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Event-based Sensor Data Scheduling: Trade-off Between
Communication Rate and Estimation Quality
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Abstract—We consider sensor data scheduling for remote state esti-
mation. Due to constrained communication energy and bandwidth, a
sensor needs to decide whether it should send the measurement to a
remote estimator for further processing. We propose an event-based
sensor data scheduler for linear systems and derive the corresponding
minimum squared error estimator. By selecting an appropriate event-
triggering threshold, we illustrate how to achieve a desired balance
between the sensor-to-estimator communication rate and the estimation
quality. Simulation examples are provided to demonstrate the theory.

Key words: Kalman filter; sensor scheduling; event-based schedul-
ing; estimation performance.

1. INTRODUCTION

Networked control systems have received much attention in the
last decade and are found in a wide spectrum of applications, e.g.,
in civil structure maintenance, environmental monitoring, battlefield
surveillance. In many of these applications, sensor nodes are battery-
powered. Replacing old batteries that are running out of energy
are costly operations and may not even be possible. At the same
time, the communication network may be shared by many nodes,
and consequently the communication bandwidth might be scarce and
uncertain. Thus it is practically important to minimize the sensor-
to-estimator communication rate. A too low rate may, however, lead
to poor estimation quality. It is of significant interest to reduce the
sensor-to-estimator communication rate while guarantee a certain
level of desired estimation quality.

Related research on remote estimation under communication con-
straint and sensor scheduling in various forms have appeared in
recent years. The problem of sensor scheduling can be traced back
to the 1970s. Athans [1] first formulated a class of optimization
problems dealing with selecting one measurement provided by one
out of many sensors. Gupta et al. [2] proposed a stochastic sensor
scheduling scheme among multiple sensors for one process and
provided the optimal probability distribution over the sensors to be
selected. In control of modern networked systems, actions are often
desired to be taken only after certain events occur. These events
may contain useful information about the system [3], and using an
appropriate event-based scheduler, the performance of the estimator
can be improved. Imer and Basar [4] considered optimal estimation
with limited measurements where the stochastic process was a scalar
linear system. They showed that the optimal observer policy has
a solution in an event-triggered form. Cogill et al. [5] considered
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Fig. 1: Event-based Scheduling for Remote State Estimation

a sensor data scheduling problem and used a feedback policy to
choose the transmission times which provides a trade-off between
the communication rate and the estimation error. Ambrosino et al. [6]
considered the channel capacity constraint. In recent work by Li et
al. [7], an event-triggered approach was used to trigger the data trans-
mission from a sensor to a remote observer in order to minimize the
mean squared estimation error at the observer subject to a constraint
on transmission frequency. Closely related works are also given by
Riberio et al. [8] and Msechu et al. [9] where quantized Kalman filter
were considered. The main distinctions between our work and [8],
[9] include the different communication models (packed-based versus
finite-bit channels) and different estimation procedures. While we
design an event-based scheduler to optimize the tradeoff between the
sensor-to-estimator communication rate and the remote estimation
quality, the work of [8], [9] focused on designing encoder-decoder
pairs to improve the estimation quality over a bit-limited channel.

This paper focuses on the design of sensor data scheduler and
the corresponding networked state estimator illustrated by the archi-
tecture in Fig. 1. We propose an event-based sensor data scheduler
and derive the corresponding minimum mean-squared error (MMSE)
estimator. By adopting an approximation technique from nonlinear
filtering, we derive a simple form of an accurate MMSE estima-
tor, from which an illustrative relationship between the sensor-to-
estimator communication rate and the remote estimation quality can
be obtained.

The remainder of this paper is organized as follows. In Section II,
we provide the mathematical problem formulation. In Section III,
we derive the exact MMSE estimator and an approximate MMSE
estimator for an event-based sensor data scheduler. Via simulation
examples in Section IV, we demonstrate how a desired trade-off
between the sensor communication rate and the estimation quality can
be achieved. It is also shown that the approximate MMSE estimator
produces accurate results. In Section V, some concluding remarks
are given.

Notation: Si is the set of n X m positive semi-definite matrices.
When X € S, we simply write X > 0; Similarly, X > Y means
X =Y > 0. fx(x) represents the probability density function (pdf)
of the random variable (r.v.) X, and fy|y(|y) denotes the pdf of
a r.v. X conditional on the variable y. A/ (p1, ¥) denotes Gaussian
distribution with mean g and covariance matrix 2. E[-] denotes
the mathematical expectation and Pr(-) denotes the probability of a
random event. Tr{-} denotes the trace of a matrix and |||/ denotes
the Holder infinity-norm of a vector.

II. PROBLEM SETUP
A. System Model
Consider the following linear system:

Axy, + Wi, (1)
Cxy + v, 2

Xk+1
Ye =
where x;, € R" is the state vector, yr € R™ is the sensor mea-

surement, wy € R™ and v € R™ are mutually uncorrelated white
Gaussian noises with covariances () > 0 and R > 0, respectively.
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The injtial state X is zero-mean Gaussian with covariance matrix
E[xoxo] = Iy > 0, and is uncorrelated with wy and vy, for
all k > 0. (A,C) and (A, /Q) are observable and controllable,
respectively. After y; (the measured value of yy) is taken, the sensor
decides whether it will send Yy to a remote estimator for further
processing. Let 7 = 1 or O be the decision variable whether yy
shall be sent or not. Define I, £ {Yovo, - - ., YxYr } with I_1 = 0,

iy 2 E[xglg-1],ep =x — 3y, Py 2 Elegey |Ii—1], 3)
and
Py = ]E[eke;c\lk}. “é)

i £ Elxglly], ex = xg — 2,

The estimates £, and £y, are called the a priori and a posteriori
MMSE estimate, respectively. Further define the measurement inno-
vation zj, as

2 £ ¥k — Elyg[Te—1]- ®
Define the functions h, gy, g and gl/{: S7 — S% as follows:

nXx) £
hX) 2

X - \XC'[CXC +R|"'CX,
AXA'+Q, (X)) £ groh(X),

where o denotes the function composition. In the sequel, if A = 1,
g1 and g1 will be written as g and g for brevity. We can write the
update equation for Py in a compact form as

P, :{ 9(Pev), i =1,

h(Pkfl), if Yk = 0.

Notice that h(Px—1) > ¢(Pr—1) as g(X) < X for any
X > 0. This has an intuitive explanation: the measurement yj, (or
alternatively, the innovation zj) always reduces the estimation error

covariance.

B. Event-based Sensor Scheduler

We consider in this paper applications where feedback is available
from the estimator to the sensor, see Fig. 1. 1

Consider the following two cases for the Kalman filter when zj, =
0:

D e =1:2, = Ap_1 and Py = g(Pr—1),

2) 5 =0: 3 = AZp_1 and Py, = h(Pj_1).
The estimate Zj for the two cases are the same, but the error
covariances are different. Therefore if the sensor finds that 2 is
zero and does not send Y to the estimator, and at the same time, the
estimator is aware of this information, then even without receiving
Yk, the estimator knows that & = AZj_1 has error covariance
g(Pg—1), which is smaller than h(Pg_1).

Since CP, C "+ R > 0, there exists a unitary matrix Uy €
R™*™ guch that

Uy (CP7C" + R)U, = Ay,

where Ay, = diag ()\,16, ceey )\2") ER™ ™ and A\},...,\" €R
are the eigenvalues of C'P,~ C" + R. Define Fj, € R™*™ a5

F, & Uk.A,:%. (6)

'Examples of such applications can be found in remote estimation based
on the IEEE 802.15.4/ZigBee protocol: sensor devices can be scheduled to
communicate to the so-called Personal Area Network coordinator which also
serves as a remote estimator. The coordinator broadcasts information to all
devices at the beginning of each periodic superframe and can then incorporate
the required feedback information.

Evidently, F} F}, = (CP, c + R)~!. The matrix F}, is computed
by the remote estimator and is sent back to the sensor along with
C%, at each time, see Fig. 1. Define €}, as

€L = F];Zk. (7)

This transformation is called the Mahalanobis transformation. The
coordinates of zy are decorrelated, so €, has m—variable standard
Gaussian distribution, which contains a set of independent principal
components of Zy.

We consider the following event-based sensor data scheduler:

0, if [lex]leo <9,
= {4 B lod s

otherwise,
where 0 > 0 is a fixed threshold. Under this scheduler, if 7y, = 0, the
estimator can infer that ||€x||o < . It is this additional information
that helps reduce the estimation error at the remote estimator. With a
slight abuse of notation, we redefine the information I received by
the remote estimator till k as

®)

A
Ik‘ - {’YoyOa cee 7’kak} U {707 e 77k}-
Define the average sensor communication rate as
T

A 1
v £ limsup 7= ];)Em]- ©
Notice that both the average rate 7y and the estimation error covariance
matrix Pj depend on the threshold §. For example, if § = 0, then
Pr(]lex]lcc < 0) = O and the sensor sends ¥y, at each k (almost
surely). Consequently, ¥ = 1 and P, = ¢g(Px—1). On the other
hand, if 6 = 400, then the sensor keeps ¥, for all k, thus making
v = 0. As the event ||€x||o < +00 provides no extra information
on the innovation, the estimator is in this case equivalent to an open-
loop predictor. Therefore, P, = h(Pk_l). In the latter case, when
A is unstable, Py diverges as k — —00. Apparently there is a
trade-off between the communication rate and the estimation quality.

We now state the main problems considered in this paper.

1) Under the event-based sensor scheduler (8), what is the MMSE
estimator?

2) How to choose the threshold ¢ in (8) to achieve a desirable
trade-off between the communication rate and the estimation
quality?

We will provide answers to these two problems in the remainder

of the paper.

III. EVENT-BASED STATE ESTIMATION

In this section, we derive the MMSE estimator under the event-
based sensor data scheduler (8), first the exact estimator and then an
accurate approximation.

A. The Exact MMSE Estimator

The MMSE estimate is uniquely specified as the conditional
mean given all available information [10]. In this subsection, we
provide an exact MMSE estimator corresponding to the event-based
scheduler (8) using the following two-step updating procedure.

1. Time Update: The a priori estimate &,_, which is the conditional
mean of X given the information set Iy,_1, is derived as

‘%I; = E[Xklkal] = J x fx, (.’17|Ik,1)dl’,
RW‘L

(10)
and the corresponding estimation error covariance P, is given by

R = | @)= i) ol
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2. Measurement Update: The a posteriori estimate Xy, which is the
conditional mean of Xy, given I, is derived as follows. Depending
on whether 5 = 0 or 1, we have the following two cases:

1) v = 0. The sensor does not send Yy, to the remote estimator,

but the estimator is aware of that ||€x || < d. Consequently,
Iy, is given by

x fx, (a:|ik)dz,
Rm

iy = Elxg|lx] = J (11)

where we denote I, = Ij,_q U {7 = 0}. Define the set

QCR™ as

Q2 {ex €R™ : [legflo < 0}, (12)
then one can compute fy, (|I;) using Bayes’ rule as
fx, ($|Ik1)erk(€|Ik17Xk)d€
Fea(lly) = . . a3)

J fer (€]Ti—1)de
Q

where fe,(e[Ty_1,x1) = N(Fyxi — F,,Céy , F,, RF},) and

2 = Oxp + v — O = Cey, + vy, (14)

The a posteriori error covariance Py is given by
P = J (v — &) (@ — 1) frp (x/Tp)da.
R’"L

2) v = 1. The sensor sends ¥ to the remote estimator. Denote

the measured value of the innovation zj, as z. Then I becomes

I, = Iy—1 U {2z = z}. The remote estimator updates T, as

in (11), but the conditional pdf fx, (z|Ix) is now calculated
using Bayes’ rule as

S @ Te—1) o, (2T 1, x)

Pl = ey

where, from (14), one easily sees that
Jon (2 lk—1,x1) = N(Cxi, — C2y , R).

The a posteriori estimation error covariance Py is given by

15)

’
P, = J (x — Zp)(x — Tk) fep(@Tp—1,2k = 2)dx.
Rm,

Remark 3.1. Although the above two steps produce the MMSE
estimate Ty, corresponding to the event-based scheduler (8), each
updating step requires numerical integration. The amount of com-
putation involved make this estimator intractable in general, which
motivates us to consider an approximate MMSE estimator. As we will
demonstrate, by using a standard technique in nonlinear filtering, we
can derive an approximate MMSE estimator in a simple recursive
form.

B. Approximate MMSE Estimator

A commonly used approximation technique in nonlinear filtering
is to assume that the conditional distribution of xj given Ij_1 is
Gaussian, i.e.,

fa(@lm1) = N (2, By).

This assumption reduces the estimation problem from the tracking
of a general pdf, which is usually computationally intractable, to the
tracking of its mean and covariance matrix. The approximation is
widely used in the literature, e.g., [8], [9], [11]. Unless specifically

(16)

mentioned, our analysis in the rest of this paper is based on this
assumption. The approximation leads to a very simple form of the
estimator, as shown by the following result.

Theorem 3.2. Consider the remote state estimation in Fig. 1 with
the event-based sensor scheduler (8). Under the assumption (16), the
MMSE estimator is given recursively as follows:

1) Time update:

{ Ty = Ak, (17)
P, = h(Py_1).
2) Measurement update:
{ Ty = &, + veLlrzk,
Py =wg(P ) + (1 = )3 (P ),
where
50) = =be T L-2Q@) 7, a8)
V2r
and Q(+) is the standard Q-function defined by
N
Qo) = J'g Ee > dx. 19)

Before we present the proof, we state a few preliminary results.

From (14) and (16), 7z is zero-mean Gaussian conditioned on
I;_1. Furthermore, 7z is jointly Gaussian with Xj conditioned on
I;_1. From (14),

Elzxz,[Ix_1] = CElep ep [Ir_1]C'+R = CP;C +R, (20)

and ,
Ele, zi,|Ik—1] = Ele, e, [Ix—1]C =P, C. 21)
Now let us take a look at €3 defined in (7). From (20),
E[5k€k|1k71] = FkE[Zka |Ik,1}Fk = Im
Thus, given I;_1, € is a zero-mean Gaussian multivariate random
variable with unit variance. Denote €}, as the ith element of €. Then
€;, and ei are mutually independent if ¢ #% j. Notice that 7y, =
0 implies that the event ||€x||cc < & happens. We then have the
following result.

Lemma 3.3. F,E[zz, [It]Fy = Elere, |T] = [1 — 5(6)] L.

Proof: Straightforward calculation yields the first equality. Given
I;—1, due to the independence of €}, and €], for ¢ % j along with
Lemma A.l in the Appendix, we have

El)l] = Bl el < 0]
= E[(e) . ] < 8] = 1 - 5(5)

and
Elepeilli] = Eleief -1 ekl < 6, le] < 8] = 0.
Thus, L
Elerer |1x] = [1 — B(9)] Ipn.
|

The following lemma is used in deriving the main result.
Lemma 3.4. The following equalities hold.

Ele;; 2 |Tk] = LiElzrz;, |11, 2)

El(ey — Lizi)zy|Ix] = 0, (23)

El(ey — Lizi) (e — Lizi) Tim1,z0=2] = §(Py), (24

E [(e,; — Lz)(eg — Liz) 1| = 3(P7), 25)
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where L, = P, C’ [CP,C_C' + R]il.

Proof: We first prove (22). From Lemma A.2, (20) and (21),
Elxi|ly_1,2: = 2] = &, + P, C'[CP7C + R ‘2. (26)

Since given I _1, € is Gaussian with zero mean and unit covariance,
we can define ps = Pr(||ex]|oo < 0|Ix_1). Using the conditional

" (elTk—1)
. folellion) s
o= {5 LS
we obtain
Ele;, zi | Tt]
- plé“ QE[eﬂIk—th = Fl;ile]e/kalfék (€|Tp_1)de

1 o P
= J Elxy — &y Tp—1,2, = F}, €le F}, 1fék (e[Tp—1)de
Q

1 [ I
= — (E[XMIk,l,zk =F, e]—xk) € Fi " fe, (€|Tg—1)de
Ps Jq

’ ’ ’r— ]_ ’
= P, C (CP;C'+R)™'F, lp— J ce fe (ellg—1)de Fi
5 Jq

r—1 VAN
= Lka ]E[Gkauk]F
= LkE[Zkzkuk]a
where the last equality is from Lemma 3.3. From (22) we have
E[(e; — Lizk)zy|Ix] = Eleg 24| 1k] — LiE[zrzy |Ik] = 0,
which shows (23). To prove (24), using Lemma A.2, we have
E[(ka]E[Xk |Ik_1, Zk:Z])(kaE[Xk ‘Ik'—17 Zk:Z]), |Ik_1, Zk:Z]
’ ’ 71
=P, —P C(CP,C +R) CP  =g(P,). (28)
Notice that (26) leads to
Xk — E[Xk‘lk—17zk = Z] =X — 53; - Lkz = e,: - LkZ,

which together with (28) shows (24). Now from (24), one obtains

{( — Lyzi)(e), — Lyzi) |Ik}

folellioa) |

J [ek—Lkzk ek—Lka)lIk 1,Zk—Fk 6} s

= L) J for (€lTi_)de

=g (P k ),
where to get the second last equality, we note that from (27) we have
fek (6|Ik71)d6 = Pps- u
Q
Proof to Theorem 3.2: The proof of the time update is simple:
&, = AE[xp_1|lg—1] = AZp_1,
P. = E[(Aep—1 4+ wip—1)(Aer—1 + wi—1) [Tp—1]
= AP, 1A + Q = h(Pkfl)
Next, we verify the measurement update for the following two cases.
1) v = 1: According to (26) and (28),

T =
P, =

Ty, + Lyzg,
9(By,).

2) 7 = 0: the sensor does not send ¥y, to the remote estimator
which computes Ty, as

i‘k = E[Xkﬁk]
1 /=1
= J]E [xk|1k,1,zk:Fk e]fek(dlk,l)de
Ds Q
1 o =1
= | (o + LB e) fulellea)de
Ds Q
r—1
_ LipF
= I —&-MJ €fe, (€|l—1)de
Ds Q
= j;,

where the last equality is due to that

IQ €fe, (€]lx—1)de =0
since being a pdf of Gaussian distribution, fe, (€|I—1) is even
and € defined in (12) is symmetric and centered in the origin.

Now from (23), (25), Lemmas 3.3 and A.1, the corresponding
error covariance matrix P} can be computed as

P, =E [(Xk — &) (xk — fk’)/ﬁk}

E [ _),ﬁk}

=FE [{(ek —L7 —|—Lkzk} { e, —Lyzy +Lkzk} |Ik}
2|

(e; —Lkzk)(el; —Lkzk) + (e,; —Lka)ZkLk

(xp — 2y ) (xp — &

—I—Lkzk(e; — Lka)/ + Lkzkz;cleﬁk]
3(Py) + LiE[mz, 1] L

N1,
= 3(P7) + 1= B0)] L (FuFL)

= §(Py) + 1= B0)] Lr(CP; C" + R)L
= 9ss >(P‘)- .
From Theorem 3.2, we can write the update for P in a compact

form as
g(Pk?—l)v lf '-Yk;:l’

B = i 29
’ { 98(5)(Pr—1), if v =0. (29)

Remark 3.5. Py is a function of {v;}F_o and 3(3), both of which
depend on §. By properly tuning 9, we can achieve a desired trade-off
between the sensor communication rate 7y and the estimation quality
in terms of Py. For example, if we wish to have a small vy, then
picking a large § would serve the purpose. The optimal choice of §
depends on the available communication resources.

Lemma 3.6. Let 6 > 0. Then

_ Proof: Note that [lex[loc = max{|et,...,|er|} < & iff
let| <6, ¥ 1< i< m. Therefore,

m

[TPr(lenl < d12i-)

i=1

[1—-2Q0)]"

Pr(flexlloc < 0llk-1) =

|
The following result is on the average sensor-to-estimator commu-
nication rate .
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Fig. 2: Scheduling of sensors communication for Process 1 and
Process 2

Proposition 3.7. Consider the remote state estimation in Fig. 1 with
the event-based sensor scheduler (8). Under the assumption (16), the
average sensor-to-estimator communication rate vy in (9) is given by

v=1-[1-2Q(d)]". (30)

Proof: Note that <, is a random variable taking value in
{0,1} with Pr('yk = 1|Ik,1) = PI‘(”EkHOO > (5‘1]6,1). From
Lemma 3.6, Pr(|lex]lcc < 0[Ix—1) = [1 — 2Q(5)]™ whatever

value I takes. Therefore, § solely determines the distribution of
7Yk and can be described by

Pr(y=0)=[1-2Q(5)]™ and Pr(yx=1)=1-[1-2Q(d)]™ .

Equation (30) is then proved from the definition of expectation of yy,
and the definition of ~y. |

IV. SIMULATION EXAMPLE

In this example, we consider the scheduling of two sensors measur-
ing Process 1 and Process 2 (see Fig. 2). Let Process 1 be the stable

0.9 0.1 (1 0], Q' =

process with Al = 0 09 | Cl =

515, R' = 2 and Process 2 be the unstable process with parameters
A2 =12, C? =1, Q% = 10, R?> = 5. Assume at each time
only one of the sensors is able to communicate its measurement to
the remote estimator due to a shortage of communication bandwidth.
Since Process 1 is stable, a trivial sensor scheduler ¢ that guarantees a
bounded estimation error covariance for both processes is that sensor
2 occupies the channel all the time, while sensor 1 is idle and the
remote estimator predicts the state of Process 1 at each time. Let the
estimation error covariances of Process 1 and Process 2 under the
scheduler ¢ be P,g (¢) and P,? (¢), respectively, which are given by
the following two recursions:

Py =h(Py) and P¢=g(Py).

The steady-state values of Tr{P}} and P? under ¢ are given by
Tr{P;} = 59.00 and Py = 3.77. By using the event-based
scheduler proposed in this paper, we can reduce the estimation error
for Process 1 significantly while letting the estimation error for
Process 2 grow only slightly. The idea is simple: let sensor 2 follow
the event-based scheduler (8); whenever sensor 2 does not send data
due to HeiHoo < 4, let sensor 1 communicate with the remote
estimator. The resulting errors are plotted in Fig. 3 as a function of
the parameter d being used by Process 2, which clearly demonstrates
the advantage adopting the event-based scheduler. For example, when
§ = 0.4, the values of Tr{E[P}]}? and E[P?] are 27.89 and 3.99,
respectively, corresponding to a 52.7% decrease of estimation error

2Since P}, is a stochastic process due to the randomness of 7, we will
consider Tr{E[P}]} as a performance measure for the remote estimator under
the event-based sensor scheduler (8), which is obtained in this example via
Monte Carlo simulations.

60
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Fig. 3: Estimation quality of Process 1 and Process 2 versus ¢
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Fig. 4: Sensor communication rate -y versus scheduling parameter §

for Process 1 and a 5.83% increase of estimation error for Process
2. In Fig. 4, we plot the empirical average sensor communication
rate and the theoretical average sensor communication rate (30) for
Process 2 under different values of . The two curves match almost
indistinguishable and demonstrate that the approximated MMSE
estimator is very close to the exact MMSE estimator.

V. CONCLUSION

We propose an event-based sensor data scheduler for state esti-
mation over a network. The MMSE estimator is derived together
with an approximate estimator. It is shown that by tolerating a small
amount of increase of the estimation error, a significant reduction
of the sensor-to-estimator communication rate can be achieved. In
many applications of networked control systems, multiple sensors
may be involved. Constructing appropriate event-based schedules at
each sensor and estimating the process state based on the received
data and the additional information inferred by the events are more
difficult than the one we have considered. This will be pursued in
our future work.
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Appendix
Lemma A.1: Let x € R be a Gaussian r.v. with zero mean and
variance E[x?] = 02 Denoting A = §o, then E[x?||x| < A] =

a®(1 = B(3)). o
Proof: The property fx(zHX| < A) = m yields
1 A g2 2
E[x?[[x| < A] = — | e 27 dt
JOA [x(t)dt T =A V2T
2 2 2

g g y _ys
= 2 d
1—2Q(9) I—é o Y

5§ 2 4
where f_ s ﬂ%e 2 dy can be calculated as:

fa L Sy = -y + L%
wvar T TR T e Y
2 52
1-2Q(8) — —==de™ =
Then E[x?||x| < A] = o?(1 — B(9)). ]

Lemma A.2 [10], Pages 24-25: Let x € R™ and y € R™ be
jointly Gaussian with mean and variance

|z | Y Exy
m—{y}andZ—[ZyX Zyy]'

Then x is conditionally Gaussian given y = y with fx|y(x|y) =
N (11, Do = Ty B D) whete 1= T + Ty 01 (y = 9).
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