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Abstract: In this paper, the average consensus problem for multi-agent systems is addressed.
A novel event-based control strategy is proposed which renders both control signals and
state measurements, which are broadcast over the network, piecewise constant. This enables
implementation on digital platforms such as microprocessors. Different triggering conditions
guaranteeing convergence to an adjustable region around the average consensus point or
asymptotic convergence to this point, respectively, are discussed. Numerical simulations show
the effectiveness of this approach, outperforming traditional time-scheduled control in terms of
load on the communication medium. Both single- and double-integrator agents are covered.
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1. INTRODUCTION

Consensus problems for multi-agent systems have been
in the focus of many researchers over the past years.
This large interest is due to the variety of applications in
engineering and science such as flocking, formation control
and many more, cf. survey paper Olfati-Saber et al. (2007).

Another active research area within networked control is
event-based control. In practice, controllers are usually
implemented on digital computers. Hence, the control
law is only updated at discrete time instances. These
can either be prespecified by a constant period, which is
referred to as time-scheduled control, or be determined by
certain events that are triggered depending on the plant’s
behavior. The latter approach is called event-based control
and was shown to be favorable in some cases by Åström
and Bernhardsson (2002), and it was further developed by
Tabuada (2007), Mazo Jr and Tabuada (2010).

Such event-based control strategies have recently been
applied to the consensus problem by Dimarogonas and Jo-
hansson (2009), Dimarogonas and Frazzoli (2009). The au-
thors use the event-based strategy introduced by Tabuada
(2007) in order to schedule the agents’ control updates.
Each agent tracks its own and its neighbors’ states in
order to decide when to update the control law such that
the overall system converges to average consensus asymp-
totically. Although this strategy renders each agent’s con-
trol signal piecewise constant, the communication between
neighboring agents is required to be continuous in time.

In this paper, we propose a novel event-based control strat-
egy for multi-agent systems, which does not require contin-
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uous communication. On the contrary, each agent broad-
casts its actual state over the network to its neighbors
only at specific time instances, which are determined in
an event-based fashion. A similar method was proposed by
Wang and Lemmon (2008) for decentralized stabilization
of physically coupled systems. The control law is updated
whenever the agent sends or receives a new measurement
value. Both the control signal and the broadcast states are
rendered piecewise constant. We propose different trigger-
ing conditions which guarantee asymptotic convergence to
average consensus or a specified region around the average
consensus point, respectively. Numerical simulations show
the effectiveness of the novel approach, outperforming
traditional time-scheduled implementations.

The rest of this paper is organized as follows. Section 2 con-
tains mathematical preliminaries and the problem state-
ment for this work. Section 3 presents the novel event-
based control strategy for multi-agent systems. In Sec-
tion 4 numerical simulations are presented, including a
comparison to the time-scheduled approach. The proposed
strategy is extended to networks of double-integrator
agents in Section 5, and Section 6 concludes the paper.

2. BACKGROUND AND PROBLEM STATEMENT

In this section some facts from algebraic graph theory are
reviewed, cf. Godsil and Royle (2001). The system model
is introduced and the problem statement is given.

2.1 Algebraic Graph Theory

Our notation is fairly standard, for the details we refer
to Dimarogonas and Johansson (2009); Godsil and Royle
(2001). For undirected graphs G with vertex set (or nodes)
V = {1, . . . , N} and edge set E = {(i, j) ∈ V × V :
i, j adjacent }, the Laplacian matrix L is defined as L =
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D−A, where D is the degree matrix and A the adjacency
matrix of G. For connected graphs, L has exactly one zero
eigenvalue λ1(G) = 0 and the smallest non-zero eigenvalue
λ2(G) is called algebraic connectivity.

2.2 System Model and Consensus Protocol

Consider the multi-agent system consisting of N agents
with single-integrator dynamics ẋi(t) = ui(t), i ∈ V, where
ui denote the control inputs. According to the associated
communication graph G, each agent is assigned a neighbor
set Ni ⊂ V. With stack vectors x = [x1, ..., xN ]T and
u = [u1, ..., uN ]T the overall system dynamics and initial
conditions are given by

ẋ(t) = u(t), x(0) = x0. (1)

In this work the graphs G are assumed to be undirected
and connected. However, the results extend easily to the
case of directed graphs which are strongly connected and
balanced, cf. Olfati-Saber and Murray (2004).

The distributed control law (or consensus protocol)

ui(t) = −
∑

j∈Ni

(xi(t)− xj(t)) (2)

globally asymptotically solves the average consensus prob-
lem, i.e., the average of all agents’ states remains constant

over time and for all i ∈ V, xi(t)
t→∞−→ 1

N

∑

i∈V xi(0). With
(1) and (2), the closed-loop system is given by

ẋ(t) = −Lx(t), x(0) = x0. (3)

This solution to the average consensus problem is pre-
sented in Olfati-Saber and Murray (2004).

In practice, agents like e.g. mobile robots are equipped
with digital microprocessors which coordinate measure-
ment acquisition, communication with other agents and
control actuation. Thus it is necessary to implement the
continuous-time law (2) on a digital platform. The classical
method is the time-scheduled control strategy, i.e., mea-
surements are acquired at discrete instances via zero-order
hold techniques and control laws are updated periodically
according to a constant sampling period τs, i.e.,

u(t) = −Lx(tk), t ∈ [tk, tk+1[ (4)

where tk+1 = tk + τs, t0 = 0. Xie et al. (2009) prove that
control law (4), updated with constant sampling period
τs, globally asymptotically solves the average consensus
problem if and only if the sampling period satisfies

0 < τs < 2/λN (G). (5)

This result serves as benchmark for the event-based control
strategy proposed in the present work.

2.3 Problem Statement

Each agent consists of a digital microprocessor and dynam-
ics as shown in Fig. 1. The microprocessor monitors xi(t)
continuously. Based on local information, it decides when
to broadcast the actual measurement over the network.
The latest broadcast value of agent i is a piecewise con-
stant function x̂i(t) = xi(t

i
k), t ∈ [tik, t

i
k+1[, where ti0, t

i
1, ...

is the sequence of events of agent i. Whenever one agent
sends or receives a new measurement value, it updates its
control law immediately, thus rendering the control signal

agent i

microprocessor

dynamics

ui(t) xi(t)

x̂i(t)x̂j(t), j ∈ Ni

Fig. 1. Single agent in event-based control setup.

piecewise constant. Analogously to (2), the control law is
defined as

u(t) = −Lx̂(t). (6)

The problem is now to find a ruling which determines,
based on local information, when agent i has to trigger
and broadcast a new measurement value to its neighbors.

3. EVENT-BASED CONTROL STRATEGY

Define a trigger function fi(·) which depends on local
information of agent i only and map to R. An event for
agent i is triggered as soon as the trigger condition

fi



t, xi(t), x̂i(t),
⋃

j∈Ni

x̂j(t)



 > 0 (7)

is fulfilled. The sequence of events for agent i is thus
defined iteratively by tik+1 = inf

{

t : t > tik, fi(t) > 0
}

where ti0 is the first instance when (7) is fulfilled. Therefore,
for each agent there is a monotonically increasing sequence
of events 0 ≤ ti0 ≤ ti1 ≤ ti2 ≤ · · · . It remains to derive
suitable fi(·), such that the closed-loop system reaches
average consensus. Since the system under consideration is
hybrid, well-posedness has to be guaranteed. In particular,
it has to be shown that there are not infinitely many
events in finite time, which is referred to as Zeno behavior.
Zeno behavior can be excluded by proving that there is a
positive lower bound on the inter-event times.

Before suitable trigger functions are presented, some useful
variables are introduced. Define for each i ∈ V and t ≥ 0
the measurement error

ei(t) = x̂i(t)− xi(t) (8)

and denote the stack vector e(t) = [e1(t), ..., eN (t)]T . The
closed-loop system is then given by

ẋ(t) = −Lx̂(t) = −L(x(t) + e(t)). (9)

Define the average value a(t) = 1
N

∑

i∈V xi(t). The initial
average is a(0). The time derivative of a(t) is given by
ȧ(t) = (1/N)1TLx̂(t) ≡ 0 since 1TL = 0T . Therefore it
holds that a(t) = a(0) = a for all t ≥ 0 and the state x(t)
can be decomposed according to x(t) = a1 + δ(t) with
disagreement vector δ(t), following the notation of Olfati-
Saber and Murray (2004). By definition, the disagreement
vector has zero average, i.e., 1T δ(t) ≡ 0.

3.1 Static Trigger Function

In this subsection, we propose a static trigger function,
which guarantees asymptotic convergence of all agents to a
specified region around the consensus point. Before stating
this result, we prove the following lemma.

Lemma 1. Suppose L is the Laplacian of an undirected,
connected graph G. Then, for all t ≥ 0 and v ∈ R

N with
1T v = 0, it holds that ‖ exp(−Lt)v‖ ≤ exp(−λ2(G)t)‖v‖.
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Proof. Since the graph G is undirected, its Lapla-
cian L is symmetric, i.e., L = LT . It is diagonaliz-
able with an orthogonal matrix T = [v1, v2, . . . , vN ],
consisting of eigenvectors vi corresponding to eigen-
values λi = λi(G), i ∈ V . Consequently it holds
that exp(−Lt) = Tdiag(1, exp(−λ2t), . . . , exp(−λN t))TT .

With v1 = (1/
√
N)1, it follows that

e−Ltv =
1

N
11T v + T diag

(

0, e−λ2t, . . . , e−λN t
)

TT v.

By assumption, 1T v = 0, and consequently

‖e−Ltv‖ = ‖T diag
(

0, e−λ2t, . . . , e−λN t
)

TT v‖
≤ ‖T‖‖diag

(

0, e−λ2t, . . . , e−λN t
)

‖‖TT ‖‖v‖
= e−λ2t‖v‖.

Theorem 2. Consider system (1) with control law (6) and
undirected, connected graph G. Define the static trigger
function

fi(ei(t)) = |ei(t)| − c0 (10)

with c0 > 0. Then, for all x0 ∈ R
N and t ≥ 0, it holds that

‖δ(t)‖ ≤ ‖L‖
λ2(G)

√
Nc0 + e−λ2(G)t

(

‖δ(0)‖ − ‖L‖
λ2(G)

√
Nc0

)

(11)
and the closed-loop system does not exhibit Zeno behavior.

The choice of trigger function (10) is intuitive, since an
event is triggered as soon as the measurement error ei(t)
crosses the specified threshold c0. The errors are thus
bounded by c0. The system state converges to a region
around the consensus point which scales with c0.

Proof. The disagreement dynamics are given by

δ̇(t) = ẋ(t) = −Lx(t)− Le(t) = −Lδ(t)− Le(t) (12)

with initial condition δ(0) = x(0) − a1. The analytical

solution is δ(t) = exp(−Lt)δ(0)−
∫ t

0
exp(−L(t−s))Le(s)ds.

Thus, the disagreement is bounded by

‖δ(t)‖ ≤ ‖e−Ltδ(0)‖+
∫ t

0

‖e−L(t−s)Le(s)‖ds.

The vector Le(t) has zero average since L1 = 0 and
Lemma 1 can be applied. This yields

‖δ(t)‖ ≤ e−λ2(G)t‖δ(0)‖+
∫ t

0

e−λ2(G)(t−s)‖Le(s)‖ds.
(13)

Since ‖Le(t)‖ ≤ ‖L‖‖e(t)‖ and the trigger condition

enforces ei(t) ≤ c0, it holds that ‖Le(t)‖ ≤ ‖L‖
√
Nc0 and

‖δ(t)‖ ≤ e−λ2(G)t‖δ(0)‖+ ‖L‖
√
Nc0

∫ t

0

e−λ2(G)(t−s)ds

=
‖L‖
λ2(G)

√
Nc0 + e−λ2(G)t

(

‖δ(0)‖ − ‖L‖
λ2(G)

√
Nc0

)

.

In order to exclude Zeno behavior, it remains to show
that the inter-event times are lower-bounded by a positive
constant τ . Assume that agent i triggers at time t∗ ≥ 0.
Then it holds that ei(t

∗) = 0. Note that fi(0) = −c0 < 0
and therefore agent i cannot trigger again at the same
instance of time. From (8), it follows that

ėi(t) = −ẋi(t) = −ui(t) (14)

between the trigger events. We conclude that the next
inter-event time is strictly positive through the following
argument. Observe that

|ui(t)| ≤ ‖u(t)‖ = ‖L(x(t) + e(t))‖ = ‖L(δ(t) + e(t))‖
≤ ‖L‖ (‖δ(t)‖+ ‖e(t)‖) ≤ ‖L‖

(

‖δ(t)‖+
√
Nc0

)

(15)

for all i ∈ V and t ≥ 0. From inequality (11) follows that

‖δ(t)‖ ≤ ‖δ(0)‖+ ‖L‖
λ2(G)

√
Nc0 for all t ≥ 0, and with (15),

|ui(t)| ≤ ‖L‖
(√

Nc0 + ‖δ(0)‖+ ‖L‖
λ2(G)

√
Nc0

)

where the right-hand side is independent of t. With (14),

|ei(t)| ≤
∫ t

t∗
|ui(s)| ds (16)

≤ ‖L‖
(√

Nc0 + ‖δ(0)‖+ ‖L‖
λ2(G)

√
Nc0

)

(t− t∗)

for all t ≥ t∗. The next event is triggered as soon as (10)
crosses zero, i.e., |ei(t)| > c0. From (16) it can be concluded
that this is not fulfilled before

‖L‖
(√

Nc0 + ‖δ(0)‖+ ‖L‖
λ2(G)

√
Nc0

)

(t− t∗) = c0.

Thus, a lower bound on the inter-event times is given by
τ = t − t∗ which solves the latter equation. This bound
holds for all times t∗ and all agents i, therefore Zeno
behavior of the closed-loop system is excluded.

3.2 Time-dependent Trigger Function

The next theorem presents a time-dependent trigger func-
tion, which drives the overall system to consensus asymp-
totically while guaranteeing that the inter-event times for
all agents are lower-bounded by a positive quantity.

Theorem 3. Consider system (1) with control law (6) and
undirected, connected graph G. Define the time-dependent
trigger function

fi(t, ei(t)) = |ei(t)| − c1e
−αt, (17)

where c1 > 0 and 0 < α < λ2(G). Then, for all x0 ∈
R

N , the overall system converges to average consensus
asymptotically and the closed-loop system does not exhibit
Zeno behavior.

Proof. From (13) and with ‖Le(t)‖ ≤ ‖L‖
√
Nc1 exp(−αt),

it follows that

‖δ(t)‖ ≤ e−λ2(G)t‖δ(0)‖+ ‖L‖
√
Nc1

λ2(G)− α

(

e−αt − e−λ2(G)t
)

.

Since α > 0, average consensus is reached asymptotically.
Analogously to the reasoning in the proof of Theorem 2, it
can be shown that the inter-event times for all agents are
lower bounded by a positive constant τ . Assume again that
agent i triggers at time t∗ ≥ 0. Analogously to (15) it holds

that |ui(t)| ≤ ‖L‖(‖δ(t)‖ +
√
Nc1 exp(−αt)). With the

bound on ‖δ(t)‖ and positive constants k1 = ‖L‖‖δ(0)‖,
k2 = ‖L‖

√
Nc1 (1 + ‖L‖/(λ2(G)− α)) it follows that

|ui(t)| ≤ e−λ2(G)tk1 + e−αtk2 ≤ e−λ2(G)t∗k1 + e−αt∗k2

for all t ≥ t∗ and therefore

|ei(t)| ≤
(

e−λ2(G)t∗k1 + e−αt∗k2

)

(t− t∗).

The next event will not be triggered before |ei(t)| =
c1 exp(−αt). Thus, a lower bound on the inter-event inter-
vals is given by τ = t−t∗ which solves [exp((α−λ2)t

∗)k1+
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k1+k2

c1
τ̄

k2

c1
τ̄

e−ατ̄

τ τ̄

Fig. 2. Solution of the implicit equation for τ .

k2]τ = c1 exp(−ατ). For α < λ2 the term in brackets is
upper bounded by k1 + k2 and lower bounded by k2. For
all t∗ ≥ 0 the solutions τ(t∗) of this equation are greater
or equal to τ given by (k1 + k2)τ = c1 exp(−ατ), which is
strictly positive, as illustrated in Fig. 2.

Theorem 3 shows that it is possible to drive the overall
system to average consensus asymptotically in an event-
based fashion, rendering both the control signals and the
broadcast state measurements piecewise constant. The
condition α < λ2(G) is intuitive, because the states should
converge faster than the threshold decreases. However,
from a practical point of view there might arise problems
for trigger function (17), e.g. in presence of measurement
noise. For large times t, arbitrarily small noise amplitudes
will cause events. Furthermore, numerical problems arise
with increasing time since checking the trigger condition
leads to comparing very small numbers. Therefore it might
be preferable to use a combination of the constant and the
exponentially decreasing threshold on the measurement
error as stated in the following theorem.

Theorem 4. Consider system (1) with control law (6) and
undirected, connected graph G. Define the time-dependent
trigger function

fi(t, ei(t)) = |ei(t)| −
(

c0 + c1e
−αt

)

, (18)

where c0, c1 > 0 and 0 < α. Then, for all x0 ∈ R
N , ‖δ(t)‖

converges to the region

‖δ‖ ≤ ‖L‖
λ2(G)

√
Nc0 (19)

and the closed-loop system does not exhibit Zeno behavior.

Proof. Due to space limitations this proof is omitted.
However, analogously to the previous proofs, convergence
to the given region can be concluded from the analytical
solution of the disagreement dynamics and a positive lower
bound τ on the inter-event times is obtained by the same
arguments as in proof of Theorem 2 since c0 > 0.

The parameter c0 can be used to adjust the size of this
region, as well as to avoid problems due to numerics or
measurement noise. Parameter c1 can be tuned such that
the events are not too dense for small times t. Thus,
Theorem 4 provides a very flexible event-based control
strategy for multi-agent systems.

4. SIMULATION RESULTS

In order to demonstrate the event-based control strategy,
the multi-agent system with communication graph G given
in Fig. 3 is considered. The initial conditions x(0) are
chosen such that all modes of the system are excited, i.e.,
if v1, ..., vN are the normalized eigenvectors corresponding
to the eigenvalues λ1(G), ..., λN (G), the initial conditions
are set to x(0) = (v2 + · · ·+ vN )/‖v2 + · · ·+ vN‖.

Fig. 3. Communication graph G.

For trigger function (10), the constant threshold is set to
c0 = 0.03. The simulation results, which are consistent
with Theorem 2, are shown in Fig. 4.
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Fig. 4. Simulation result with static trigger function (10).

For trigger function (18), the constants are set to c0 =
0.001, c1 = 0.25 and α = 0.9λ2(G). A small c0 results
in a small region (19), while α determines the speed of
convergence and c1 decreases the event density for small
t. This is supported by the results shown in Fig. 5.
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Fig. 5. Simulation result with trigger function (18).

In order to illustrate the effectiveness of the proposed
control strategy, we compare it to the time-scheduled
implementation of (2). Fig. 6 shows the latter simulation
in comparison with time-scheduled control. The constant
sampling period τs is chosen such that both strategies yield
similar performance in terms of the convergence of ‖δ(t)‖.
We set τs = 0.35 while the average sampling period for
event-based control over t ∈ [0, 20] and over all agents is
τavg = 1.44. According to (5), the maximum stabilizing
sampling period is 2/λN (G) = 0.4796. This shows that
time-scheduled control with sampling period such that
the number of samples was the same as in the event-
based case, would render the closed-loop system unstable.
The average sampling period resulting from event-based
control is more than two times higher than the maximum
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Fig. 6. Comparison to time-scheduled control.

stabilizing sampling period 2/λN (G). Similar results were
obtained for various communication graphs. Consequently,
the proposed event-scheduled control strategy is preferable
to the classical time-scheduled approach.

5. EXTENSION TO DOUBLE-INTEGRATORS

A broad class of agents, e.g. holonomic mobile robots,
require second-order dynamic models. Therefore the novel
control strategy is extended to agents with double-
integrator dynamics. Each agent i ∈ V is described by

ξ̇i(t) = ζi(t), ζ̇i(t) = ui(t). (20)

The distributed continuous-time consensus protocol pro-
posed by Ren and Atkins (2007) is given by

ui(t) = −
∑

j∈Ni

(ξi(t)− ξj(t))− γ
∑

j∈Ni

(ζi(t)− ζj(t)) (21)

with γ > 0. The closed-loop dynamics can be written as
[

ξ̇

ζ̇

]

= Γ

[

ξ
ζ

]

, where Γ =

[

0 I
−L −γL

]

.

It is shown by Ren and Atkins (2007) that consensus is
reached asymptotically if and only if Γ has exactly two zero
eigenvalues and all the other eigenvalues have negative real
parts. In case of undirected connected G, all eigenvalues
of L are real, and thus, by Ren and Atkins (2007), Lemma
4.2, it follows that consensus is achieved for all γ > 0.
Define the initial average values a = (1/N)1T ξ(0), b =
(1/N)1T ζ(0). Then, for all i ∈ V, it holds that ξi(t) → a+
bt and ζi(t) → b as t → ∞.

Analogously to the single-integrator case, the broadcast

states are defined by ξ̂i(t) = ξi(t
i
k) and ζ̂i(t) = ζi(t

i
k),

t ∈ [tik, t
i
k+1[, with corresponding stack vectors ξ̂ and ζ̂.

We propose the control law

u(t) = −L
(

ξ̂(t) + diag(t− t1k, ..., t− tNk )ζ̂(t) + γζ̂(t)
)

.

(22)

as event-based implementation of (21). It incorporates
first-order hold instead of zero-order hold for the position

ξi(t), i.e., it is approximated by ξ̂i(t) + (t − tik)ζ̂i(t) for
t ∈ [tik, t

i
k+1[, which respects the agent dynamics. We

define the measurement errors

eξ(t) = ξ̂(t) + diag(t− t1k, ..., t− tNk )ζ̂(t)− ξ(t)

eζ(t) = ζ̂(t)− ζ(t),

corresponding to the agents’ positions ξ and velocities
ζ. This yields u(t) = −L (ξ(t) + γζ(t) + eξ(t) + γeζ(t)).
Consequently, the closed-loop dynamics are

[

ξ̇

ζ̇

]

= Γ

[

ξ
ζ

]

−
[

0 0
L L

]

e(t). (23)

with overall measurement error e(t) = [eTξ (t) γeTζ (t)]
T .

It can easily be verified that the average velocity b of all
agents remains constant over time and the average position
is given by a+bt. Thus, the state vector can be decomposed
according to

ξ(t) = a1+ bt1+ δξ(t)

ζ(t) = b1+ δζ(t) (24)

such that the disagreement vectors δξ(t) and δζ(t) have
zero average, i.e., 1T δξ(t) ≡ 1T δζ(t) ≡ 0. Derivation of
(24) with respect to time t yields

[

δ̇ξ
δ̇ζ

]

= Γ

[

a1+ bt1+ δξ
b1+ δζ

]

−
[

0 0
L L

]

e(t)−
[

b1
0

]

.

With stack vector δ(t) = [δTξ (t) δ
T
ζ (t)]

T the disagreement
dynamics are given by

δ̇(t) = Γδ(t)−
[

0 0
L L

]

e(t). (25)

Before we state the main result, we derive a counterpart
to Lemma 1 for the double-integrator case.

Matrix Γ has exactly two zero eigenvalues and only one
linearly independent eigenvector corresponding to the zero
eigenvalues, cf. Ren and Atkins (2007). The eigenvalues
are denoted by 0 = λ1(Γ) = λ2(Γ) > Re(λ3(Γ)) ≥ · · · ≥
Re(λ2N (Γ)). It can be verified that v1 = 1/

√
N [1T0T ]T

and v2 = 1/
√
N [0T1T ]T are a left eigenvector and gener-

alized left eigenvector of Γ, respectively, corresponding to
eigenvalue zero. Using non-singular matrix V consisting
of vT1 , vT2 , and normalized eigenvectors vTj correspond-
ing to eigenvalues λj(Γ), j = 3, ..., 2N , matrix Γ can
be transformed to Jordan normal form J . Therefore it
holds that exp(Γt) = V −1 exp(Jt)V and it can be verified
that ‖ exp(Γt)v‖ ≤ exp(Re(λ3(Γ))t)‖V −1‖‖V ‖‖v‖ for all
vectors v ∈ R

2N with [1T0T ]v = [0T1T ]v = 0, since
vT1 v = vT2 v = 0. This proves the following lemma.

Lemma 5. Suppose L is the Laplacian of an undirected,
connected graph G and γ > 0. Then, for all t ≥ 0
and v ∈ R

2N with [1T0T ]v = [0T1T ]v = 0, it holds
that ‖ exp(Γt)v‖ ≤ exp(Re(λ3(Γ))t)cV ‖v‖, where cV =
‖V −1‖‖V ‖.

The main result for double-integrator agents is given in
the following theorem. It covers both static and time-
dependent trigger functions.

Theorem 6. Consider system (20) with control law (22)
and undirected, connected graph G. Define the time-
dependent trigger function

fi(t, eξ,i(t), eζ,i(t)) =

∥

∥

∥

∥

[

eξ,i(t)
γeζ,i(t)

]∥

∥

∥

∥

−
(

c0 + c1e
−αt

)

(26)

where c0, c1 ≥ 0, c0 + c1 > 0, and 0 < α < |Re(λ3(Γ))|.
Then, for all ξ0, ζ0 ∈ R

N , ‖δ(t)‖ converges to the region

‖δ‖ ≤ c0cV
√
2N‖L‖/|Re(λ3(Γ))| (27)

and the closed-loop system does not exhibit Zeno behavior.
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Proof. The analytical solution of (25) is given by

δ(t) = eΓtδ(0)−
∫ t

0

eΓ(t−s)

[

0 0
L L

]

e(s)ds.

With Lemma 5 and ‖e(t)‖ ≤
√
N(c0 + c1 exp(−αt)), we

have

‖δ(t)‖ ≤ k1 + k2e
−αt + k3e

Re(λ3(Γ))t (28)

with positive constants k1 = c0cV
√
2N‖L‖/|Re(λ3(Γ))|,

k2 = c1cV
√
2N‖L‖/(|Re(λ3(Γ))+α|), k3 = cV ‖δ(0)‖. Note

that Re(λ3(Γ)) < −α < 0. Therefore ‖δ(t)‖ converges
asymptotically to the region (27) as t → ∞.

In order to exclude Zeno behavior we show that there
exists a positive lower bound on the inter-event times.
Assume that agent i triggers at time t∗ ≥ 0. Then
the measurement errors are reset to zero and agent i
cannot trigger again at the same instance of time since
fi(t

∗, 0, 0) < 0 for all t∗ ≥ 0. Observe that for t ≥ t∗,
∥

∥

∥

∥

[

eξ,i(t)
γeζ,i(t)

]∥

∥

∥

∥

≤
∫ t

t∗

∥

∥

∥

∥

[

ėξ,i(s)
γėζ,i(s)

]∥

∥

∥

∥

ds ≤
∫ t

t∗
‖ė(s)‖ds.

The time-derivative of e(t) is given by

ė(t) =

[

ėξ(t)
γėζ(t)

]

=

[

ζ̂(t)− ξ̇(t)

−γζ̇(t)

]

=

[

ζ̂(t)− ζ(t)
−γu(t)

]

=

[

eζ(t)
−γu(t)

]

and therefore ‖ė(t)‖ ≤ 1/γ‖e(t)‖ + γ‖u(t)‖. The control
u(t) is bounded by ‖u(t)‖ = ‖[−L −γL]δ(t)− [L L]e(t)‖ ≤
√

1 + γ2‖L‖‖δ(t)‖ +
√
2‖L‖‖e(t)‖, and with inequality

(28) and ‖e(t)‖ ≤
√
N(c0 + c1 exp(−αt)), ‖u(t)‖ ≤

√

1 + γ2‖L‖(k1 + k2 exp(−αt) + k3 exp(Re(λ3(Γ))t)) +√
2N‖L‖(c0+c1 exp(−αt)). Therefore it holds that ‖ė(t)‖ ≤

(1/γ+γ
√
2‖L‖)

√
N(c0+c1 exp(−αt))+γ

√

1 + γ2‖L‖(k1+
k2 exp(−αt)+k3 exp(Re(λ3(Γ))t)). Two different cases de-
pending on c0 are distinguished:

Case 1 Assume c0 6= 0. Then ‖ė(t)‖ ≤ (1/γ +

γ
√
2‖L‖)

√
N(c0 + c1) + γ

√

1 + γ2‖L‖(k1 + k2 + k3) =
C = const. An upper bound on the measurement error for

t ≥ t∗ is given by ‖[eξ,i(t), γeζ,i(t)]T ‖ ≤
∫ t

t∗
‖ė(s)‖ds ≤ (t−

t∗)C. The next event will not be triggered before (26)
crosses zero, and not before (t − t∗)C = c0. Thus, a
positive lower bound τ on the inter-event times is given
by τ = c0/C.

Case 2 Assume c0 = 0. Then k1 = 0 and ‖ė(t)‖ ≤ (1/γ +

γ
√
2‖L‖)

√
Nc1 exp(−αt∗)+γ

√

1 + γ2‖L‖(k2 exp(−αt∗)+
k3 exp(Re(λ3(Γ))t

∗)). Denote this bound by C(t∗) since
it depends on t∗. The measurement error is bounded by

‖[eξ,i(t), γeζ,i(t)]T ‖ ≤
∫ t

t∗
‖ė(s)‖ds ≤ (t − t∗)C(t∗). The

next event will not be triggered before (26) crosses zero,
i.e., before (t − t∗)C(t∗) = c1 exp(−αt). This leads to

the implicit equation c1 exp(−ατ) = γ
√

1 + γ2‖L‖(k2 +

k3 exp((Re(λ3(Γ))+α)t∗))τ +
(

1/γ + γ
√
2‖L‖

)√
Nc1τ for

τ = t−t∗. Note that Re(λ3(Γ))+α < 0 by assumption. By
the same graphical argument as in the proof of Theorem 3,
it can be concluded that a lower bound on the inter-event
times is given by the positive constant τ , which solves the
implicit equation for t∗ = 0.

Since there is a positive lower bound on the inter-event
times in both cases, Zeno behavior of the closed-loop
system is excluded and the proof is complete.

6. CONCLUSION

We proposed a novel event-based control strategy for
consensus problems of both single- and double-integrator
multi-agent systems. The main advantage of this approach
with respect to our previous work is that neighboring
agents do not have to exchange information continuously,
but only at specific instances of time which are determined
by events. Each agent decides itself, based on local infor-
mation, when it has to send a new measurement value over
the network. Nevertheless, desired convergence properties
are preserved. The results were illustrated in simulations.

Extensions to time-delayed communication and switching
network topologies are currently investigated. Future work
will also address distributed estimation of λ2(G), as pro-
posed by Yang et al. (2010), such that a-priori knowledge
of λ2(G) is not necessary for using trigger functions (17).
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