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a b s t r a c t

A stochastic self-triggered model predictive control (SSMPC) algorithm is proposed for linear systems
subject to exogenous disturbances and probabilistic constraints. The main idea behind the self-triggered
framework is that at each sampling instant, an optimization problem is solved to determine both the next
sampling instant and the control inputs to be applied between the two sampling instants. Although the
self-triggered implementation achieves communication reduction, the control commands are necessarily
applied in open-loop between sampling instants. To guarantee probabilistic constraint satisfaction,
necessary and sufficient conditions are derived on the nominal systems by using the information on
the distribution of the disturbances explicitly. Moreover, based on a tailored terminal set, a multi-step
open-loop MPC optimization problem with infinite prediction horizon is transformed into a tractable
quadratic programming problem with guaranteed recursive feasibility. The closed-loop system is shown
to be stable. Numerical examples illustrate the efficacy of the proposed scheme in terms of performance,
constraint satisfaction, and reduction of both control updates and communications with a conventional
time-triggered scheme.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Networked control systems are usually subject to constraints
and uncertainties. The constraints include not only the traditional
system constraints, such as state constraints, but also communica-
tion constraints, such as a limited bandwidth inwireless communi-
cation networks. For such systems, an integrativemodel predictive
control (MPC) and event-based control approach is a natural idea
which could ensure the system constraint satisfaction and trade off
the performance of control systems and the usage of communica-
tion resources. Thus, the research of event-based MPC is of great
interest.

Two specific types of event-based control are event-triggered
and self-triggered control. Different from event-triggered control
which requires the continuous monitoring of system states, self-
triggered control determines the next update time in advance
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based on the information at the current sampling instant. Also, self-
triggered control allows the shut-downof the sensors between two
updates, resulting in a lower sampling frequency to prolong the
lifespan of sensors powered by batteries. Please refer to Heemels,
Johansson, and Tabuada (2012) and Hetel et al. (2017) for an
overview of event-based control.

This paper considers a self-triggered implementation of
stochastic MPC (SMPC) for linear systems with stochastic distur-
bances. One main feature of SMPC is the presence of probabilistic
constraints, which require the constraints to be satisfied with
given probability thresholds. Such constraints can mitigate the
conservativeness introduced by hard constraints of robust MPC
(RMPC). SMPChas found applications in diverse fields, e.g., building
climate control (Long, Liu, Xie, & Johansson, 2014) or chemical
processes (Qin & Badgwell, 2003). To the best of our knowledge,
stochastic self-triggered MPC (SSMPC) has not been explored up
to now. One remarkable challenge is how to characterize the
‘propagation’ of uncertainties during two sampling instants and
formulate a computationally tractable optimization problem for
determining sampling instants and control design.

Some developments of self-triggered MPC are available. Many
of these results are proposed for systems without uncertain-
ties (Barradas Berglind, Gommans, & Heemels, 2012; Hashimoto,
Adachi, & Dimarogonas, 2017; Henriksson, Quevedo, Sandberg,
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& Johansson, 2012). For systems with uncertainties, most results
account for the synthesis of self-triggered control and RMPCwhich
aims to guarantee robust constraint satisfaction. The interested
reader can refer to Aydiner, Brunner, and Heemels (2015) and
Brunner, Heemels, and Allgöwer (2014, 2016). By maximizing the
inter-sampling time subject to constraints on the cost function,
a robust self-triggered MPC (RSMPC) algorithm is presented for
constrained linear systems with bounded additive disturbances
in Brunner et al. (2014), which employs the robust Tube MPC
method in Mayne, Seron, and Raković (2005) to guarantee con-
straint satisfaction. In Brunner et al. (2014), all constraint pa-
rameters are determined by fixing the maximal inter-sampling
time, which has the drawback of leading to a conservative region
of attraction. To alleviate the conservatism, a RSMPC algorithm
based on a more advanced Tube method (Raković, Kouvaritakis,
Findeisen, & Cannon, 2012) is proposed in Aydiner et al. (2015),
where the cost function is defined depending on the length of the
inter-sampling time such that the constraint parameters are not
affected by the maximal sampling interval. By combining with the
self-triggeringmechanism in Aydiner et al. (2015), a recent RSMPC
method is presented in Brunner et al. (2016) with the focus of
extending the Tube method in Chisci, Rossiter, and Zappa (2001)
to evaluate the effect of the uncertainty on the prediction of the
self-triggered setup.

Inspired by Aydiner et al. (2015) and Brunner et al. (2016),
we design a self-triggered strategy for SMPC. Notice that inherent
differences between SMPC and RMPC make our SSMPC algorithm
largely different from the ones presented in Aydiner et al. (2015)
and Brunner et al. (2016). Following the ideas of Tube MPC (Kou-
varitakis, Cannon, Raković, & Cheng, 2010), we construct stochastic
tubes as tight as possible by explicitly using the distributions of
the disturbances. Since a crucial assumption of feedback at every
time step in Kouvaritakis et al. (2010) is not satisfied in the self-
triggered setting (which allows open-loop operations between
sampling instants), some appropriate and non-trivial modifica-
tions are needed: (i) by considering the multi-step open-loop op-
eration between control updates, three predicted controllers are
defined for different phases of the prediction horizon, making it
more complex than (Kouvaritakis et al., 2010) to evaluate the effect
of the uncertainty on predictions and construct equivalent deter-
ministic constraints; (ii) the inter-sampling time as an optimizing
variable is included in the cost function and a tuning parameter
is introduced to provide a trade-off between performance and
communication; (iii) an improved terminal set, which is adapted to
different inter-sampling times, is designed tomake the constraints
recursively feasible.

The present paper is the firstwork on SSMPC,which extends the
existing literatures on MPC considerably. The main contributions
are summarized in the following. (i) Our joint design of the self-
triggering mechanism and the SMPC controller effectively reduces
the amount of communication, while guaranteeing control perfor-
mance with specific level of trade-off. (ii) The MPC optimization
problem is transformed into a tractable quadratic programming
problem by using information on the disturbance distribution.
(iii) For the self-triggeringmechanism, the probability of constraint
violation can be tight to the specified limit. (iv) Both recursive fea-
sibility and closed-loop stability are guaranteed. To illustrate the
effectiveness of the algorithm, numerical experiments are carried
out to compare the proposed SSMPC with a periodically-triggered
SMPC (PSMPC), RSMPC, and unconstrained MPC (LQR).

The remainder of this paper is structured as follows. Prob-
lem formulation is set up in Section 2. In Section 3, a multi-step
open-loop MPC optimization problem is formulated incorporating
probabilistic constraints and specific terminal sets. In Section 4, a
SSMPC algorithm is developed and main results are established.
Section 5 presents numerical simulations and Section 6 concludes.

Fig. 1. The self-triggered MPC framework.

Notation 1.1. Let N ≜ {0, 1, . . .}. For some q, s ∈ N and q < s, let
N≥q, N>q, N≤q, N<q, and N[q,s] denote the sets {r ∈ N | r ≥ q},
{r ∈ N | r > q}, {r ∈ N | r ≤ q}, {r ∈ N | r < q}, and
{r ∈ N | q ≤ r ≤ s}, respectively. Let I and 0 denote an identity
matrix and a zero matrix or zero vector of appropriate dimension.
When ≤, ≥, <, >, and |·| are applied to vectors, they are interpreted
element-wise. For W ∈ Rn×n, W ≻ 0means that W is symmetric and
positive definite. For x ∈ Rn and W ≻ 0, ∥x∥2

W ≜ xTWx. For xi ∈ Rn,
i ∈ N, define

∑b
i=axi = 0 if a > b. Pr denotes the probability, E

the expectation, Ek the conditional expectation of a random variable
given the state at time k, and (k+ i|k) a prediction of a variable i steps
ahead from time k.

2. Problem formulation

The self-triggered MPC framework of this paper is shown in
Fig. 1, in which the notations are introduced below. Consider a
linear time-invariant system

x(k + 1) = Ax(k) + Bu(k) + w(k), k ∈ N, (1)

where x(k) ∈ RNx is the state, u(k) ∈ RNu the control input, w(k) ∈

RNw the stochastic disturbance, and (A, B) a stabilizable pair. Notice
that Nx = Nw . Assume that w(k), k ∈ N, are independent and
identically distributed (i.i.d.) and the elements of w(k) have zero
mean. The distribution Fi of the ith element ofw(k) is assumed to be
known and continuous with a bounded support [−σi, σi], σi > 0,
and correspondingly we have w(k) ∈ W ≜ {w | |w| ≤ σ }, σ =

[σ1 σ2 . . . σNw ]
T . Moreover, system (1) is subject to nc probabilistic

constraints Pr{gT
ℓ x(k) ≤ hℓ} ≥ pℓ, ℓ ∈ N[1,nc ], k ∈ N, where

gℓ ∈ RNx , hℓ ∈ R, and pℓ ∈ [0, 1]. In the sequel, we will focus on
one probabilistic constraint

Pr{gT x(k) ≤ h} ≥ p, k ∈ N, (2)

as the other constraints can be treated in a similar way.
In a periodically-triggered MPC scheme, the predictive control

input at time k can be designed as

u(k + i|k) = Kx(k + i|k) + c(k + i|k), i ∈ N, (3)

where K ∈ RNu×Nx is chosen offline such that the matrix Φ ≜
A + BK is Schur stable and for a prediction horizon N ∈ N≥1,
c(k+i|k) for i ∈ N≤N−1 are optimization variables and c(k+i|k) = 0
for i ∈ N≥N . At each time instant k, u(k) = Kx(k)+ c(k|k) is applied
to the system.

To reduce the amount of communication, in the self-triggered
scheme, the states x(k) are only measured and transmitted to the
controller at sampling instants kj ∈ N, j ∈ N, which evolve as
kj+1 = kj + Mj with k0 = 0. The inter-sampling time Mj ∈

N[1,N−1] is determined by a self-triggering mechanism based on
the state at sampling instant kj. Since the values of x(kj + i|kj),
i ∈ N[1,Mj−1], cannot be determined at time kj in the presence of
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stochastic disturbances, the predictive control sequence in (3) is
not applicable to control the systemat time instants between kj and
kj+1 in an open-loop fashion andwe redefine it in the self-triggered
setup as

u(kj + i|kj) = Kz(kj + i|kj) + c(kj + i|kj),
i ∈ N≤Mj−1, (4)

u(kj + i|kj) = Kx(kj + i|kj) + c(kj + i|kj),
i ∈ N[Mj,N−1], (5)

u(kj + i|kj) = Kx(kj + i|kj), i ∈ N≥N , (6)

where the nominal state z(kj + i|kj) ≜ E[x(kj + i|kj)] evolves as

z(kj + i + 1|kj) = Φz(kj + i|kj) + Bc(kj + i|kj), i ∈ N,

with z(kj|kj) = x(kj). The predictive controller (4) is designed with
respect to nominal state predictions, which are deterministic and
only depend on x(kj). And (5) is designed with respect to disturbed
state predictions, which are introduced aiming to reduce the effect
of the uncertainty in the prediction. After the Nth prediction time,
the predictive controller (6) is given by the state feedback law.
Notice that the number of decision variables is a finiteN . As shown
in Fig. 1, after solving an MPC optimization problem at sampling
instant kj, the first Mj predictive control inputs, i.e., u(kj|kj), u(kj +
1|kj), . . . , u(kj +Mj − 1|kj), are transmitted to the actuator and are
applied to the system until the next sampling instant kj+1.

The goal is to design c(kj) = [cT (kj|kj) cT (kj + 1|kj) . . . cT (kj +

N−1|kj)]T ∈ RNu×N and tomaximizeMj at each sampling instant kj,
such that a low frequency of control updates and communication
is achieved, while stabilizing a neighborhood of the origin and
guaranteeing probabilistic constraint satisfaction.

3. Optimization problem formulation

In this section, the problem described in Section 2 is formulated
to a computationally tractable MPC optimization problem with
a fixed inter-sampling time M ∈ N[1,N−1]. Define the prototype
optimization problem PM

o (c(kj)) as follows.

min
c(kj)

JM (c(kj)) ≜
1
α

M−1∑
i=0

Ekj [∥x(kj + i|kj)∥2
Q

+ ∥u(kj + i|kj)∥2
R − ℓss] +

∞∑
i=M

Ekj [∥x(kj + i|kj)∥2
Q

+ ∥u(kj + i|kj)∥2
R − ℓss] (7)

subject to (4)–(6) withMj = M , z(kj|kj) = x(kj), and

∀i ∈ N≤M−2 : z(kj + i + 1|kj) = Az(kj + i|kj)
+ Bu(kj + i|kj) (8a)

∀i ∈ N : x(kj + i + 1|kj) = Ax(kj + i|kj)
+ Bu(kj + i|kj) + w(kj + i) (8b)

∀i ∈ N≥1 : Pr{gT x(kj + i|kj) ≤ h} ≥ p. (8c)

Therein, Q ≻ 0 and R ≻ 0 are weighting matrices and scalar
α ≥ 1 is a tuning parameter. The constant ℓss ≜ limi→∞Ekj [∥x(kj +
i|kj)∥2

Q + ∥u(kj + i|kj)∥2
R] can be computed offline by Theorem 2

of Cannon, Kouvaritakis, and Wu (2009). Although the infinite-
horizon cost in (7) can be expressed as a quadratic function (see
Remark 3.2), solving PM

o (c(kj)) online is still unrealistic due to the
presence of an infinite number of probabilistic constraints.

Remark 3.1. Based on the sampling interval, cost function (7) is
divided into two parts similar to Aydiner et al. (2015) and Brunner
et al. (2016). In Aydiner et al. (2015) and Brunner et al. (2016), the
cost function consists of finite-horizon costs and a terminal cost
which are defined by nominal systems. Considering the presence
of stochastic uncertainties, we define (7) in expectation.

Remark 3.2. Using the probabilistic distribution of w and extend-
ing the proof of Theorem 2 in Cannon et al. (2009), cost function
(7) can be written as a quadratic form of c(kj) given by JM (c(kj)) =

cT (kj)Pccc(kj)+cT (kj)Pcxx(kj)+ fx(x(kj))+ fw,where Pcc ≻ 0, Pcc and
Pcx are constant matrices, and function fx(x(kj)) and constant fw are
determined, respectively, by the state x(kj) and the distribution of
w regardless of the choice of c(kj).

3.1. Probabilistic constraint handling strategy

To render PM
o (c(kj)) computationally tractable, we will con-

vert probabilistic constraints (8c) to deterministic ones, such that
the observed probability of constraint satisfaction is tight to the
specified value and the derived constraints are recursively feasible
for the closed-loop system. Under the assumption that the first
M inputs in the sequence are applied in an open-loop fashion,
Lemma 3.1 gives an equivalent form of (8c).

Lemma 3.1. For anyM ∈ N[1,N−1] and any sampling instant kj, j ∈ N,
probabilistic constraints Pr{gT x(kj + i|kj) ≤ h} ≥ p for i ∈ N≥1 are
satisfied if and only if c(kj) satisfies

gTΦ ix(kj) + gTHic(kj) ≤ h − γM
i , i ∈ N≥1, (9)

where Hi ≜ [Φ i−1B Φ i−2B . . . B 0 . . . 0] and γM
i is defined as the

minimum value such that⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Pr{gTAi−1w(kj|kj) + · · · + gTw(kj + i − 1|kj)
≤ γM

i } = p, i ∈ N[1,M],

Pr
{
gTΦ i−M

M−1∑
ℓ=0

Aℓw(kj + ℓ|kj) +

i−M−1∑
ℓ=0

gTΦℓ

w(kj + i − 1 − ℓ|kj) ≤ γM
i

}
= p, i ∈ N≥M+1.

(10)

Proof. For i ∈ N[1,M], it holds by (4) that x(kj + i|kj) = Φ ix(kj) +

Hic(kj) + Ai−1w(kj|kj) + · · · + w(kj + i − 1|kj). Further, for i ∈

N≥M+1, it follows from (5) that x(kj + i|kj) = Φ ix(kj) + Hic(kj) +

Φ i−M∑M−1
ℓ=0 Aℓw(kj + ℓ|kj)+

∑i−M−1
ℓ=0 Φℓw(kj + i−1− ℓ|kj). Hence,

it follows directly by (10) that (8c) are equivalent to deterministic
constraints (9).

In practice, the values of γM
i can be approximated using uni-

variate convolutions with arbitrarily small approximation error
(see Dai, Xia, Gao, & Cannon, 2017, Remark 3.2). The approxi-
mation can be performed offline in polynomial time. By modi-
fying Lemma 3.1, recursively feasible constraints are derived in
Theorem 3.1 ensuring the satisfaction of (2).

Theorem 3.1. Given any M ∈ N[1,N−1] and any sampling instant kj,
j ∈ N, let for all k ∈ N[kj,kj+1−1]{
x(k + 1) = Ax(k) + Bu(k) + w(k),
u(k) = Kz(k|kj) + c(k|kj).

(11)

Suppose c(kj) satisfies

gTΦ ix(kj) + gTHic(kj) ≤ h − βM
i , i ∈ N≥1, (12)

where βM
i is defined as the maximum element of the ith column of

Γ in (13) with dMi ≜ maxw∈WgTΦ i−M−1w, bMi ≜ maxw∈WgTΦ i−M
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Γ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

γM
1 · · · γM

M γM
M+1 γM

M+2 γM
M+3 · · ·

0 · · · 0 bMM+1 + ξM
M+1 bMM+2 + ξM

M+2 bMM+3 + ξM
M+3 · · ·

0 · · · 0 0 bMM+2 + dMM+2 + ξM
M+1 bMM+3 + dMM+3 + ξM

M+2 · · ·

0 · · · 0 0 0 bMM+3 + dMM+3 + dMM+2 + ξM
M+1 · · ·

...
...

...
...

...
...

. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (13)

Box I.∑M−1
ℓ=0 Aℓw, and ξM

i the minimum value such that Pr{
∑i−M−1

ℓ=0 gTΦℓw

≤ ξM
i } = p. Then, for the closed-loop system (11), (i) there exists

at least one solution c(kj+ℓ) satisfying (12) for M = 1 at all future
sampling instants kj+ℓ, ℓ ∈ N≥1; (ii) probabilistic constraints (2) are
satisfied for all k ∈ N.

Proof. For (i), if βM
i is defined as the first row of (13) given in Box I,

then (12) is equivalent to (9). Next, consider the feasibility of (12)
for M = 1 at time kj+1. Define T as the shift matrix with ones on
the superdiagonal and zeros elsewhere. Based on the information
available at current sampling instant kj and constructing a can-
didate solution c̃(kj+1) ≜ TMc(kj) = [cT (kj + M|kj) . . . cT (kj +

N − 1|kj) 0 . . . 0]T , it yields that x(kj+1 + i|kj+1) = Φ i+Mx(kj) +

Hi+Mc(kj)+Φ ie(kj+1|kj+1)+Φ i−1w(kj+1|kj+1)+ · · ·+w(kj+1 + i−
1|kj+1), i ∈ N≥1, with e(kj+1|kj+1) ≜ AM−1w(kj|kj) + · · · + w(kj +
M − 1|kj). Since e(kj+1|kj+1) depends on w(kj|kj), . . . , w(kj + M −

1|kj) which have already been realized at time kj+1, the worst-case
bound on e(kj+1|kj+1) needs to be considered explicitly at time kj.
Hence, to ensure c̃(kj+1) is a feasible solution at time kj+1, we must
require at time kj

gTΦ ix(kj) + gTHic(kj) ≤ h − (bMi + ξM
i ), i ∈ N≥M+1, (14)

which corresponds to definingβM
i in (12) as the second rowof (13).

By the same arguments, the feasibility of (12) for M = 1 at time
kj+ℓ, ℓ ∈ N≥2, can be ensured, if βM

i is defined as the (ℓ + 1)th row
of (13) and it holds at time kj that

gTΦ ix(kj) + gTHic(kj) ≤ h − (bMi + dMi + dMi−1 + · · ·

+ dMi−ℓ+2 + ξM
i−ℓ+1), i ∈ N≥M+ℓ. (15)

Taking the intersection of (9), (14), and (15) for ℓ ∈ N≥2, the
feasibility at all sampling instants kj, kj+1, kj+2, . . . can be ensured
if βM

i in (12) is chosen as the maximum element of the ith column
of (13), thereby proving (i).

For (ii), from Lemma 3.1, constraints (12) ensure that
Pr{gT x(kj + i|kj) ≤ h} ≥ p is satisfied for all i ∈ N[1,M], which
implies the satisfaction of (2) for all k ∈ N[kj+1,kj+1]. By recursive
feasibility of (12) in (i), it holds that (2) is satisfied for all k ∈

N[kj+1,kj+1] and all j ∈ N.

Parameters γM
i in (9) and βM

i in (12) are determined by not only
the length i of the predicted time steps but also the length M of
the open-loop steps. By setting M = 1, the results in Lemma 3.1
and Theorem 3.1 are reduced to Theorems 1 and 3 in Kouvaritakis
et al. (2010). In the following, two properties of the sequence βM

i ,
i ∈ N≥1, are established.

Lemma 3.2. For all M ∈ N[1,N−1], it holds that

βM
i =

⎧⎪⎪⎨⎪⎪⎩
γM
i , i ∈ N[1,M],

bMi +

i∑
ℓ=M+2

dMℓ + γM
1 , i ∈ N≥M+1.

(16)

Proof. For i ∈ N[1,M], (16) holds directly. For i ∈ N≥M+1, we have
γM
i ≤ bMi +ξM

i . Further, it holds for i ∈ N≥M+2 that ξM
i ≤ dMi +ξM

i−1.
Then, it can be concluded that βM

i is equal to the last non-zero
element in the ith column of (13), which gives (16).

Lemma 3.3. For all M ∈ N[1,N−1] and all i ∈ N≥1, it holds that
βM
i+M = bMi+M + β1

i .

Proof. From Lemma 3.2, β1
i can be rewritten as β1

i =
∑i−1

ℓ=1
maxw∈WgTΦℓw + γ 1

1 , i ∈ N≥2. Then, from the fact that γ 1
1 = γM

1 ,
it follows for i ∈ N≥1 that βM

i+M = bMi+M +
∑i−1

ℓ=1maxw∈WgTΦℓw +

γM
1 = bMi+M + β1

i .

3.2. Terminal set

To ensure that constraints (12) are satisfied over an infinite
prediction horizon, a terminal set is used. First, due to c(kj + N +

i|kj) = 0 for all i ∈ N, the terminal dynamics of the nominal system
can be rewritten as z(kj +N + i+ 1|kj) = Φz(kj +N + i|kj), i ∈ N.
Define a constraint set for z(kj + N|kj) as

{z | gTΦ iz ≤ h − βM
N+i, i ∈ N}. (17)

Then given some N̂ ∈ N, split the infinite prediction horizon in
(17) into two stages i ∈ N

≤M+N̂ and i ∈ N
≥M+N̂+1. In the second

stage, an upper bound of βM
i is used, which is introduced through

the following lemma.

Lemma 3.4. For all M ∈ N[1,N−1], there exist a scalar 0 < ρ < 1 and
a positive definite matrix S such that the sequence βM

i for i ∈ N≥M+1
is upper bounded by

βM
i ≤ β̄M ≜ b̄M +

v−1∑
ℓ=M+2

dMℓ +
ρv

1 − ρ
∥g∥S + γM

1 , (18)

with any integer v ∈ N≥M+3 and b̄M ≜ maxi∈N≥M+1,w∈WgTΦ i−M∑M−1
ℓ=0 Aℓw.

Proof. In (16), the existence of the upper bound b̄M on bMi can
be ensured by the strict stability of Φ . Furthermore, it holds that∑i

ℓ=M+2d
M
ℓ ≤

∑
∞

ℓ=M+2d
M
ℓ . From Lemma 5 of Cannon, Cheng,

Kouvaritakis, andRaković (2012), the boundon
∑

∞

ℓ=M+2d
M
ℓ is given

by
∑v−1

ℓ=M+2d
M
ℓ +

ρv

1−ρ
∥g∥S , thereby completing the proof.

The scalar ρ and matrix S can be obtained by solving semidef-
inite programs as (16) in Cannon et al. (2012). Replace βM

N+i in
(17) by the bound β̄M for i ∈ N

≥M+N̂+1 and define an inner
approximation of (17) as

{z | gTΦ iz ≤ h − βM
N+i, i ∈ N

≤M+N̂ ,

gTΦ iz ≤ h − β̄M , i ∈ N
≥M+N̂ + 1}. (19)

Finally, using Theorem 2.3 of Gilbert and Tan (1991), there exists
n∗

∈ N≥1 such that the infinite number of constraints in (19)
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are ensured through the first M + N̂ + n∗ constraints. Hence, the
terminal set for z(kj + N|kj) is constructed as follows:

χM
f ≜ {z | gTΦ iz ≤ h − βM

N+i, i ∈ N
≤M+N̂ ,

gTΦ iz ≤ h − β̄M , i ∈ N
[M+N̂+1,M+N̂+n∗]

}, (20)

where the smallest allowable n∗ can be computed offline by solving
a finite number of linear programs (see Gilbert & Tan, 1991).

3.3. Optimization problem

Given a state x(kj) andM ∈ N[1,N−1], the constraints at sampling
instant kj are summarized as follows.

z(kj|kj) = x(kj) (21a)

∀i ∈ N≤N−1 :

z(kj + i + 1|kj) = Φz(kj + i|kj) + Bc(kj + i|kj) (21b)

∀i ∈ N≤M−1 :

u(kj + i|kj) = Kz(kj + i|kj) + c(kj + i|kj) (21c)

∀i ∈ N[1,N−1] :

gTΦ ix(kj) + gTHic(kj) ≤ h − βM
i (21d)

z(kj + N|kj) ∈ χM
f . (21e)

Note that there is only a finite number of deterministic constraints
in (21), which can be computed for the predictions of the nominal
model. Define the set of all c(kj) satisfying (21) as

FM (x(kj)) ≜ {c(kj) | (21) holds},

and the state x(kj) feasible if FM (x(kj)) ̸= ∅.
At sampling instant kj, an MPC optimization problem PM (c(kj)),

which is the tractable version of PM
o (c(kj)), can now be formulated

as

VM (kj) ≜ min
c(kj)∈FM (x(kj))

JM (c(kj)),

c∗(kj) ≜ argmin
c(kj)∈FM (x(kj))

JM (c(kj)),

where VM (kj) denotes the optimal value function and c∗(kj) the
corresponding optimal solution.

Remark 3.3. Clearly constraints (21) are all affine functions in c(kj)
and JM (c(kj)) is a quadratic cost function, see Remark 3.2. Thus,
PM (c(kj)) is a quadratic programming problem. More importantly,
the computational complexity of PM (c(kj)) is not increased com-
pared with the periodically-triggered MPC scheme in Kouvaritakis
et al. (2010) regarding the number of constraints and decision
variables.

4. Stochastic self-triggered MPC

Using the above MPC optimization problem as a basis, a SSMPC
algorithm is designed in this section. In the self-triggered setup,
the goal at each sampling instant kj is to decide not only c(kj) but
also the next sampling instant kj+1. To reduce the computation and
communication, we need to find the largestMj such that PMj (c(kj))
is feasible for some c(kj) ∈ FMj (x(kj)) while still maintaining
certain performance of the closed-loop system. Define the self-
triggered MPC problem S(x(kj)) as

M∗

j ≜ max{M ∈ N[1,Mmax] | FM (x(kj)) ̸= ∅,

VM (kj) ≤ V 1(kj)}, (22)

c∗(kj) ≜ argmin
c(kj)∈F

M∗
j (x(kj))

JM
∗
j (c(kj)), (23)

where Mmax ∈ N[1,N−1] is an a priori maximum of the inter-
sampling time and V 1(kj) is the optimal value function correspond-
ing to theMPC scheme inwhich control updates take place at every
time instant.

Remark 4.1. The idea adopted in (22) is similar to Aydiner et al.
(2015), Barradas Berglind et al. (2012) and Brunner et al. (2016), in
which, by introducing a tuning parameter α as in (7), the optimal
value function of theM-step open-loopMPC scheme is required to
be notworse than that of a periodically-triggeredMPC scheme. The
inherent differences are that in Barradas Berglind et al. (2012) the
system is undisturbed and in Aydiner et al. (2015) and Brunner
et al. (2016) the system is subject to bounded disturbances and
hard constraints. As a result, the choice of the cost function and the
design of the tightened constraint sets are significantly different
from that in (22).

Remark 4.2. By employing the triggering mechanism in (22), pa-
rameterα maybe used to trade off the control performance and the
frequency of control updates. Ifwe chooseα = 1, the optimal value
function VM (kj) for M ∈ N[1,Mmax] might be in general no smaller
than V 1(kj), thereby leading to a small inter-sampling time M∗

j . To
obtain a larger one, we can increase the value of α to counter the
effect of the open-loop control, while possibly sacrificing slightly
the control performance.

The resulting SSMPC algorithm is summarized below.

Algorithm 1 SSMPC
Offline:
Determine α, Q , R, K , N , N̂ , Mmax, and n∗. For all M ∈ N[1,Mmax],
compute γM

i , i ∈ N[1,M], bMM+i, i ∈ N
[1,N+N̂]

, dMM+i, i ∈ N
[2,N+N̂]

,
ξM
M+1, and β̄M .
Online:

1: Initialize k = 0, measure the initial state x(k) and obtain M∗

and c∗(k) by solving S(x(k)).
2: For all i ∈ N≤M∗−1, apply the input u(k + i) = Kz(k + i|k) +

c∗(k + i|k) to the system.
3: Take the next sampling instant as k + M∗ and set k = k + M∗.
4: Measure the current state x(k).
5: Solve S(x(k)) to obtainM∗ and c∗(k).
6: Go to step 2.

Under Algorithm 1, the resulting closed-loop system is{
x(k + 1) = Ax(k) + Bu(k) + w(k),
u(k) = Kz(k|kj) + c∗(k|kj), k ∈ N[kj,kj+1−1],

(24)

kj+1 = kj + M∗

j , (25)

for j ∈ N and k0 = 0, which has the following properties.

Theorem 4.1 (Recursive Feasibility and Constraint Satisfaction). If
S(x(k0)) is feasible at time k0, then the feasibility of S(x(kj)) can be
ensured at every sampling instant kj, j ∈ N, for (24)–(25) under
Algorithm 1. Furthermore, for all k ∈ N, constraints (2) are satisfied.

Proof. Consider two successive sampling instants kj and kj+1. Let
Mj and c(kj) be solutions of S(x(kj)) at time kj. Define c̃(kj+1) =

TMjc(kj). We will show that c̃(kj+1) and Mj+1 = 1 are the feasible
solutions of S(x(kj+1)) at time kj+1, i.e., c̃(kj+1) ∈ F1(x(kj+1)).

Constraints (21a)–(21c) in F1(x(kj+1)) are trivially satisfied.
The satisfaction of (21d) by c̃(kj+1) is ensured from Theorem 3.1.
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(a) SSMPC. (b) PSMPC.

(c) RSMPC. (d) Unconstrained LQR control.

Fig. 2. Closed-loop trajectories under four different control schemes for 100 realizations of the uncertainty sequence.

Further, for all i ∈ N, we have

gTΦ iz(kj + Mj + N|kj + Mj)

= gTΦMj+iz(kj + N|kj) + gTΦN+i
Mj−1∑
ℓ=0

Aℓw

≤ h − β
Mj
N+i+Mj

+ b
Mj
N+i+Mj

≤ h − β1
N+i,

where the last inequality follows from Lemma 3.3. Therefore, we
immediately obtain that z(kj+1 + N|kj+1) ∈ χ1

f , i.e., (21e) in
F1(x(kj+1)) is satisfied. From all of the above, it can be concluded
that at time kj+1, S(x(kj+1)) is feasible and further by induction,
S(x(kj)) are feasible at all sampling instants kj, j ∈ N.

For all k ∈ N, the satisfaction of probabilistic constraints (2) is
guaranteed directly from Theorem 3.1.

Theorem 4.2 (Quadratic Stability Property). The closed-loop sys-
tem (24)–(25) under Algorithm 1 satisfies the quadratic stability
condition

lim
kr→∞

1
kr

kr−1∑
k=k0

E[∥x(k)∥2
Q + ∥u(k)∥2

R] ≤ ℓss. (26)

Proof. For any j ∈ N, let Mj and c(kj) be the optimal solutions
at sampling instant kj and the corresponding optimal value func-
tion VMj (kj) be a Lyapunov function candidate. As in the proof of
Theorem 4.1, c̃(kj+1) = TMjc(kj) together with Mj+1 = 1 is a
feasible solution at sampling instant kj+1. Define Ṽ 1(kj+1) as the
value function associated with this feasible solution. Using the fact
that α ≥ 1, it holds for the closed-loop system that

Ekj [Ṽ
1(kj+1)] ≤ VMj (kj) −

1
α

Mj−1∑
i=0

Ekj [∥x(kj + i|kj)∥2
Q

+ ∥u(kj + i|kj)∥2
R − ℓss]

≤ V 1(kj) −
1
α

Mj−1∑
i=0

Ekj [∥x(kj + i|kj)∥2
Q

+ ∥u(kj + i|kj)∥2
R − ℓss],

where the second inequality follows from (22). The optimality of
the solution leads to

Ekj [V
1(kj+1)] ≤ V 1(kj) −

1
α

Mj−1∑
i=0

Ekj [∥x(kj + i|kj)∥2
Q

+ ∥u(kj + i|kj)∥2
R − ℓss].
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Summing the inequality for j ∈ N[0,r−1] and taking expectation on
both sides,
r−1∑
j=0

1
α

Mj−1∑
i=0

E[∥x(kj + i|kj)∥2
Q + ∥u(kj + i|kj)∥2

R − ℓss]

≤ E[V 1(k0)] − E[V 1(kr )].

Since E[V 1(k0)] is finite by assumption and E[V 1(kr )] is lower
bounded due to Remark 3.2, it holds that

lim
r→∞

1
kr

r−1∑
j=0

Mj−1∑
i=0

E[∥x(kj + i|kj)∥2
Q + ∥u(kj + i|kj)∥2

R]

≤ ℓss,

which implies the quadratic stability condition (26).

5. Numerical example

Simulation studies are provided to show the effectiveness and
the advantages of the proposed SSMPC in comparison with PSMPC
(by setting Mj = 1), RSMPC (by setting p = 1), and the un-
constrained LQR control. Consider a linearized DC–DC converter
system as in Lorenzen, Dabbene, Tempo, and Allgöwer (2017),

x(k + 1) =

[
1 0.0075

−0.143 0.996

]
x(k) +

[
4.798
0.115

]
u(k) + w(k)

subject to Pr{[1 0]x(k) ≤ 2} ≥ 0.8. Elements of w(k) are assumed
to be i.i.d. truncated Gaussian random variables with zero mean,
variance 0.042, and bounded by |wi(k)| ≤ 0.1 for i = 1, 2. In (7),
Q = diag{1, 3.5}, R = 0.1, α = 1.2, and ℓss = 0.37. K = [0.263 −

0.329] is chosen as the unconstrained LQR gain. The prediction
horizon and horizons in (21e) are N = 8, N̂ = 12, and n∗

= 1.
The maximal open-loop length isMmax = 8. To obtain βM

i in (21d),
γM
i , i ∈ N[1,M], and ξM

M+1 are calculated according to Remark 3.2
of Dai et al. (2017). In (21e), we choose v = 13 and calculate
ρ and S of β̄M by (16) in Cannon et al. (2012). Simulations for
four control schemes are performed with 1000 realizations of the
uncertainty sequence, initial condition [2.5 2.8]T , and a simulation
length of Trun = 18 steps. The simulations are implemented in
Matlab R2012b with Yalmip and SeDuMi solver.

Stability and constraint violation: The state trajectories {x(k), k =

0, 1, . . .} for 100 realizations of the uncertainty sequence are de-
picted in Fig. 2 with the black dotted lines being the constraint
bounds. The right plots of subfigure (a)–(c) in Fig. 2 enlarge the
region of constraint bound to show the constraint violation. As it
turns out, with SSMPC, the observed probabilities of constraint vi-
olation in the first 5 steps are 19.7%, 20.4%, 19.8%, 20.2%, and 16.3%,
while by PSMPC, the violation rates are 19.8%, 20.1%, 19.9%, 16.8%,
and 9% for the same 1000 realizations. Furthermore, as expected,
RSMPC achieves no constraint violations, whereas violation rate
is 100% in the first 3 steps under the unconstrained LQR control.
The simulation results indicate that by the proposed SSMPC, the
closed-loop state converges to a neighborhood of the origin and the
constraint violation is tight to the specified violation value 20%.

Average inter-sampling time and performance: To illustrate the de-
creased communication achieved by SSMPC, Fig. 3 shows the state
trajectories under SSMPC and PSMPC for 1 realization of the uncer-
tainty sequence. The sampling instants are highlighted by red solid
circles. It can be observed that the number of the sampling instants
is significantly reduced. The associated average number of steps
between sampling instants is compared. For each scheme, the same
uncertainty sequences are used and the average is taken over 1000
realizations and 18 steps. Under the self-triggered scheme, the
average inter-sampling time is M̄ = 2.9, which leads to an average

(a) SSMPC.

(b) PSMPC.

Fig. 3. State trajectories under SSMPC and PSMPC for 1 realization of the uncertainty
sequence.

reduction in communication by 65.5% compared to the scheme
with updates at every time instant. In addition, let us compare the
performance measure

Jperf =
1

Trun

Trun−1∑
k=0

{∥x(k)∥2
Q + ∥u(k)∥2

Q − ℓss}.

It is 6.82 for SSMPC, as compared with 6.75 for PSMPC. It can
be concluded that by the proposed SSMPC, communication is
decreased without much loss in performance, which can also be
illustrated by Fig. 3.

6. Conclusion

We proposed a SSMPC strategy for the stabilization of systems
with additive disturbances and probabilistic constraints. It was
shown that the required amount of communication was reduced
while simultaneously guaranteeing a specific performance loss
when compared with a periodically-triggered scheme. By taking
the disturbances occurring during the inter-sampling period into
account and making use of their probability distribution, a set of
deterministic constraints and terminal sets were constructed to
formulate a computationally tractable MPC optimization problem.
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Probabilistic constraints were ensured at each time instant de-
spite the open-loop operation between any two sampling instants.
Moreover, recursive feasibility and stability were proved for the
closed-loop system. The results were compared in simulations
with other MPC methods from the literature.
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