data. Several solutions to
the computation of the Laplacian spectra rely on the power
iteration method or variations [10]–[12]. Power iteration [13]
selects an initial vector and then repeatedly multiplies it by
a matrix and normalizes it. This vector converges to the
eigenvector associated to the leading eigenvalue (the one with
the largest absolute value) of the matrix. The original matrix
can be previously deflated so that a particular eigenvalue
becomes the leading one. The main limitation of distributed
power iteration approaches consists on the normalization and
orthonormalization of the vectors at each step. For [11] it
involves a gossip-based information aggregation algorithm,
and for [10] a distributed averaging method. Therefore,
several iterations of the previous algorithms must be executed
by the nodes between consecutive steps of the power method
in order to ensure that they have achieved the required
accuracy in the vector normalization. Besides, the previous
methods only ensure convergence but they do not give any
upper or lower bound relating the true algebraic connectivity
and the estimates at each iteration.

We propose a distributed method for computing the alge-
braic connectivity where, at each step k, the agents compute
the k−th power of a deflated Laplacian. When the nodes
want to obtain an estimate of the algebraic connectivity, they
run a max−consensus [14]. The agents do not need to wait
for the max−consensus to finish before starting the next step
k+1. Instead, they can continue executing the matrix power
algorithm in parallel. We provide proofs of convergence and
convergence speed, and give upper and lower bounds for the
true algebraic connectivity at each iteration. We combine the
previous ideas with [3] and present an adaptive triggered
consensus method where the most recent estimate of the
algebraic connectivity is used at each step.

This paper is organized as follows: Section II states
the problem; Section III presents the distributed algebraic
connectivity estimation method; and Section IV evaluates our
method in a simulated scenario.

II. PRELIMINARIES

We use the notation in Table I. Consider n ∈ N agents
which can exchange information with nearby nodes. This
information is represented by an undirected graph G =
(V, E), where V = {1, . . . , n} are the agents, and E are
the edges. There is an edge (i, j) ∈ E between nodes i and
j if they can exchange data. We say a n × n matrix C is
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TABLE I
NOTATION.

Indices
n Number of agents. k Iteration number, k ∈ N.
i, j Agent indices. t Time, t ∈ Rt≥0.

Matrix operations, eigenvalues and eigenvectors
Aij , [A]ij (i, j) entry of matrix A.

diag(b1, . . . , br) matrix A with Aii = bi and Aij = 0.
λi(A), vi(A) ith eigenvalue and eigenvector of A.

λA diag(λ1(A), . . . , λr(A)).
VA [v1(A), . . . ,vr(A)].
‖A‖∞ Induced ∞−norm of A, maxi

∑n
j=1 |Aij |.

‖A‖2 Spectral norm of A, maxi
√
λi(ATA).

ρ(A) Spectral radius of A, maxi |λi(A)|.
Special matrices

Ir r × r identity matrix.
0r , 1r Column vectors with the r entries equal to 0 and 1.
A Adjacency matrix of the graph.
L Laplacian matrix of the graph, L = diag(A1)−A.

λ?(L) Algebraic connectivity, the second-smallest λi(L).

compatible with G if Cij = 0 iff (i, j) /∈ E for j 6= i; we let
the elements in the diagonal Cii be either equal or different
than 0. The adjacency matrix A ∈ {0, 1}n×n of G is

Aij = 1 if (i, j) ∈ E ,Aij = 0 otherwise, for i, j ∈ V. (1)

We assume G is connected. We use Ni for the set of
neighbors of a node i with whom i can exchange data,
Ni = {j | (i, j) ∈ E}, and we let di be the degree of node i
defined as the cardinality of Ni, and dmax = maxi∈V di. The
Laplacian matrix L ∈ Rn×n of G is L = diag(A1)−A, and
we sort its eigenvalues as follows λ1(L) ≤ λ2(L) ≤ · · · ≤
λn(L). Both A and L are compatible with G. The Laplacian
L has the following well known properties [1]:

(i) It has an eigenvector v1(L) = 1/
√
n with associated

eigenvalue λ1(L) = 0, L1/
√
n = 0;

(ii) When the graph G is connected, then all the other
eigenvalues are strictly greater than 0,

0 = λ1(L) < λ2(L) ≤ · · · ≤ λn(L); and

(iii) Its eigenvalues are upper-bounded by λn(L) ≤ 2dmax.
The algebraic connectivity of G denoted by λ?(L) is the
second-smallest eigenvalue λ2(L) of the Laplacian L.

A. Consensus Protocol and Event-based Control

Consider each agent i ∈ V has single-integrator dynamics

ẋi(t) = ui(t), with xi(t), ui(t) ∈ R, (2)

where ui denotes the control input at agent i given by

ui(t) = −
∑
j∈Ni

(xi(t)− xj(t)). (3)

With stack vectors x = [x1, . . . , xn]T , u = [u1, . . . , un],

ẋ(t) = −Lx(t) = u(t). (4)

A well known result [1] is that if G is undirected and con-
nected, then the previous algorithm globally asymptotically
solves the average consensus problem, i.e.,

lim
t→∞

xi(t) = (x1(0) + · · ·+ xn(0))/n. (5)

However in general agents cannot exchange their states
continuously, and the continuous-time law needs to be im-
plemented on a digital platform. A triggered-based control
method is proposed in [3] where agents monitor their own
states xi(t) continuously but propagate their most recent
states at some time instances. The trigger condition is

|ei(t)| ≥ c1e−αt, c1 > 0, 0 < α < λ?(L), (6)

where ei(t) is the difference between the actual current state
xi(t) at agent i ∈ V at time t, and x̂i(t) the last transmitted
one, ei(t) = x̂i(t)−xi(t). An event for agent i is triggered as
soon as the condition in eq. (6) is satisfied, resulting in agent
i sending its most recent state x̂i. Each agent i updates its
control-law when the event is triggered, or when it receives
an updated state x̂j from one of its neighbors. Thus, the
control-law is piecewise constant. As stated by [3, Th. 4],
for connected graphs if nodes execute the previous proce-
dure, then for all initial conditions x(0) the overall system
converges to average consensus asymptotically. Furthermore
the closed-loop system does not exhibit Zeno-behavior.

In general, nodes do not know λ?(L). However, if they
had a lower-bound λ̂(k) ≤ λ?(L) of λ?(L), for k ∈ N, they
could use the following trigger condition,

|ei(t)| ≥ c1e−α(t)t, α(t) = γλ̂(k), for t ∈ [k, k + 1),

with 0 < γ < 1, where instead of using a fixed α, nodes
adapt this value depending on the most recent and accurate
estimate λ̂(k) of the algebraic connectivity λ?(L). Based on
similar analysis as in [3], it can be shown that the resulting
algorithm is convergent, and does not exhibit Zeno-behavior.

B. Problem description

Our goal is to design distributed algorithms to allow the
agents to compute λ?(L), and/or a lower bound of λ?(L).

III. ALGEBRAIC CONNECTIVITY ESTIMATION

We present a novel distributed algorithm for computing
the algebraic connectivity λ?(L) of the graph. This algorithm
relies on the observation that the induced infinite norm of a
matrix ‖C‖∞ can be easily computed in a distributed fashion
with a max−consensus method, provided that each node
knows a row of this matrix; and that ‖Ck‖

1
k∞ successively

approaches the spectral radius ρ(C) of matrix C. First, we
present some results on matrices compatible with G.

A. Distributed computation of power of matrices

We show that the powers a matrix C compatible with
the graph, can be computed in a distributed fashion. Our
discussion refers to fixed undirected graphs, although the
method can be easily extended to time-varying graphs. Our
algorithm was originally proposed in [15] for adjacency
matrices defined by blocks. Here we propose an improved
version that does not require the knowledge of n.

Algorithm III.1 (Basic Distributed Power Computation)
Let each node i ∈ V maintain an estimate Ĉij(k) of the
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(i, j) entries of the k−th power of C, [Ck]ij , for all j ∈ V .
At k = 0, node i initializes its variables Ĉij(k) with

Ĉii(0) = 1, and Ĉij(0) = 0 for j ∈ V \ {i}. (7)

At each k ≥ 1, node i updates these variables as follows,

Ĉij(k + 1) =
∑

j′∈Ni∪{i}

Cij′Ĉj′j(k), for j ∈ V. (8)

Proposition III.1 When C is compatible with the graph, the
outcomes of algorithm (8) at each step k ≥ 0 are exactly the
entries of the k−th power of C, Ck.

Proof: Each node i maintains exactly the i−th row of
Ck. For k = 0, it is straightforward to see that eq. (7) gives
the identity matrix I which is exactly C0. For k ≥ 1, we
consider the explicit expression for Ck+1 = CCk, and take
into account that, since C is compatible with the graph, then
Cij′ = 0 for j′ /∈ Ni ∪ {i}. Each (i, j) entry of Ck+1 is

[Ck+1]ij =

n∑
j′=1

Cij′ [C
k]j′j =

∑
j′∈Ni∪{i}

Cij′ [C
k]j′j , (9)

which is exactly what algorithm (8) does.
Note that each node i updates its variables using only

its own and its neighbors’ data; it stores n scalars, and
exchanges n scalars at each iteration k. Our algorithm exactly
computes Ck at each step k (not an estimate of it). Observe
that it remains valid if the communication graph is time-
varying, in which case each agent i computes

[Ĉ(k)]ij = [C(k)C(k − 1) . . . C(0)]ij , for j ∈ V.

The main limitation of the previous procedure is that it
assumes that in the initial phase (eq. (7)) each agent knows
the total amount of agents in the network n, and that at each
step k (eq. (8)) it knows the identities j, j′ associated to each
piece of data Ĉj′j(k). We show here that the algorithm can
be slightly modified so that the previous requirement is not
necessary. We only impose the assumption that each agent i
has assigned a unique identifier ID(i), e.g., its IP address.

Algorithm III.2 (Distributed Power Computation) Each
node i ∈ V maintains a set of node identifiers li(k), and an
estimate C̃ij(k) of the (i, j) entries of the k−th power of C,
[Ck]ij , associated to the nodes j such that ID(j) ∈ li(k).
1: At k = 0, each node i ∈ V initializes a single variable

C̃ii(k) and a single identifier,

C̃ii(0) = 1, li(0) = {ID(i)}, (10)

and sends this data to its neighbors Ni.
2: At each step k ≥ 1, node i first looks for new nodes

in the information lj(k) received from its neighbors, and
updates its identifiers li(k) accordingly,

li(k + 1) =
⋃

j∈Ni∪{i}

lj(k). (11)

3: Then, node i creates a new variable C̃ij(k) initialized
with 0, C̃ij(k) = 0, for each recently discovered node j,

ID(j) ∈ li(k + 1) and ID(j) /∈ li(k).

4: Finally, node i updates all its variables C̃ij(k), for
ID(j) ∈ li(k + 1), by

C̃ij(k + 1) =
∑

j′∈Ni∪{i},ID(j)∈lj′ (k)

Cij′C̃j′j(k), (12)

and sends these variables C̃ij(k), for ID(j) ∈ li(k), to
its neighbors as well as its discovered identifiers li(k).

Proposition III.2 Let us define for each node i ∈ V and
each step k ≥ 0 variables C̃ij(k) = 0 for all ID(j) /∈ li(k).
Then, when C is compatible with the graph, the outcomes of
algorithm (12) are exactly the outcomes of (8). As a result,
they are exactly the entries of the k−th power of C, Ck.

Proof: We first consider Algorithm III.1 together with
the node identifier management rule,

li(0) = {ID(i)}, Ĉii(0) = 1, Ĉij(0) = 0, for j 6= i, (13)

li(k + 1) =
⋃

j∈Ni∪{i}

{lj(k)}, and,

Ĉij(k + 1) =
∑

j′∈Ni∪{i}

Cij′ Ĉj′j(k), for j ∈ V. (14)

We want to show that if j /∈ li(k) then the element Ĉij
is zero. This is proved by induction. It is true for k = 0,
see eq. (13). Let us assume that for k it is true that, for
all i ∈ V , if j /∈ li(k) then Ĉij = 0. Consider a j which
at k + 1 satisfies j /∈ li(k + 1). By eq. (14) it means that
j /∈

⋃
j′∈Ni∪{i}{lj′(k)} and therefore for all j′ ∈ Ni ∪ {i}

the element Ĉj′j = 0. Then, the update rule (14) gives

Ĉij(k + 1) =
∑

j′∈Ni∪{i}

Cij′0 = 0. (15)

Now we prove by induction that the outcomes C̃ij(k) of
algorithm (III.2) are exactly equal to Ĉij(k) for all k ≥ 0,
i ∈ V and all j ∈ li(k). Note that for all k ≥ 0 all i ∈ V
and all j /∈ li(k) the elements C̃ij(k) do not exist whereas
Ĉij(k) = 0 as shown above. We pay attention to eq. (14)
for ID(j) ∈ li(k + 1). For j /∈ lj′(k) we have Ĉj′j(k) = 0.
If Ĉj′j(k) = C̃j′j(k) at k, then at k + 1 we have

Ĉij(k + 1) =
∑

j′∈Ni∪{i},
ID(j)∈lj′ (k)

Cij′ C̃j′j(k) +
∑

j′∈Ni∪{i},
ID(j)/∈lj′ (k)

Cij′0,

which is the update rule for C̃ij(k + 1) in eq. (12).
Algorithm III.2 provides each agent i with all the entries

of the i− th row of the power matrix Ck, and only requires
each node i to have a unique identifier ID(i). The results
presented so far hold for both fixed and time-varying graphs.
Now we show that in addition, for fixed graphs, the previous
method can be used for obtaining the number of nodes n.
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Proposition III.3 For each node i ∈ V , let ki be the first
instant for which li(k) = li(k − 1),

ki = min{k | li(k) = li(k − 1)}. (16)

Then, n = |li(ki)|.
Proof: Note that li(k − 1) contains the identifiers of

the (k− 1)−hop neighbors of i. By the definition of a path,
if there are no new nodes at distance k, then there cannot
be new nodes at distances greater than k. Therefore li(k −
1) already contains the identifiers of all the nodes that are
connected with i. Since the graph is connected, these nodes
are all the nodes in the network and n = |li(ki)|.
For fixed communication graphs, the previous result can be
further used in Algorithm III.2 for improving the network
usage. Since the first time li(k) = li(k−1), agent i can stop
executing steps 2 : to 3 : and exchanging variables li(k).

B. Distributed computation of the spectral radius

Now we present a distributed algorithm that allows the
computation of the spectral radius of a symmetric matrix C
compatible with the graph. It relies on the observation that,
for any induced norm ‖.‖, [16, Chap. 5.6]

ρ(C) ≤ ‖C‖, and ρ(C) = lim
k→∞

‖Ck‖ 1
k . (17)

We propose to use the induced ∞−norm ‖.‖∞,

‖Ck‖∞ = max
i∈V
{|[Ck]i1|+ · · ·+ |[Ck]in|}, (18)

since it can be easily computed by the agents using a
distributed max−consensus algorithm provided that each
agent i knows the i− th row of Ck.

Algorithm III.3 (Distributed Spectral Radius) Consider
the agents executing Algorithm III.2 for a symmetric matrix
C compatible with the graph. Let ci(k) be the sum of the
absolute values of variables C̃ij(k) at agent i, step k,

ci(k) =
∑

ID(j)∈li(k)

|C̃ij(k)|. (19)

Nodes run a max−consensus [14] on their variables ci(k),

βi(k) = ci(k), βi(k + τ + 1) = max
j∈Ni∪{i}

βj(k + τ), (20)

which finishes after T = diam(G) communication rounds
with variables βi(k + T ) at all the nodes i ∈ V containing
the maximum of the inputs ci(k) over all the network,

β1(k + T ) = · · · = βn(k + T ) = max
i∈V

ci(k). (21)

The spectral radius β∗i (k) estimated at node i, step k ≥ 1 is

β∗i (k) = (βi(k + T ))
1
k = (max

j∈V
cj(k))

1
k . (22)

Observe that this computation of ci(k) in eq. (19) is local
to each node i, since it maintains the i − th row of Ck.
Note that the estimated spectral radius β∗i (k) associated to
step k is available at the nodes T iterations later (at iteration

k + T ). However, the max−consensus iterations (20) are
executed independently (in parallel) to the Algorithm III.2.
This means that agents do not have to wait T iterations for
the max−consensus to converge before executing a new
iteration of Algorithm III.2. Now we present a result that
establishes the convergence of the previous algorithm to the
spectral radius of the matrix C.

Theorem III.4 Consider each node i executing Algo-
rithm III.3 with a symmetric matrix C compatible with the
graph. Then, as k →∞ all the variables β∗i (k) converge to
the spectral radius ρ(C) of matrix C,

lim
k→∞

β∗i (k) = ρ(C), for all i ∈ V, and (23)

(
√
n)
−1
k β∗i (k) ≤ ρ(C) ≤ β∗i (k), for all k ≥ 1. (24)

Proof: First note that Algorithm III.3 computes the
k−th root of the induced infinite norm of Ck. Since we
showed that C̃ij(k) = 0 for ID(j) /∈ li(k), then ci(k) in
eq. (19) is exactly the absolute sum of the i − th row of
Ck. The max−consensus (20) provides each agent with the
induced infinite norm of Ck. Thus, β∗i (k) in eq. (22) equals
β∗i (k) = (‖Ck‖∞)

1
k , which combined with eq. (17) gives

ρ(C) = lim
k→∞

‖Ck‖
1
k∞ = lim

k→∞
β∗i (k), (25)

as stated in eq. (23). Now we focus on eq. (24); from (17),

ρ(C) = (ρ(Ck))
1
k ≤ ‖Ck‖

1
k∞ = β∗i (k), (26)

which gives the right part in eq. (24). Since matrix C is
symmetric, then its spectral norm ‖C‖2 = maxi

√
λi(C2)

equals its spectral radius ρ(C) = maxi |λi(C)|,

ρ(C) = ‖C‖2 = ‖Ck‖
1
k
2 . (27)

The spectral ‖Ck‖2 and induced infinite ‖Ck‖∞ norms of
a matrix Ck are related by (

√
n)−1‖Ck‖∞ ≤ ‖Ck‖2, [16,

Chap. 5.6], which combined with eq. (27) gives

(
√
n)−

1
k β∗i (k) = (

√
n)−

1
k ‖Ck‖

1
k∞ ≤ ‖Ck‖

1
k
2 = ρ(C), (28)

as stated in eq. (24) and the proof is completed.
Now we are ready to show how the algebraic connectivity

λ?(L) is computed with the previous algorithm.

C. Distributed Computation of the Algebraic Connectivity

We transform the Laplacian L of the undirected and
connected G into a matrix C with ρ(C) depending on λ?(L).

Proposition III.5 Consider the following deflated version of
the Perron matrix [1], [10] of the Laplacian,

C = I− βL − 11T /n. (29)

The relationship between the eigenvalues of C and L is

λ1(C) = 0, λi(C) = 1− βλi(L), for i ∈ {2, . . . , n}. (30)

ρ(C) is associated to the algebraic connectivity λ?(L) by

λ?(L) = (1− ρ(C))/β, if 0 < β < 1/λn(L). (31)
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Proof: The previous result can be proven as follows.
Similar results appear in [1], [10]. Let K be

K = L+ r11T /n. (32)

First, we analyze the relationship between the eigenvalues
of L and K. Consider the following orthogonal matrix VL
composed of eigenvectors of L,

VL =
[
1/
√
n,v2(L), . . . ,vn(L)

]
=
[
1/
√
n, ṼL

]
, (33)

so that V TL LVL = λL = diag(0, λ2(L), . . . , λn(L)), which
exists since L is symmetric. We apply this operation to K,

V T
L KVL = λL + r

[
1 0
0 0

]
= diag(r, λ2(L), . . . , λn(L)),

since 1T1 = n and 1T ṼL = 0, what yields

λ1(K) = r, λi(K) = λi(L) for i ∈ {2, . . . , n}. (34)

The eigenvalues of L and C in eq. (29) satisfy

λi(C) = 1− βλi
(
L+ (1/β)11T /n

)
, for i ∈ V, (35)

which combined with eq. (34), with r = 1/β, gives eq. (30).
Expressing β = ε/λn(L) for some ε ∈ (0, 1), then

λ1(C) = 0, λi(C) = 1− ελi(L)/λn(L), for i ∈ {2, . . . , n}.

Recall that λn(L) ≥ λi(L) > 0 for all i ∈ {2, . . . , n}. Then,

1 > λ2(C) ≥ · · · ≥ λn(C) > λ1(C) = 0, (36)

and ρ(C) = λ2(C), what concludes the proof.
The previous deflated Perron matrix C = I−βL−11T /n

is not compatible with the graph and thus Algorithm III.3
cannot be immediately applied in a distributed fashion. Note
however that, since 1/

√
n is the eigenvector v1(C) of C

associated to the eigenvalue λ1(C) = 0, then, for all k ≥ 1,

Ck = (I− βL − 11T /n)k = (I− βL)k − 11T /n, (37)

where matrix I− βL is compatible with the graph. We pro-
pose to use a variation (Algorithm III.4) of Algorithm III.3.

Before presenting Algorithm III.4, we discuss some issues
regarding the number of nodes n. Note that the number
of nodes n is used in the computation of β. In case the
agents do not know n from the beginning, they can compute
β = ε/(2dmax), which satisfies β < 1/λn(L) as in
Proposition III.5 by executing a max−consensus algorithm
on the nodes degrees in an initial phase. Once β has been
computed, agents can start Algorithm III.4 for computing
the powers of matrix Ĉ = I − βL. However, they can only
execute eqs. (39)-(40) for getting the output λ̂i(k) when they
know n. At each step k agents use Proposition III.3 to find
out if they have already found n and thus if they can proceed
with eqs. (39)-(40).

Algorithm III.4 (Distributed Algebraic Connectivity)
Let ε ∈ (0, 1), β = ε/(2n). Agents execute Algorithm III.2
to compute the powers of Ĉ = I − βL. Then, at each step

k, each agent i has variables Ĉij(k), for ID(j) ∈ li(k),
containing [Ĉk]ij . Let C being as in eq. (29), then

[Ĉk]ij = [Ck]ij + 1/n. (38)

At each step k, each node i computes

ĉi(k) =
∑

ID(j)∈li(k)

|Ĉij(k)− 1/n|+ (n− |li(k)|)/n, (39)

and runs a max−consensus to get maxj∈V ĉj(k). The
estimated algebraic connectivity at agent i, step k is

λ̂i(k) = (1− β̂∗i (k))/β, β̂∗i (k) = (max
j∈V

ĉj(k))
1
k . (40)

Theorem III.6 Let each node i execute Algorithm III.4 with
G connected. As k → ∞, all the variables λ̂i(k) converge
to the algebraic connectivity λ∗(L),

lim
k→∞

λ̂i(k) = λ∗(L), for i ∈ V, (41)

and for all k we have lower- and upper-bounds for λ?(L):

λ̂i(k) ≤ λ?(L) ≤ (
√
n)
−1
k λ̂i(k) + (1− (

√
n)
−1
k )/β. (42)

Proof: First note that β = ε/(2n) satisfies 0 < β <
1/λn(L) since ε ∈ (0, 1) and λn(L) ≤ 2dmax < 2n,
where dmax is the maximum degree in the graph. Therefore,
as stated in Proposition III.5, the algebraic connectivity is
λ∗(L) = (1−ρ(C))/β, where C is the deflated Perron matrix
C = I−βL−11T /n = Ĉ−11T /n. From Proposition III.2,
for all i ∈ V , the variables Ĉij(k) are equal to [Ĉk]ij for
ID(j) ∈ li(k), whereas [Ĉk]ij = 0 for ID(j) /∈ li(k).
Linking this with eqs. (37), (38) yields

[Ck]ij = [Ĉk]ij − 1/n, for ID(j) ∈ li(k),

[Ck]ij = −1/n, for ID(j) /∈ li(k), for all i ∈ V, k ≥ 1.

Thus ĉi(k) in eq. (39) is the absolute i−th row sum of Ck,
and β̂∗i (k) in eq. (40) equals ‖Ck‖

1
k∞. From eqs. (25)-(28),

(
√
n)
−1
k ‖Ck‖

1
k∞ ≤ ρ(C) ≤ ‖Ck‖

1
k∞, (43)

since C is symmetric. Combining this with eqs. (40) and (31)
we get eqs. (41) and (42) and the proof is completed.

IV. SIMULATIONS
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Fig. 1. 20 agents (squares) are placed randomly in a region of 10 ×
10 meters and exchange data (links, lines) if they are closer than 4 meters.
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Fig. 2. Our estimated algebraic connectivity λ̂i(k) (light gray solid) and
our expression (

√
n)
−1
k λ̂i(k) + (1 − (

√
n)
−1
k )/β (light gray dashed)

respectively lower- and upper- bound the true algebraic connectivity λ∗(L)
(dark gray solid) for each step k, and converge to it. The Power iteration
estimates (colored solid lines), with Tcons = 10, 20, 50, 100, exhibit a
slower convergence speed, and do not converge exactly to λ∗(L).
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Fig. 3. For the same communication usage, the estimates produced by our
algorithm (light gray dashed and solid lines) are more precise than the ones
obtained with the power iteration algorithms (colored solid lines).

We have performed a set of simulations with n = 20
nodes as in Fig. 1. The algebraic connectivity λ̂i(k) estimated
by the agents i ∈ V at each step k using the proposed
method is depicted in Fig. 2. λ̂i(k) (light gray solid) is
the same for all of them at each step k. It is a lower-
bound for the true algebraic connectivity λ∗(L) (dark gray
solid), and asymptotically converges to λ∗(L). The expres-
sion (

√
n)
−1
k λ̂i(k) + (1 − (

√
n)
−1
k )/β (light gray dashed)

upper-bounds λ∗(L) for each step k and converges to it.
We compare the performances of our method and of the
distributed power iteration (Figs. 2, 3),

y(k) = w(k)/normalization cons.(w(k)),

w(k + 1) = (I− βL)y(k)− deflation cons.(y(k)).

After each power iteration step k, agents deflate I − βL
and normalize w(k) by running Tcons = 10, 25, 50, and
100 iterations of a classical discrete-time averaging rule,
z(t+1) =Wz(t), beingW the Metropolis weights [17]. We
display the Rayleigh quotient w(k + 1)Ty(k)/yT (k)y(k),
that considers simultaneously the estimates at all the agents,
for the power iteration methods (Fig. 2). In all cases, our
algorithm converges much faster, since we do not need to
wait for the consensus process to finish between steps k.
In addition, power iteration methods only converge to a
neighborhood of the true λ∗(L), closer to λ∗(L) as Tcons
increases. The messages sent by our agents have size n,
whereas the messages of power iteration methods have
constant size. However, for the same communication usage,

the estimates produced by our method are more accurate than
for the power iteration methods (Fig. 3).

V. CONCLUSIONS

We have presented a distributed method to compute the
algebraic connectivity for networked agent systems with
limited communication. At each iteration, the algorithm
produces both an upper and a lower bound estimates of the
algebraic connectivity, converging both to the true algebraic
connectivity. As future work, we will combine our method
with higher level algorithms for adaptive consensus in a
parallel fashion, by taking advantage of our upper- and lower-
bound estimates of the algebraic connectivity.
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