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Abstract: This paper studies how to control an agent in an uncertain environment over a connected
sensor network, such that the agent is able to finish a sequence of tasks, namely, reaching certain sets
in order. Based on multiple offline reference trajectories and constrained communication between the
agent and the sensor network, an event-triggered task-switching control framework is proposed, so
that the agent state remains in each task set for the desired time and then switches to the next task.
Employing a local predicted control law and the messages from neighboring sensors, a two time-scale
distributed filter is proposed for each sensor to estimate the agent state. Under mild system conditions
(i.e., stabilization and collective detectability), the estimation error and trajectory tracking error are
shown to be asymptotically upper bounded.
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1. INTRODUCTION

The well-known separation principle, where the optimal con-
troller and state estimator for linear systems can be designed
separately, depends on the condition that the controller and
estimator share the full state and decision-making knowledge
to each other all the time. Regarding the networked control sys-
tems, such as cyber-physical systems, mobile multi-robot sys-
tems, and networked vehicular systems, to avoid heavy channel
burden and energy consumption induced by tremendous com-
munication between sensors and the control center, an intuitive
way to keep the separation principle is choosing a small set of
sensors which share the information (measurements or locally
estimated values) with the control center timely. However, the
information of these sensors may not be sufficient to provide
satisfactory state estimates, which then hinders the performance
of estimate-based controllers.

To deal with the problems where the separation principle does
not hold, distributed estimation and control have been widely
utilized to improve reliability and convergence behavior of
multi-agent and networked robotic systems (Yang et al. (2008);
Wang and Gu (2011); Li et al. (2014)). A simultaneous col-
lective localization approach for a mobile multi-robot network,
where each robot shares its local sensory data to others, is
proposed in Roumeliotis and Bekey (2002) by using a de-
centralized Kalman filter. Nonlinear Lyapunov-based tracking
control is combined with adaptive switching supervisory con-
trol in Aguiar and Hespanha (2007) to improve convergence
of the trajectory tracking error and to bound it to an arbitrary
small neighborhood of an origin. A distributed observer and
controller framework is designed in Antonelli et al. (2014) for
a wheeled multi-robot system and its performance is studied
for strongly connected switching and non-switching topologies.
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In order to estimate inertial and kinematic parameters of an
unknown rigid body, a distributed filter is designed for a net-
work of mobile robots in Franchi et al. (2015), in which the
manipulation strategy is functional to the estimation process to
satisfy observability conditions. In Freundlich et al. (2017) an
information consensus filter is used to reconfigure a network
of mobile sensors for estimating a set of hidden states up to a
user-defined accuracy and to design a controller robust to the
state disagreement errors. In Miao et al. (2018), a distributed
formation control law is designed based on the estimated states
of the leader agent, and asymptotic convergence of formation
tracking errors is studied under some mild assumptions on the
interaction graph among the leader and the follower agents. A
distributed observer is designed in Marino (2017) for state es-
timation in a connected cooperative robot framework, in which
the estimates are used to calculate an adaptive local control law
to deal with model uncertainties. However, most of the above
results are given for the control and estimation of collective
behaviors of sparsely connected multi agents, which may not
work well for centralized control problems involving complex
decision-makings or the systems with limited control channels.

In this paper, under constrained communications between an
agent and a connected sensor network, an event-triggered task-
switching framework 1 based on distributed estimation is pro-
posed to control an agent following preset multiple trajectories
for reaching a sequence of task sets (e.g., the coverage of a
wide area). We propose a two time-scale distributed filter for the
estimation of agent state based on a local predicted control law
and the communication of neighboring sensors. We provide the
conditions such that the state estimation error and the trajectory
tracking error are asymptotically upper bounded.

The remainder of the paper is organized as follows. Section 2
is on problem formulation. Section 3 studies a task-switching
1 The task-switching strategy is to adjust the current task if certain condition
or objective is met.



control framework. Section 4 analyzes the boundedness of
the estimation error and trajectory tracking error. Numerical
simulations are given in Section 5. Section 6 concludes this
paper. Due to page limitation, the proofs are omitted.

Notations. diag{·} means that elements are arranged in diago-
nals. 1N stands for the N -dimensional vector with all elements
being one. A ⊗ B is the Kronecker product of A and B. ‖x‖
is the 2-norm of a vector x. ‖A‖ is the induced 2-norm, i.e.,
‖A‖ = sup

x 6=0

‖Ax‖
‖x‖ . λmin(A), λ2(A) and λmax(A) are the mini-

mal, second minimal and maximal eigenvalues of a real-valued
symmetric A, respectively. d·e is the ceiling operation. Icond is
a 0 − 1 indicator, where Icond = 1 if cond holds, otherwise
Icond = 0. All the matrices and vectors in this paper are real-
valued.

2. PROBLEM FORMULATION

2.1 System model

Consider a discrete-time agent state observed by N sensors
x(t+ 1) = Ax(t) +Bu(t) + w(t)

yi(t) = Cix(t) + vi(t), i = 1, . . . , N,
(1)

where x(t) ∈ Rn is the agent state, u(t) ∈ Rp the control input,
w(t) ∈ Rn the process noise, yi(t) ∈ RMi the observation
vector of sensor i, and vi(t) ∈ RMi the observation noise. The
real-valued matrices A,B,Ci have compatible dimensions.

In this work, we consider a distributed communication scheme
for a sensor network without self-loop, where each sensor sim-
ply shares information with its neighboring sensors. We model
the communication topology of these sensors through a fixed
undirected graph G = (V, E ,A), where V = {1, 2, . . . , N}
denotes the set of nodes, E ⊆ V × V the set of edges, and
A the 0-1 adjacency matrix. If the (i, j)th element of A is 0,
there is an edge (i, j) ∈ E , through which node i can exchange
information with node j. In the case, node j is called a neighbor
of node i, and vice versa. Let the neighbor set of node i be
Ni := {j ∈ V|(i, j) ∈ E}. Suppose that D is the degree
matrix, which is a diagonal matrix consisting of the numbers of
neighbors. Denote L = D−A the Laplacian matrix. The graph
G is connected if for any pair of nodes (i1, il), there exists a path
from i1 to il consisting of edges (i1, i2), (i2, i3), . . . , (il−1, il).
It is known that graph G is connected if and only if λ2(L) > 0.

In this paper, the following assumption is needed.
Assumption 2.1. The following conditions hold:

(i) There are bounded scalars qw, qv and qx known to the
control center (i.e., agent) such that for any i ∈ V ,
‖w(t)‖ ≤ qw, ‖vi(t)‖ ≤ qv, ‖x̂i(0)− x(0)‖ ≤ qx,

where x̂i(0) is the initial estimate of sensor i.
(ii) The system is stabilizable with A + BK is Schur stable,

whereK is the control gain matrix utilized in equation (5).
(iii) The system is collectively detectable such that A−GC is

Schur stable, where

G =
1

N
(G1, G2, . . . , GN ),

C = (CT1 , C
T
2 , . . . , C

T
N )T ,

(2)

and Gi is the filtering gain utilized in Algorithm 2.
(iv) The graph G is undirected and connected.
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Fig. 1. An example with three task balls (i.e., balls 1–3) and
reference trajectories for a two-dimensional system. Ball
0 contains the initial system state. The agent state is
controlled to reach the task balls in order by following the
reference trajectories.

The stabilization in (ii) provides the design principle of static
control gain. The collective observability in (iii) is the mildest
condition in distributed estimation. The connectivity in (iv)
ensures the information flow over the sensor network. Under the
condition of weak observability, e.g., (A,Cs) is not observable,
the centralized controller can not simply utilize the information
of an isolated sensor 2 s to stabilize the system (1). Thus, it is
necessary to design a collaborating scheme for these sensors to
obtain effective state estimates, which then enable the control
center to design state estimates based controller for a certain
objective. In this paper, we model the task sets by multi-
dimensional balls defined as follows.
Definition 2.1. The set

O(ci, Ri) = {x ∈ Rn| ‖x− ci‖ ≤ Ri} (3)
is called a ball with center ci ∈ Rn and radius Ri ∈ R.

Motivated by the example that a robot is desired to cover a wide
area by reaching certain places, we aim to design a control
strategy such that the system state can be driven into k∗ balls
(i.e., {O(ci, Ri)}k∗i=1) one after another. We also call the k∗
balls as task balls in the sequel. Without losing generality, we
suppose the label sequence of the k∗ task balls is in order,
i.e., {1, 2, . . . , k∗}. Moreover, we assume there is an initial
error ball O(c0, R0), i.e., x(0) ∈ O(c0, R0). Assume there is a
reference trajectory {ri,i+1(k)}Ti,i+1

k=1 connecting the centers of
two adjacent balls O(ci, Ri) and O(ci+1, Ri+1), where Ti,i+1

is the data length of the reference trajectory from balls i to i+1,
where i = 0, 1 . . . , k∗ − 1. On the reference trajectory, the
following assumption is in need.
Assumption 2.2. For any i = 0, 1, . . . , k∗ − 1, it holds that for
k = 1, . . . , Ti,i+1 − 1,

ri,i+1(1) = ci,

ri,i+1(k + 1) = Ari,i+1(k) +Bui,i+1(k),

ri,i+1(Ti,i+1) = ci+1,

(4)

where {ri,i+1(k)}Ti,i+1

k=1 and {ui,i+1(k)}Ti,i+1

k=1 are offline stored
at the control center and all sensors. Moreover,
‖r0,1(1)− x(0)‖} ≤ qr.

2 Here, an isolated sensor means that the sensor does not communicate with
other sensors, and it obtains the state estimates based on its own observations.
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Fig. 2. Each sensor is equipped with a distributed filter pro-
viding an estimate x̂i of the plant x. The center receives
the estimate x̂s from sensor s and generates the control u.
If the event-triggered conditions in Algorithm 1 are met,
the center will broadcast the task-switching time tη to all
sensors.

Assumption 2.2 indicates that there are k∗ reference trajecto-
ries, which starts from the center of the initial error ball and
connects the centers of the k∗ task balls in order. An example is
provided in Fig. 1.

3. TASK-SWITCHED CONTROL FRAMEWORK

In this section, we consider a framework of event-triggered
task-switching control based on distributed state estimation.
First, we study how to design an event-triggered task-switching
control and then propose a distributed filter to estimate the
controlled agent state.

3.1 Task-switched control

Let Tu stands for the initial control time, which means the
control input before Tu is zero, i.e., u(t) = 0, if t < Tu. Based
on the estimate of sensor s(t), s(t) ∈ V , and the reference
trajectory in (4), the control input u(t) for the system (1) is
designed as follows: for t ≥ Tu,

u(t) = K
(
x̂s(t)(t)− r(t)

)
+ ur(t),

r(t) = rη,η+1(t− tη + 1),

ur(t) = uη,η+1(t− tη + 1),

(5)

where x̂s(t)(t) is the estimate for x(t) by sensor s(t) ∈ V ,
K ∈ Rp×n the static control gain of state feedback satisfying
the requirement in Assumption 2.1. Since the reference tra-
jectories are in order, given a sequence of tη , η is able to be
updated correspondingly. In other words, r(t) and ur(t) in (5)
are determined by simply sharing tη between the center and
sensors. Then, a diagram on the whole framework is provided
in Fig. 2.

Communication of the framework in Fig. 2: 1) When the
event-triggered conditions are met, the control center will
broadcast a task-switching time tη , after which the task label
is switched from η to η + 1. In other words, tη is the start
time for the task ball η + 1; 2) The control center can access
the state estimates of one sensor, whose label could be time-
varying. An example is that a controlled moving vehicle can
choose the nearest sensor to obtain its current state estimate.
With the moving of the vehicle, the relative positions between
the sensors and the vehicle are changing. 3) The sensors can
communicate with each other in a distributed manner over the
sensor network.

Some remarks are given: (a) Although a task-switching time tη
is broadcast by the center to all the sensors, the exact control
signal u(t) in equation (5) is unknown to all sensors but sensor
s(t). It is different from the classical centralized control, where
the exact control signal is shared between each sensor and the

Algorithm 1 Event-triggered task-switching control
Initial setting: Control gain K satisfying Assump-
tion 2.1, initial control time Tu ≥ 0, task balls
{O(cj , Rj)}k∗j=1, reference trajectories {ri,i+1(k)}Ti,i+1

k=1 and

inputs {ui,i+1(k)}Ti,i+1

k=1 satisfying Assumption 2.2, i =
0, 1, . . . , k∗ − 1, desired time length inside task balls {Ti},
cumulated remaining time set {Ti+1} initialized by empty
sets, initial task-switching time t0 = Tu and η = 0;
For t = Tu, Tu + 1, . . .

The control center receives x̂s(t)(t) from sensor s(t)
Control law:

u(t) is given in (5);
Event-triggered switching scheme: The control center

calculates f(t) with χ(t) and ϕ(t) both in (6)::
f(t) = min

{
χ(t) +

∥∥x̂s(t)(t)− cη+1

∥∥ ,
ϕ(t) + ‖r(t)− cη+1‖

}
If f(t) ≤ Rη:

If Ti = ∅ or t− 1 /∈ Ti

Ti = {t}
Else
Ti = {t} = Ti

⋃
{t}

EndIf
If |Ti| ≥ Ti
η = η + 1, tη = t+ 1,
Broadcast tη to all sensors;

EndIf
ElseIf t = Tη,η+1 + tη − 1:

η = η + 1, tη = t+ 1,
Broadcast tη to all sensors;

EndIf
EndFor

control center. (b) Different from the traditional centralized
estimation framework (e.g., centralized Kalman filter) where
all the observations of sensors need to be transmitted to the
center, the proposed framework only requires that one sensor
(i.e., sensor s(t) ∈ V) transmits its state estimates to the center.
Definition 3.1. The set

O(x̂(t), r̃(t)) = {x ∈ Rn| ‖x− x̂(t)‖ ≤ r̃(t)}

is called a controlled ball at time t with center x̂(t) ∈ Rn and
radius r̃(t) ∈ R.

Since the system state x(t) in (1) is unknown, to judge whether
it stays in the task ball, we provide two methods The first
method is based on Definition 3.1. The set O(x̂s(t)(t), χ(t))
is controlled ball, if there is a sequence {χ(t)} so that∥∥x(t)− x̂s(t)

∥∥ ≤ χ(t). Such χ(t) will be provided in Theorem
4.1. Then, the state x(t) will definitely go into the task ball
if the controlled ball O(x̂s(t)(t), χ(t)) fully goes into the task
ball O(cη+1, Rη+1), i.e., χ(t) +

∥∥x̂s(t)(t)− cη+1

∥∥ ≤ Rη+1,
η = 0, 1, . . . , k∗ − 1. The second method is to find a sequence
of ϕ(t) such that ‖x(t)− r(t)‖ ≤ ϕ(t). Then the state stays in
the ball O(cη+1, Rη+1), ifϕ(t)+‖r(t)− cη+1‖ ≤ Rη+1. Since
we aim to make sure the system state x(t) stays inside the ball
for Tη+1 time instants at least, we propose an event-triggered
task-switching control in Algorithm 1.



Algorithm 2 Distributed filter with predicted control
Initial setting: Under the same initial setting as Algorithm 1,
set the initial estimate x̂i(0) and the filter gain Gi satisfying
Assumption 2.1, the parameter α ∈ (0, 2

λmax(L) ), the com-
munication step L satisfying (7);
For t = 1, 2, . . .

Predicted Controller:
Each sensor i uses tη from the center,

ûi(t) =

{
0, if t ≤ Tu
K (x̂i(t)− r(t)) + ur(t), otherwise

where r(t) and ur(t) are given in (5).
Estimation Update: for each sensor i
x̃i(t+ 1) = Ax̂i(t) +Bûi(t) +Gi(yi(t)− Cix̂i(t))

Estimation Consensus forL steps: x̄i,0(t+1) = x̃i(t+1)
For l = 1, . . . , L

Sensor i receives x̄j,l−1(t+ 1) from neighbor j
x̄i,l(t+ 1) = x̄i,l−1(t+ 1)

− α
∑
j∈Ni

(x̄i,l−1(t+ 1)− x̄j,l−1(t+ 1))

EndFor
Output step: x̂i(t+ 1) = x̄i,L(t+ 1).
If i = s(t)

Sensor i transmits its estimate to the control center
EndIf

EndFor

3.2 Distributed filter with predicted control

In this subsection, we propose a two time-scale distributed filter
based on a predicted control law in Algorithm 2, which is used
by each sensor in the filter block of Fig. 2.

The parameter matrix Gi ∈ Rn×Mi stands for the filtering
gain. The integer L stands for the communication times of
neighboring sensors between two observation updates. The
parameter α ∈ R is a consensus parameter, which influences
the consensus speed of state estimates of sensors. It can be
proved that all the estimates over a connected sensor network
will reach consensus if L goes to infinity and α ∈ (0, 2

λmax(L) ).
In this paper, L is not necessarily large, whose requirement will
be studied in the sequel. For sensor s(t), which transmits its
estimates to the center controller, its prediction control equals
to the true control. Then, its state estimation error is mainly
resulted from the steps of observation update and neighboring
consensus. For other sensors, e.g., sensor i, i 6= s(t), besides
the above two steps as sensor s(t), the estimation error is
contributed by inexact control input, which is resulted from the
difference between estimates of sensor i and sensor s(t). For
control-free systems without tasks, i.e., u(t) ≡ 0, the filter can
be used to estimate the state x(t) by setting ûi(t) ≡ 0.

The following lemma, obtained by using (1) under Assump-
tions 2.1–2.2, is provided to show the trajectory tracking error
at the initial control time Tu.
Lemma 3.1. At the start control time Tu, the trajectory tracking
error satisfies

‖x(Tu)− r0,1(1)‖ ≤
∥∥ATu∥∥ qr +

∥∥(ATu − In)r0,1(1)
∥∥

+

Tu−1∑
j=0

∥∥Aj∥∥ qw =: R(Tu).

4. PERFORMANCE ANALYSIS

In this section, we study the performance of Algorithms 1 and 2.
We aim to find the conditions such that the trajectory tracking
error and the state estimation error are both bounded.

4.1 Estimation performance of Algorithm 2

Lemma 4.1. Under Assumption 2.1, A − GC is Schur stable,
then the algebraic Riccati equation (A−GC)TP (A−GC) +
In = P has a positive definite matrix solution P =

∑∞
i=0((A−

GC)i)T (A−GC)i.

The boundedness of the state estimation error is studied in the
following theorem.
Theorem 4.1. Consider the system (1) satisfying Assumptions
2.1 and 2.2. For Algorithm 2, if

L ≥ dL0e, (7)
in which L0 is in (6), and ρ > 0, τ > 0 and γ > 0 are subject
to

(1 + ρ)(1 + τ) ≤ 1 +
1

3 (λmax (P )− 1)
,

γ ≥ γ0,
(8)

then the following results hold:

(i) The estimation error ei(t) is bounded, i.e.,
‖ei(t)‖ ≤ χ(t),∀i ∈ V,∀t ≥ 0; (9)

(ii) The estimation error is asymptotically upper bounded, i.e.,

lim sup
t→∞

‖ei(t)‖ ≤

√
6d0λmax(P )

min{N, γ2}λmin(P )
; (10)

(iii) Furthermore, if the system is noise-free, then
lim sup
t→∞

‖ei(t)‖ = 0,∀j ∈ V,

where P is in Lemma 4.1, γ0 , M̄1,1, M̄2,2(t), χ(t), d0, and the
matrices therein are all given in (6).

4.2 Control performance of Algorithm 1

Recall that tη is the task-switching time from task η to η + 1,
then we study the boundedness of the trajectory tracking error
in the following theorem.
Theorem 4.2. Under the same conditions as in Theorem 4.1.
Then the Riccati equation (A+BK)TP∗(A+BK)+In = P∗
has a solution P∗ � 0, such that for 0 = 1, . . . , k∗ − 1, the
following results hold

(i) The trajectory tracking error is upper bounded, i.e.,
‖x(t)− r(t)‖ ≤ ϕ(t),∀t ∈ [tη, tη+1); (11)

(ii) If {r(t)} is infinite and the control center does not gener-
ate new switching signal, then the trajectory tracking error
is asymptotically upper bounded, i.e.,

lim sup
t→∞

‖x(t)− r(t)‖

≤
β
(
‖BK‖

√
6d0λmax(P )

min{N,γ2}λmin(P ) + qw

)2
λmin(P∗)(1− λ)

; (12)

(iii) Under the same conditions as in (ii), if the system is noise-
free, then the trajectory tracking error tends to zero, i.e.,

lim sup
t→∞

‖x(t)− r(t)‖ = 0, (13)



L0 = max


ln
(
γκ
√

3(1 + ρ)(1 + τ)
)

ln
(
λ−1c

) ,
ln
(

(max{‖A+BK‖ , ‖A‖}+ κ)
√

3(1 + ρ)(1 + 1
τ )
)

ln
(
λ−1c

)
 ,

κ =
∥∥(INn − PNn)ḠC̄

∥∥ , λc = ‖INn − α(L ⊗ In)− PNn‖ ∈ (0, 1), PNn =
1

N
(1N ⊗ In)(1N ⊗ In)T ,

γ0 =

√
3(1 + ρ)(1 +

1

τ
) sup
s(t)∈V,t≥0

λmax
(
M̄T (s(t), t) (IN ⊗ P ) M̄(s(t), t)

)
,

M̄(s(t), t) = 1N ⊗
(
BKIt≥Tu(ms(t) ⊗ In) +

1

N
(1TN ⊗ In)ḠC̄

)
, (6)

χ(t) =

√
2

min{N, γ2}λmin(P )

(
λmax(P )Nq2x(1 + 4γ2)$t + d0

1−$t

1−$

)
, $ = 1− 1

3λmax(P )
∈
[

2

3
, 1

)

d0 = (1 +
1

ρ
)λmax(P )N

(qw + qv

N∑
i=1

‖Gi‖

)2

+ q2vγ
2λ2c

∥∥(INn − PNn)Ḡ
∥∥2

ϕ(t) =

√√√√λmax(P∗) (RηIη≥1 +R(Tu)Iη=0)
2

λmin(P∗)
λt−tη +

β

λmin(P∗)

t−tη−1∑
l=0

λt−tη−1−l (‖BK‖χ(tη + l) + qw)
2
.
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Fig. 3. A sensor network with 30 sensors

where λ = 1 − 1
2λmax(P∗)

∈ (0, 1), β = ‖P∗‖ +

2 ‖P∗(A+BK)‖2, ϕ(t) and χ(t) are in (6).

5. NUMERICAL SIMULATION

In this section, we study some numerical simulations to test
the performance of the proposed framework and verify the
theoretical results.

Consider an undirected and connected sensor network with 30
sensors, which is illustrated in Fig. 3. The topology of the
sensor network provides: λ2(L) = 0.17 and λmax(L) = 6.66,
where L is the Laplacian matrix of the network. For the system
(1), we assume that B = I2, A and Ci, i = 1, . . . , 30, are
chosen in the following manner

A =

(
1.01 0.05

0 1.01

)
, Ci =


(1, 1), if 1 ≤ i ≤ 10

(1, 0), if 11 ≤ i ≤ 20

(0, 1), if 21 ≤ i ≤ 30.

Consider the scenario in Fig. 1, where three task balls {O(ci, Ri)}3i=1
and an initial error ball O(c0, R0) exist, which are connected
by three reference trajectories (i.e., r(t)). The parameters of the
four balls are given:
c0 = (0, 0)T , c1 = (450,−50)T , c2 = (550, 500)T ,

c3 = (50, 400)T , R0 = 200, R1 = 130, R2 = 150, R3 = 120.
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(a) Trajectory tracking error by Algorithm 1.
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(b) State estimation error by Algorithm 2.

Fig. 4. Performance of Algorithms 1 and 2.

The initial state x(0) is generated by the manner: x(0) =
(R̄0 cos(θ̄0), R̄0 sin(θ̄0)), where R̄0 and θ̄0 are uniformly dis-
tributed in the interval [0, R0] and [0, 2π], respectively. It en-
sures x(0) ∈ O(c0, R0). The tracking sequence for the task
balls is {1, 2, 3}, by following the reference trajectories from
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(a) Trajectory tracking error by Algorithm 1.
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(b) Event-triggered bound and switching times.

Fig. 5. Trajectory tracking and task-switching times. The dy-
namics of f(t) in Algorithm 1 and g(t) := ϕ(t) +
‖r(t)− cη‖ are given in (b). The sequence of f(t) is
obtained online, while g(t) can be calculated offline to
estimate the task switching times.

balls 0 to 1, 1 to 2, and 2 to 3. The three processes are called
the first, second, and third stages, respectively, whose lengths
are as follows: 900, 200, 1000. The label of the sensor s(t),
which sends its estimates to the centralized control center, is
switched: s(t) = 1 if t belongs to the first stage, s(t) = 15
if t belongs to the second stage, and s(t) = 30 if t belongs to
the third stage. We conduct a Monto Carlo experiment with 100
runs. Define the estimation error η(t) and the trajectory track-
ing τ(t) as follows η(t) = 1

100

∑100
j=1

∥∥∥x̂js(t)(t)− xj(t)∥∥∥ , and

τ(t) = 1
100

∑100
j=1

∥∥xj(t)− r(t)∥∥ ,where xj(t) and x̂js(t)(t) are
the system state and the state estimate by sensor s(t) (i.e., the
estimate transmitted to the control center) at time t in the j-th
run, respectively.

The initial estimates of all sensors are zeros. Suppose that w(t)
and vi(t) follow the uniform distribution with qw = qv =
0.001. Let K = diag([−0.6,−0.7]) and G = [0.34, 0.54]T

which satisfy the requirements in Assumption 2.1. Suppose the
desired least remaining time in each task ball is Ti = 1, and
the start control time is Tu = 0. By using Algorithm 1, and
Algorithm 2 with L = 1 and α = 2

λ2(L)+λmax(L) = 0.29, the
tracking error, the state estimation error by sensor s(t), and the

dynamics of the event-triggered bound f(t) in Algorithm 1, are
obtained in Fig. 4 and Fig. 5. It shows the estimation error tends
to a small neighborhood of zero. Also, the trajectory tracking
error tends to a small neighborhood of zero, except for two short
periods, which occurs since the task switches at the times 794
and 973. The dynamics of f(t) show two fluctuation periods as
well, because the reference trajectory is switched from 1 to 2,
and 2 to 3 at the times 794 and 973 at which the event-triggered
task-switching condition is met. The state dynamics are given
in Fig. 5, through which we see the state follows the reference
trajectories closely except in three transient periods.

6. CONCLUSIONS

This paper studied the problem that how to control an agent
over a connected sensor network such that the agent state is
able to reach certain task sets in order by tracking multiple ref-
erence trajectories. A framework of an event-triggered control
framework based on distributed estimation was proposed under
constrained communication between a sensor network and the
agent. The state estimation error and the trajectory tracking
error were both asymptotically upper bounded.
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