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Abstract— This paper presents a learning-based approach
for disturbance attenuation for a non-linear dynamical system
with event-based observer and model predictive control (MPC).
Using the empirical risk minimization (ERM) method, we can
obtain a learning error bound which is function of the number
of samples, learning parameters, and model complexity. It
enables us to analyze the closed-loop stability in terms of
the learning property, where the state estimation error by the
ERM learning is guaranteed to be bounded. Simulation results
underline the learning’s capability, the control performance and
the event-triggering efficiency in comparison to the conventional
event-triggered control scheme.

I. INTRODUCTION

Event-based control as a sampled data control scheme
has been developed aiming at reducing the communication
in networked control systems, by sending information at
the observer side only when the desired event condition
cannot be guaranteed. Accordingly, the event-based control,
represented by model predictive control (MPC) in this paper,
saves computational energy as well, by executing the control
update when either the information is given from the observer
or the prediction horizon is expired. However, if there is
large disturbance not to be compensated, the event-triggering
instants occur too frequently to make the event-based control
scheme meaningless [1], [2].

When disturbance comes from model uncertainty, which
is dependent to system state and control variables, there have
been a variety of studies to handle the unknown uncertainty,
such as supervised learning, system identification, and adap-
tive control techniques. This paper proposes a supervised
learning technique for finding an estimator for disturbance
attenuation. The proposed estimator operates based on the
training data samples which contain information regarding
the inherent relationship between the true uncertainty and the
variables of dynamical states and control inputs. The system
identification [3] can have the similar purpose to estimate a
model from observation data, but it focuses on establishing
convergence of the estimation error when the number of
samples tends to infinity. When the objective is to analyze the
control performance with respect to learning performance for
a given a fixed number of samples, the supervised learning
methods are more suitable than the system identification
technique.

Some adaptive control techniques applying structure of neu-
ral network [4], [5] have been reported to deal with unknown
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disturbance. Rather than using training data, they update the
parameters of the neural network based on Lyapunov theory
to guarantee stability. However, these methods do not usually
account for the randomness of the disturbance.

Many supervised learning [6]–[10] have been developed
for disturbance attenuation problem. However, they do rarely
address performance guarantees in control theory perspective
with respect to learning influences. The analysis of the
learning effects on the control system can help a control
system designer to figure out how many the number training
samples, how much the learning model complexity, and what
range of learning parameters are required to acheive a given
control object. These are important concepts in designing
and assessing the learning-based control system for realistic
applications.

The main contribution of this paper is applying a supervised
learning technique to compensate for the disturbance and to
improve the triggering efficiency and the control performance,
while providing stability analysis with respect to the learning
properties. We employ empirical risk minimization (ERM)
method for learning. ERM is a fundamental statistical learning
theory, which is the basis of rich learning techniques such
as neural network, logistic regression, and support vector
machine [11]. Using the ERM method, we can obtain an
upper-bound on the learning error. The bound depends on the
variables of the model complexity, the learning parameters,
and the number of samples. This learning error bound not only
depends on the state estimation error, but also depends on an
upper bound of stationary state. The proposed algorithm
is numerically evaluated and its efficiency is shown via
simulation.

The rest of this paper is organized as follows. Section
II presents the system description. Section III suggests the
learning-based observer for event-based MPC. Section IV
describes the detail of empirical risk minimization. Section
V shows the simulation results and concluding remarks are
given in Section VI.

II. PROBLEM FORMULATION

Consider the general model of a discrete-time nonlinear
system

xk+1 = f(xk, uk) (1)
yk = Cxk, (2)

with state x ∈ Rn control input u ∈ Rm, and output y ∈ Rm,
and f(·, ·) is a vector-valued unknown nonlinear function.
The objective of an observer is to estimate the state x in the
presence of unknown function f(x, u) in the system dynamics
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(1). It is assumed that we can select a Hurwitz matrix A such
that the pair (A,C) is observable, and similarly we can find
B such that (A,B) is controllable, then we can define the
system model in the following:

xk+1 = Axk +Buk + g(xk, uk) (3)
yk = Cxk, (4)

where g(x, u) = f(x, u)− (Ax+Bu) ∈ Rn that can be
treated as the model uncertainty, external disturbance, or
matched-input disturbance.

The observer model is defined as follows:

x̂k+1 = Ax̂k +Buk + ĝ(x̂k, uk) (5)
+G(yk − ŷk)

ŷk = Cx̂k, (6)

where x̂k is the estimated state, and the observer gain G ∈
Rn×m can be selected such that A−GC becomes a Hurwitz
matrix. It is assumed that the state, input, and disturbance
belong to the compact sets:

x ∈ X , u ∈ U , g(·, ·) ∈ G, (7)

where G is a set of constraint.
For a control mechanism, MPC is considered in this paper.

It calculates predictions of current and future control inputs by
solving a online finite horizon optimal control problem. The
current and predictive states and control inputs are denoted
in vector format as

X̂(k) = {x̂(k + i|k)}i=Ni=0 , Û(k) = {û(k + i|k)}i=N−1
i=0 ,

where N is length of horizon and x(k|k) = xk. Thus, the
optimization problem is formulated as follows

min
u(k)

J(X̂(k), Û(k)) = ‖x̂(k +N |k)‖2QN

+

N−1∑
i=0

(
‖x̂(k + i|k)‖2Q + ‖û(k + i|k)‖2R

)
(8)

subject to

x̂(k + j + 1|k) = Ax̂(k + j|k) +Bû(k + j|k)

+ ĝ(x̂(k + j|k), û(k + j|k)), (9)
û(k + j|k) ∈ U ,
x̂(k + j|k) ∈ X ,
∀j = 0, . . . , N − 1.

The weighting matrices QN , Q, and R are design parameters.
The initial state estimation is given by observer:

x̂(k|k) = Ax̂(k − 1|k`) +Bû(k − 1|k`)
+ ĝ(x̂(k − 1|k`), û(k − 1|k`)) (10)
+G(y(k)− Cx̂(k − 1|k`)),

where the estimation x̂(k − 1|k`) and the optimal control
input û(k − 1|k`) were obtained from the previous event-
triggering instant k`, which have been kept in memory. In

Fig. 1: System architecture of event-based observer and MPC
loop. The disturbance estimator is designed by a machine
learning technique.

time-triggering MPC, it is decided that ` = k − 1. In event-
triggering MPC, according to a triggering rule, ` is selected
among k − 1 ≤ ` ≤ k +N − 2.

The main purpose of adopting machine learning technique
is to model ĝ(x, u) in order to identify the nonlinearity of
system model and help to estimate the state. First, training
samples are collected from repetitive control implements. The
obtained training sample set D = {(xki , uki)T , xki+1}Ni=1,
where ki is a discrete time index in the training phase
and xki+1 = Axki +Buki + w with random noise w. These
samples are used to learn the model ĝ(x, u). We note that the
estimator is desgined in the batch mode thorugh a machine
learning technique, so the online learning or the active
learning is not considered in this paper.

III. EVENT-BASED OBSERVER AND MPC

The control architecture for the event-triggered MPC is
depiced in Fig. 1. It consists of the plant, the observer, the
event generator, the MPC as controller, the actuator choosing
one control input among the predictive inputs provided by
MPC, and the disturbance estimator. By the event generator,
information is sent over the feedback link only if the event
condition is satisfied. Between two event-triggered instants or
the lapse of the horizon time, the rest of the predictive control
inputs are applied to the plant. The discrete-time instants at
which the event occurs are denoted by k`, where l ∈ N is the
event counter. We set the first event ` = 0 at time k0 = 0.
The disturbance estimator is established in a training phase
as batch mode.

Without considering observer in event-triggered MPC, the
triggering condition usually is based on on state error under
the assumption that initial state is given. In case that the initial
state must be estimated via an observer, the estimation error
is propagated to the predictive state estimates. This paper sets
the event-triggering condition by the error of observer-based
estimation and state transition estimation originated from the
last event, as in [12], [13]. Suppose that we obtained the
optimal solution at the last event-triggering instant k`, given
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by

U(k`) = [u(k`|k`), u(k` + 1|k`), . . . , u(k` +N − 1|k`)].
(11)

Given the time steps k` + j with 1 ≤ j < N as the next
potential event-triggering instant, we can define two state
estimates such that x̂(k` + j|k`) is the estimation propagated
from the last event instant k`, and x̄(k`+ j) is the estimation
by using a measurement.

The event occurs when either the difference between the
two estimates exceeds a certain threshold, or the prediction
step exceeds the horizon N , given by:

‖x̄(k` + j)− x̂(k` + j|k`)‖ ≥ ‖GC‖ · etrg, (12)
or j ≥ N. (13)

Theorem 1: If the event condition in (12) holds, the expec-
tation of the prediction error êk`+j = x(k`+j)− x̂(k`+j|k`)
for 0 ≤ j ≤ N − 1 is bounded as

E[‖êk`+j ]‖ ≤ emax, (14)

with
emax = ‖A‖ · etrg + eg, (15)

where eg is the upper bound of E‖gk`+j−1 − ĝk`+j−1‖ and
ĝ(≡ ĝ(D)) is designed by an offlie learning based on the
training data set D, which will be specified in Section IV.

Proof:
The evolution of the prediction error is in the following.

êk`+j = xk`+j − x̂(k` + j|k`)
= Axk`+j−1 +Bû(k` + j − 1|k`) + gk`+j−1

− (Ax̂(k` + j − 1|k`) +Bû(k` + j − 1|k`) + ĝk`+j−1)

= Axk`+j−1 − x̂(k` + j − 1|k`) + gk`+j−1 − ĝk`+j−1

= Aêk`+j−1 + gk`+j−1 − ĝk`+j−1. (16)

From (12), we can confirm that

‖x̄(k` + j − 1)− x̂(k` + j − 1|k`)‖ < ‖GC‖ · etrg, (17)

as long as the event does not occur upto the point of
k` + j − 1. As follows, the observer error êk`+j−1 in (16) can
be represented by x̄(k` + j − 1)− x̂(k` + j − 1|k`) , given
by:

x̄(k` + j − 1)− x̂(k` + j − 1|k`)
= (A−GC)x̂(k` + j − 2|k`) +Bû(k` + j − 2|k`)
+ ĝk`+j−2 +GCxk`+j−1

− (Ax̂(k` + j − 2|k`) +Bû(k` + j − 2|k`) + ĝk`+j−2)

= GC (xk`+j−1 − x̂(k` + j − 1|k`))
= GCêk`+j−1. (18)

Based on (17) and (18), we can have the relationship:

‖x̄(k` + j − 1)− x̂(k` + j − 1|k`)‖
= ‖GCêk`+j−1‖ ≤ ‖GC‖ · ‖êk`+j−1‖ < ‖GC‖ · etrg.

(19)

Therefore, we have

‖êk`+j−1‖ < etrg,

and the expectation of the prediction error at the next sampling
instatnt can be defined by

E[‖êk`+j‖] ≤ E[‖A‖ · etrg + gk`+j−1 − ĝk`+j−1]

≤ ‖A‖ · etrg + eg. (20)

Assumption 1: The MPC optimization in (8) based on
the event-triggered policy in (12) is feasible for all the
constraints. Also, there exists the feedback gain K according
to [1], such that limk→∞ ‖M(x̂(k|k`))−Kx̂(k|k`)‖ = 0,
where A+BK is Schur and M(x̂(k|k`)) is the optimal
control input obtained from the MPC, and K is given by:

K = −(BTQNB +R)−1BTQN , (21)

and

QN = ATQNA+Q−ATQNB(BTQNB+R)−1BTQNA.
(22)

Theorem 2: If Assumption 1 is satisfied, the the closed-
loop system is bounded such that

lim
k→∞

E[‖xk‖] ≤ sup
g∈G
‖
∞∑
j=0

Ājg(x, u)‖

+ lim
k→∞

k−1∑
j=0

‖ĀjBK‖emax, (23)

where Ā = (A+BK).
Proof: The closed-loop system is given by

xk`+1 = Axk` +B (M(x̂(k`|k`))−Kx̂(k`|k`))
+BKx̂(k`|k`)) + g (xk` ,M(x̂(k`|k`)))
= (A+BK)xk` +B (M(x̂(k`|k`))−Kx̂(k`|k`))
−BKêk` + g(xk` ,M(x̂(k`|k`))).

Define (A+BK) = Ā and k̄ = k` + k− 1− j, then we can
have the state evolution in the following:

lim
k→∞

E[‖xk‖]

= lim
k→∞

E
[∥∥Ākxk` +

k−1∑
j=0

ĀjB
(
M(x̂(k̄|k`))−Kx̂(k̄|k`)

)
−
k−1∑
j=0

ĀjBKêk̄ +

k−1∑
j=0

Ājg(xk̄,M(x̂(k̄|k`)))
∥∥]

= lim
k→∞

E
[∥∥− k−1∑

j=0

ĀjBKêk̄ +

k−1∑
j=0

Ājg(xk̄,M(x̂(k̄|k`)))
∥∥],

(24)

where (24) is obtained by Assumption 1. As a result, the state
convergence is given by:

lim
k→∞

E[‖xk‖] ≤ r + lim
k→∞

k−1∑
j=0

‖ĀjBK‖emax,

where r = supg∈G ‖
∑∞
j=0 Ā

jg(x, u)‖
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IV. ERM LEARNING

The role of machine learning in this paper has two-folds
whose first is the design of disturbance predictor ĝ in (5) and
second is the finding error bound eg as described in (15).
Section IV-A establishes gk and Section IV-B establishes eg
by applying ERM with a kernel regression. The basic notions
of statistical learning used in the paper can be found in any
textbook on advanced probability, for instance [14].

A. Learning formulation

Define gk ≡ g(xk, uk). The learning error in (15) can be
stated by:

E[|gk − ĝk|] ≤
√

E[|gk − ĝk|2]

=
√
E[(gk(1)− ĝk(1))2] + · · ·+ E[(gk(d)− ĝk(d))2]

≤
√
b(1) + b(2) + · · ·+ b(d) (25)

= eg,

where gk(j), ĝk(j) : Rd+m → R. The bound eg can be
defined as the sum of the upper bounds b(j) > 0 for
j = 1, . . . , d. ERM learning focuses on finding an upper
bound of one of b(j) by omitting the notation, such that

E[(g − ĝ)2] ≤ b, (26)

where g, ĝ : Rd+m → R, and b > 0.
Suppose that we are given a set of i.i.d. training data set

{(Xi, Yi)}ni=1 with X ∈ χ ⊂ Rd+m, Y ∈ Y ⊂ R, where
the pair of random variables (X,Y ) follow the unknown
distribution PXY . The goal of the learning is to use the
training data to find a prediction rule g : χ→ Y that reduces
the empirical risk, which is given by:

R̂n(g) := E[l(g(X), Y )|g], (27)

where l : Y × Y → R is loss function.
Suppose that there is a countable, possibly infinite set

of candidate prediction rules g ∈ G, then the peneralized
empirical risk minimization chooses the one that minimizes
the empirical risk such that

ĝ = argmin
g∈G

(
R̂n(g) + C(g, n, δ)

)
, (28)

where C(g, n, δ) is the penalty cost that is a function of the
model g, number of samples n, and a parameter δ ∈ (0, 1).
It will be defined in (36).

Now, we look into the risk error bound of the predictor
ĝn. Let l : Y ×Y → [0, B] be a bounded loss function. Then,
with propability at least 1− δ, empirical risk is bounded such
that

R(ĝ)− inf
g∈G

R(g) ≤ C(g, n, δ)

= 2B

√
log (1 + expc(g))− log (δ)

2n
,

(29)

where infg∈G R(g) is the Bayes risk for all possible predic-
tions and c(g) is a function indicates the model complexity
of g(·).

Eqn. (29) states the theoretical guarantee about the bound-
ness of the prediction error for the unknown target function,
once we find the empirical risk minimizer by using (28). The
bound is controlled by the model compelexity function c(g),
the number of training data n, the parameter δ.

B. A penalized empirical risk minimization using kernel
regression

We consider a kernel regression model, given by

g(x) = E[Y = y|X = x, ω] = ωTKx, (30)

where ω ∈ Rn is to be estimated, and Kx ∈ Rn is a kernel
vector whose i-th element corresponding to the i-th training
point Xi is as follows

Kx(i) = exp−(Xi−x)2/(2Σ2) . (31)

We assume that the likelihood follows Gaussian distribution:

P(Y = y|X = x, ω) =
1√

2πσ2
1

exp−(ωTKx−y)2/(2σ2
1),

(32)
and the prior also follows Gaussian distribution such that

P(ω) =
1√

2πσ2
2

exp−(ωTω)/(2σ2
2) . (33)

Accordingly, the empirical risk function in (27) can be
defined:

R̂n(g) =
1

n

n∑
i=1

l(g(xi), Yi) =
1

n

n∑
i=1

− logP(Yi|Xi, ω)

=
1

2σ2
1n

n∑
i=1

(ωTKXi
− Yi)2 +

1

2
log 2πσ2

1 . (34)

The model complexity function c(g) as the negative log
of prior probability of g is given by

c(g) = − log (P(g)) = − log
(
P(ωTKX)

)
= − log (P(ω))

=
1

2
log(2πσ2

2) +
1

2

ωTω

σ2
2

. (35)

Accordingly, C(g, n, δ) is given by:

C(g, n, δ) = (36)

2B

√
log(1 + exp0.5 +2πσ2

2 + exp−(ωTω)/(2σ2
2))− log(δ)

2n

As a result, the peneralized empirical risk minimization in
(28) is specified with the kernel regression in (30), given by

ω̂ = argmin
ω

(
1

2σ2
1n

n∑
i=1

(ωTKXi − Yi)2 + C(g, n, δ)

)
.

(37)

Also, by inserting (35) into (29), we can obtain the error
bound of the predictor ĝ = ω̂TKX . Gradient descent method
can be used to solve (37).

Finally, we need to find the relationship between the
disturbance prediction error bound in (26) and the expected
risk bound in (29). From the fact that the regression function
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Fig. 2: Time-triggered MPC with/without ERM learning

in (30) has the smallest possible risk, the expected risk error
is equivalent to the expected prediction error such that

E[R(ĝ)]− inf
g∈G

R(g) = E[(g − ĝ)2], (38)

where w is the target to be estimated by the learning model
ĝ. As a result, after obtaining the solution ŵ by (37), the
bound in (26) becomes

E[(g − ĝ)]2 ≤ b = C(g, n, δ). (39)

V. SIMULATION

For the simulation study, the following system model is
considered:

xk+1 =

[
1 −0.5

0.5 0

]
xk +

[
0.5
0

]
uk (40)

+

[
x(2) + 2 sin(u(1)) + 2 sin(x(1))

x(1)

]
+ wk, (41)

yk =
[
0.5 0

]
xk,

where wk is defined as additive white Gaussian noise with
standard deviation 0.01. The constraints of the state and input
are given by |x(1)|, |x(2)| < 10 and |u| < 2. The running
cost functions are given by Q = 2I2×2 and R = 0.1. The
terminal cost function QN is chosen by Assumption 1, given
by

QN =

[
1.554 −0.151
−0.151 1.080

]
,

with the state-feedback gain K = [1.513 − 0.795]. The
prediction horizon is set to N = 10 steps, and the time interval
is set to T = 1 sec. The initial positions set to x0 = [2; 3].
The event threshold for the event-triggered implementation
in (12) is set such that ‖GC‖ · etrg = 0.5.

In order to learn system, training data is collected by
iterative simulation tests and recording all of the measured
states and control inputs as well as true states. For creating
training data sets, we repeated control operations for different
initial points. Let us define ki as the discrete time step with

the index i on training phase, Xi as the training input set,
and Yi as the training output. Then, the training data set
{(Xi, Yi)}ni=1 is defined by

Xi = [xTki , u
T
ki ]

T ∈ Rd+m,

Yi = xki+1 − (Axki +Buki + wki) ∈ R,

where A and B are defined in (40).
Fig. 2 shows the estimation results where Figs. 2(a) and

2(b) are without the learning and Fig. 2(c) is the result when
the ERM learning is applied. The nonlinear disturbance makes
oscillatory state variations as in Figs. 2(a) and 2(b). However,
accurate estimation by the learning vanishes them as shown
in Fig. 2(c). This estimation comparison causes the difference
of event-triggered control results in Fig. 3.

The true state and the estimated states are shown in
Figs. 3(a), 3(b), 3(c), and 3(d). When the learning-based
estimation is applied, the regulation performance is much
better. Also, in case of Figs. 3(b) and 3(d), which are the
PAC learning is used, it is noted that the triggering instants
only occur when the horizon N = 10 is expired. On the
other hand, without the learning in case of Figs. 3(a) and
3(c), the triggering instances happen more often. This can
be confirmed by Figs. 3(e) and 3(f), which show the error of
estimates and the threshold of the trigger. The trigger occurs
whenever the error ‖x̄− x̂‖ exceeds in Fig. 3(e), while a few
triggers are caused by the lapse of the horizon in Fig. 3(f).
Also, the error bound value emax is kept above the true error
‖x− x̄‖.

VI. CONCLUSION

This paper presented the event-based MPC approach
based on ERM learning-based estimator. Disturbance is
compensated by the learning capability. The ERM learning
error bound enables to analyze the stability of the control
system with respect to the learning properties. Simulation
results showed that the developed control scheme yields
effective event-triggering policy while guaranteeing a desired
performance.
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Fig. 3: Event-triggered MPC with/without ERM learning
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