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Abstract Event-triggered control aims at reducing the communication load over the
feedback link in networked control systems by sending information only if certain
event conditions, which guarantee a desired control performance, are satisfied. This
article investigates the consequences of actuator saturation on the behavior of the
event-triggered control loop in terms of its stability and information exchange.
Stability properties are derived using linear matrix inequalities (LMIs) which show
how the stability of the event-triggered control loop depends on the selection of
the event threshold. Moreover, it is shown that a lower bound on the minimum
inter-event time exists being likewise affected by the event threshold. As actuator
saturation might severely degrade the performance of the event-triggered closed-
loop system, the scheme is extended by incorporating an anti-windup mechanism
in order to overcome this problem. The results are illustrated by simulations and
experiments.
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1 Introduction

1.1 Event-triggered control

In networked control systems (NCS), the communication between the sensors,
the controller and the actuators is realized over a digital communication medium.
Compared to the traditional point-to-point architecture of a wired communication,
a digital network offers several benefits with respect to lower costs, a simplified
installation and maintenance. As a central feature, it additionally allows an almost
unlimited flexibility in setting up and changing the required communication in-
frastructure. Hence, the communication links between the relevant nodes of the
network can be simply adapted to the current needs.

However, the communication network has a considerable influence on the loop
performance since its load affects the quality of service by inducing delays or
packet losses which degrade the system performance or even cause the instability
of the control loop. To avoid this situation, communication and control need to be
investigated with respect to their interaction (Bemporad et al. 2010; Lehmann 2011;
Nair et al. 2007; Zhang et al. 2001).

In this context, the analysis of event-triggered control has gained attention by
considering event-triggered control as a means to reduce the communication load of
the network by invoking an information exchange only when certain event conditions
implemented by an event generator are met (Årzén 1999; Åström and Bernhardsson
1999; Bemporad et al. 2010; Tipsuwan and Chow 2003). The main aim to be
reached by this feedback structure is the adaptation of the communication among the
components of the feedback loop to the current requirements preserving a desired
performance of the closed-loop system. In fact, by reducing the information exchange
to the minimum communication that is necessary to ensure the required system
performance, an overload of the digital communication network can be avoided.

The event-triggered control loop as considered in this article is depicted in Fig. 1.
It consists of

– the plant with state xp(t), output y(t), exogenous disturbance d(t) and input ũ(t)
subject to actuator limitations,

– an event generator which invokes a communication whenever the plant output
y(t) satisfies certain event conditions,

– and the controller with state xc(t) which is used together with the reference input
w(t) and the information y(tk) to continuously produce the control input u(t).

The controller and the sensor node are connected by means of a digital network.
Only at event times tk (k = 0, 1, 2, ...) determined by the event generator, the
measured plant output y(tk) is sent from the event generator towards the controller
which is indicated by the dashed lines. The solid lines indicate continuous-time
signals.

1.2 Literature review

Discrete-event systems and hybrid systems have a major impact on several control
application domains whose event-driven nature often results from the technology
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Fig. 1 Event-triggered control
loop subject to actuator
limitations Event

generator
Controller Plant

Digital communication network

used, e.g., digital computers, manufacturing facilities and communication networks
(Cassandras and Lafortune 2008; Lunze and Lamnabhi-Lagarrigue 2009).

In the last decade, there has been an additional interest in studying classical
feedback control under event-driven sampling, also called asynchronous sampling,
event-based sampling or event-triggered sampling (Åström and Bernhardsson 1999;
Heemels et al. 1999, 2008; Tabuada 2007). Most of this work is motivated by
networked control systems in which the information exchange is realized over
a resource-limited wireless communication network (Årzén 1999; Baillieul and
Antsaklis 2007; Bemporad et al. 2010).

However, up to now most of the approaches dealing with event-triggered control,
e.g., by Anta and Tabuada (2010), Cervin and Henningsson (2008), Heemels et al.
(2008), Lunze and Lehmann (2010) and Wang and Lemmon (2009), consider a simple
proportional controller. To make this control scheme more attractive for practical
applications, there is a recent interest in considering more involved event-triggered
controllers, in particular, event-triggered PID control. In this context, it has been
shown by Årzén (1999), Otanez et al. (2002) and Vasyutynskyy and Kabitzsch (2006)
by simulations that event-triggered PID control is able to significantly reduce the
computational and communication effort while only slightly degrading the control
performance.

A model-based approach to event-triggered PI control has been presented by
Lehmann and Lunze (2011). It has been shown that the scheme proposed guarantees
setpoint tracking for constant exogenous signals. Additionally, it provides a theoreti-
cal framework to analyze the stationary behavior of the event-triggered control loop
for time-varying reference and disturbance signals. However, the scheme proposed
is computationally demanding as it requires to run the model used for producing the
control input u(t) both on the actuator and on the sensor node.

Donkers and Heemels (2010) considered a very general dynamic event-triggered
controller. By using an extended event-generating mechanism which simultaneously
monitors the evolution of the measured output y(t) and the control input u(t), the
behavior of the event-triggered control loop was analyzed in terms of its stability and
L∞ properties resulting in LMI conditions.

Two general problems of event-triggered PID control are the sticking effect and
large stationary oscillations (see Årzén 1999; Vasyutynskyy and Kabitzsch 2006). To
overcome these problems two adaptations of the event-triggered control loop have
been proposed by Tiberi et al. (2012). By using a modified event condition based
on the control input ũ(t) and by adapting the integrator part of the event-triggered
PI-control loop considered, it has been shown that for stable first-order systems
oscillations can be avoided and setpoint tracking is guaranteed.
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However, it is well known from continuous-time control that by using a PI
controller the closed-loop behavior might be significantly deteriorated whenever the
actuators saturate due to physical or safety constraints (Åström and Hägglund 1995;
Tarbouriech et al. 2011; Zaccarian and Teel 2011). Even though actuator saturation
almost always occurs in practical applications, its effect on event-triggered control
has only been studied by Lehmann and Johansson (2012) and Lehmann et al. (2012).
It has been shown that actuator saturation has severe consequences with respect to
the behavior of the event-triggered PI-control loop which depend on the selection of
the event threshold.

1.3 Contributions of this article

The contributions of this article are the following:

1. It provides stability conditions based on LMIs which lead to stability regions for
the event-triggered control loop (Theorem 1, Corollary 1).

2. It derives lower bounds on the minimum inter-event time showing that Zeno
behavior can be excluded (Theorem 2, Corollary 2).

3. It extends the control loop by incorporating a static anti-windup mechanism
in order to overcome a potential performance degradation caused by actuator
saturation (Corollary 3).

4. It illustrates the theoretical results by simulations and experimental results
showing how the stability regions are affected by the event threshold and how
the anti-windup mechanism improves the results.

This article extends the results obtained in the conference papers (Lehmann and
Johansson 2012; Lehmann et al. 2012), which are restricted to event-triggered PI
control with full state measurement, to the situation, where a more general dynamical
controller is used which might have access to only partial state information.

The remainder of this article is organized as follows. Basic notations are intro-
duced in Section 2. The effect of saturating actuators on the stability and commu-
nication properties of the event-triggered control loop is studied in Section 3. In
Section 4, the previous results are extended by incorporating a static anti-windup
mechanism. Finally, Section 5 illustrates the theoretical results by simulations and
experiments.

2 Preliminaries

2.1 Notation

A scalar is denoted by italic letters (x ∈ R), a vector by bold italic letters (x ∈ Rn), a
matrix by bold capital letters (A ∈ Rn×n) with In the identity matrix of size n and a
signal at time t ∈ R+ by x(t), where x0 describes the initial signal value at time t = 0.

The i-th element of a vector x is denoted by x(i), the i-th row or column of a matrix
A by A(i) and the transpose of a matrix or vector by (�)T . Symmetric matrices of the

form
[

A BT

B C

]
are abbreviated by

[
A �

B C

]
. Furthermore, the absolute value of a scalar
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is denoted by |x|, the Euclidean vector norm by ||x|| and the induced matrix norm by
||A||.

A � 0 (A � 0) means that the matrix A is positive definite (positive semidefinite)
and A ≺ 0 (A � 0) indicates that the matrix A is negative definite (negative semi-
definite). The trace of a matrix A is denoted by trace(A).

2.2 Plant description

The plant considered in this article is described by the continuous-time state-space
model

ẋp(t) = Ãxp(t) + B̃ũ(t) + B̃Dd(t), xp(0) = xp0 (1)

y(t) = C̃xp(t), (2)

where xp ∈ Rnp denotes the state vector, ũ ∈ Rm is the control vector, y ∈ Rr is the
measured output vector and d ∈ Rq represents disturbances at the plant which are
assumed to be bounded according to

d ∈ VD =
{

d ∈ Rq : dT QDd ≤ ε−1
D

}
, QD = QT

D � 0, εD > 0. (3)

Ã, B̃, B̃D and C̃ are real matrices of appropriate dimensions. In the following it is
assumed that the pair (Ã, B̃) is controllable and the pair (Ã, C̃) is observable.

The plant input ũ(t) is given by ũ(t) = sat(u(t)), where sat(�) represents the
nonlinear saturation function defined by

sat(u(i)) =

⎧⎪⎨
⎪⎩

umax(i) if u(i) > umax(i);
u(i) if −umin(i) ≤ u(i) ≤ umax(i);
−umin(i) if u(i) < −umin(i)

(4)

with i ∈ {1, ..., m}. Throughout this article, only symmetrical saturation functions are
considered with

u0(i) = umax(i) = umin(i), ∀i ∈ {1, ..., m}.

3 Event-triggered control subject to actuator saturation

3.1 Components of the event-triggered control loop

Event-generator An event condition commonly used in the literature is given by
deadband sampling (Otanez et al. 2002; Vasyutynskyy and Kabitzsch 2006), where
a communication is invoked whenever the difference between the last transmitted
information y(tk) and the current measurement y(t) reaches an event threshold ē:∥∥y(tk) − y(t)

∥∥ = ē. (5)

Based on this event condition and by defining the output error according to

e(t) = y(tk) − y(t), (6)
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this section introduces a more general event condition which aims at keeping the
output error e(t) in the set

W = {
e ∈ Rr : eT Re ≤ δ−1}

with R = RT � 0 and δ−1 > 0. This is obtained by invoking a communication,
i.e., sending the current measurement y(t), whenever the output error reaches the
boundary of the set W and, hence,

e(t) ∈ ∂W = {
e ∈ Rr : eT Re = δ−1} (7)

holds with δ−1 denoting the event threshold and tk := t. Note that this condition
corresponds to event condition 5 by setting R = Ir and δ−1 = ē2.

Controller The plant 1, 2 is assumed to be controlled by a general linear dynamic
output feedback controller which receives new information about the plant output
y(t) only at event times tk with k ∈ {0, 1, 2, ...}. Hence, the event-triggered controller
can be described during the time interval [tk, tk+1) by

ẋc(t) = Ãcxc(t) + B̃c y(tk) + B̃cWw(t), xc(tk) = xck

u(t) = C̃cxc(t) + D̃c y(tk) + D̃cWw(t)

with xc ∈ Rnc the integrator state (controller state), where xck denotes the integrator
state at time tk, and w ∈ Rs represents reference signals to be followed. The matrices
Ãc, B̃c, B̃cW , C̃c, D̃c and D̃cW denote real matrices of appropriate dimensions.

By replacing y(tk) according to definition 6 the controller equations can be
rewritten to get an equivalent continuous-time representation which holds for t ≥ 0:

ẋc(t) = Ãcxc(t) + B̃c y(t) + B̃ce(t) + B̃cWw(t), xc(0) = xc0 (8)

u(t) = C̃cxc(t) + D̃c y(t) + D̃ce(t) + D̃cWw(t). (9)

In the following it is assumed that the controller parameters are designed in a way
that the unconstrained continuous-time control loop 1, 2, 8, 9 with ũ(t) = u(t) (∀u)
and e(t) = 0 (∀t) is stable.

3.2 Description of the event-triggered control loop

With plant 1, 2 and controller 8, 9 and by introducing the augmented state vector
x = [

xp xc
]T ∈ Rnp+nc , which includes both the plant state and the controller state,

the event-triggered control loop can be described by the continuous-time state-space
model

ẋ(t) = Ax(t) + Bsat(u(t)) + BDd(t) + BWw(t) + BEe(t), x(0) = x0 (10)

u(t) = Kx(t) + KWw(t) + KEe(t) (11)

y(t) = Cx(t), (12)
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with

A =
[

Ã O
B̃cC̃ Ãc

]
, B =

[
B̃
O

]
, BD =

[
B̃D

O

]
, BW =

[
O

B̃cW

]
, BE =

[
O
B̃c

]

K =
[

D̃cC̃ C̃c

]
, KW = D̃cW, KE = D̃c, C =

[
C̃ O

]
.

Equations 10–12 show that both the plant and the controller are affected by the
output error signal e(t) introduced by the event-triggered sampling. Moreover, since
the controller dynamics are included in the plant dynamics the controller can be
represented as a pure proportional controller. This is illustrated in Fig. 2.

Dead-zone nonlinearity Henceforth, the saturation nonlinearity is replaced by a
decentralized dead-zone nonlinearity φ(t) according to

φ(u(t)) = sat(u(t)) − u(t). (13)

The main benefit of this transformation is that it allows using a modified sector
condition. This condition specifically applies to dead-zone nonlinearities potentially
resulting in less conservative results compared to using classical sector conditions
(Tarbouriech et al. 2006).

Lemma 1 (Tarbouriech et al. 2006) If v ∈ Rm and z ∈ Rm are elements of the set

S = {
v ∈ Rm, z ∈ Rm : ∣∣v(i) − z(i)

∣∣ ≤ u0(i), ∀i ∈ {1, ..., m}}
then the nonlinearity φ(v) satisf ies the inequality

φ(v)T T (φ(v) + z) ≤ 0

for any diagonal positive def inite matrix T ∈ Rm×m.

By using transformation 13, the state-space model 10, 11 can be rewritten as

ẋ(t) = Ax(t) + Bφ (Kx(t) + KWw(t) + KEe(t))

+ BDd(t) + (BW + BKW) w(t) + (BE + BKE) e(t), x(0) = x0 (14)

y(t) = Cx(t) (15)

with

A = A + BK, B = B.

Fig. 2 Continuous-time
representation of the
event-triggered control loop
with augmented plant P

controller
Plant



Discrete Event Dyn Syst

Note that the matrix A is Hurwitz due to assuming that the controller 8, 9 leads to a
stable unconstrained continuous-time control loop. The model 14, 15 is used for the
stability analysis carried out next.

3.3 Stability analysis

For the sake of simplicity, the disturbance and reference signals are firstly set to zero,
i.e.,

d(t) = w(t) = 0, ∀t.

Theorem 1 Suppose d(t) = w(t) = 0, ∀t. If there exist a symmetric positive def inite
matrix W ∈ Rn×n, a positive def inite diagonal matrix S ∈ Rm×m, a matrix Z ∈ Rm×n,
a positive scalar η and two a priori f ixed positive scalars τ1 and τ2 satisfying

⎡
⎢⎣

W A
T + AW + τ1W � �

SB
T − KW − Z −2S �

(BE + BKE)T −KT
E −τ2 R

⎤
⎥⎦ ≺ 0 (16)

−τ1δ + τ2η < 0 (17)

[
W ZT

(i)
Z(i) ηu2

0(i)

]
� 0, i ∈ {1, ..., m} (18)

then for any e ∈ W = {e ∈ Rr : eT Re ≤ δ−1} and x0 ∈ E(P, η) with

E(P, η) = {
x ∈ Rnp+nc : xT Px ≤ η−1} (19)

and P = W−1, the state x(t) of the event-triggered control loop 14, 15 does not leave
the ellipsoid E(P, η) for all future times t > 0.

Proof The proof follows the procedure introduced in Tarbouriech et al. (2011).
By setting v = u = Kx + KEe and z = u + Gx = Kx + KEe + Gx, Lemma 1

guarantees that any x belonging to the set

SG = {
x ∈ Rnp+nc : |G(i)x| ≤ u0(i) ∀i ∈ {1, ..., m}}

satisfies the sector condition

φ(u)T T (φ(u) + u + Gx) ≤ 0. (20)

Consider the quadratic Lyapunov function candidate

V = xT Px (21)
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with P = PT � 0, which defines the ellipsoid E(P, η) according to Eq. 19. This
ellipsoid is included in the set SG if the inequalities

[
P GT

(i)
G(i) ηu2

0(i)

]
� 0 for i = 1, ..., m (22)

P � 0 (23)

hold (see Tarbouriech et al. 2011 for a detailed proof of this fact). Then, it follows
that sector condition 20 is satisfied for every x ∈ E(P, η). By setting W = P−1 and
Z = GW , inequality 22 can be rewritten to get Eq. 18. Inequality 23 is automatically
fulfilled as a requirement for Eq. 21.

Next, conditions are derived to prove that the time derivative V̇(x) satisfies
V̇(x) < 0 for any

x /∈ intE(P, η) = {
x ∈ Rnp+nc : xT Px < η−1}

and any e ∈ W . By applying the S-procedure, the condition

V̇(x) + τ1
(
xT Px − η−1) + τ2

(
δ−1 − eT Re

)
< 0 (24)

with τ1, τ2 > 0 is obtained. For further analysis, Eq. 24 is split into two inequalities:

− τ1δ + τ2η < 0 (25)

V̇(x) + τ1xT Px − τ2eT Re < 0. (26)

Equation 25 directly results in condition 17. Equation 26 can be extended by using
the sector condition 20 for x ∈ ∂E(P, η) and using the fact that

V̇(x) + τ1xT Px − τ2eT Re

≤ V̇(x) + τ1xT Px − τ2eT Re − 2φT T (φ + Kx + KEe + Gx) < 0

holds. By using the system representation 14 and by transforming the decision
variables according to W = P−1, S = T−1 and Z = GW , finally condition 16 is
obtained which concludes the proof. ��

The result shows that for any state x(t1) located on the boundary of ellipsoid 19,
i.e., x(t1) ∈ ∂E(P, η), and e(t) ∈ W , it follows that V̇(x(t1)) < 0. Thus, x(t1 + �t) will
lie in the interior of the ellipsoid for any arbitrary small time step �t. Consequently,
the ellipsoid E(P, η) is a positive invariant set for the event-triggered control loop 14,
15 (see Blanchini 1999).

If e(t) = 0 holds for all times t ≥ 0, Eq. 26 turns into

V̇(x) < −τ1xT Px < 0.

This inequality ensures that V̇(x) < 0 holds for all x ∈ E(P, η). Hence, E(P, η) de-
scribes a region of asymptotic stability for system 14, 15. As e(t) = 0 (∀t) corresponds
to a continuous-time information exchange which should be generally avoided when
considering event-triggered control, this fact is neglected in the following.
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The LMI conditions introduced by Theorem 1 can be used to check whether or not
a stability region exists for the event-triggered control loop subject to a predefined
event threshold and zero exogenous signals. Moreover, Theorem 1 can be also used
to derive the maximum stability region E(P, η) for a fixed event threshold δ−1 or to
find the maximum event threshold leading to a feasible set of inequalities. Suitable
optimization methods are discussed in Section 5.

3.4 Minimum inter-event time

The minimum inter-event time between two consecutive events is given by

Tmin = min
k

{tk+1 − tk}, k = 0, 1, 2, ... .

The following theorem shows that there exists a lower bound on the minimum inter-
event time and, hence, Zeno behavior can be excluded.

Theorem 2 Assume that the event-triggered control loop 14, 15 with w(t) = d(t) =
0, ∀t, satisf ies the inequalities 16–18, then for x0 ∈ E(P, η) the minimum inter-event
time Tmin is lower bounded by

Tmin ≥ T = arg min
t

{
ẽ(t) =

√
1

δ||R||

}
(27)

with

ẽ(t) = max
t

∥∥∥C̃(eÃt − In)

∥∥∥ xmax +
t∫

0

∥∥∥C̃eÃ(t−τ) B
∥∥∥dτu0max (28)

and

xmax = max
x∈E(P,η)

||x|| (29)

u0max = max
i∈{1,2,...,m}

u0(i). (30)

Proof The plant dynamics are described by the state-space model 1, 2. Considering
d(t) = 0, the output trajectory is given by

y(t) = C̃eÃtx0 + C̃
∫ t

0
eÃ(t−τ) Bũ(τ )dτ.

The norm of the output error

||e(t)|| = ||y(tk) − y(t)||
introduced by considering the over-approximation

eT Re ≤ ||e||2||R||
can be upper bounded by

||e(t)|| =
∥∥∥∥C̃

(
eÃt − In

)
x0 + C̃

∫ t

0
eÃ(t−τ) Bũ(τ )dτ

∥∥∥∥ ≤ ẽ(t)
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(tk = 0) with ẽ(t) given by Eq. 28. As ||u|| ≤ u0max holds independent of the control
signal produced by controller due to the actuator limitations and since an event is
generated whenever the equation eT Re = δ−1 holds, ẽ(t) can be used to derive a
lower bound on the minimum inter-event time by means of relation 27. ��

The theorem shows that the information exchange over the feedback link can be
arbitrarily adapted by choosing δ accordingly. However, as this parameter likewise
affects the stability conditions according to Eq. 17, a small δ might lead to an
infeasible inequality set Eqs. 16–18.

3.5 Nonzero exogenous signals

In practical applications, disturbances and reference signals cannot be neglected.
Therefore, d(t) 
= 0 and w(t) 
= 0 need to be generally considered within the stability
analysis of the event-triggered control loop 14, 15.

However, in order to derive stability conditions based on the previous method,
disturbances d(t) as well as reference signals w(t) have to be bounded. In the
following, is assumed that both signals are bounded by a quadratic norm, where d(t)
belongs to the set VD according to Eq. 3 and w(t) belongs to the set

VW = {
w ∈ Rs : wT QWw ≤ ε−1

W

}
, QW = QT

W � 0, εW > 0. (31)

Taking these exogenous signals into account Theorem 2 needs to be modified to get
the following result.

Corollary 1 If there exist a symmetric positive def inite matrix W ∈ Rn×n, a positive
def inite diagonal matrix S ∈ Rm×m, a matrix Z ∈ Rm×n, a positive scalar η and four a
priori f ixed positive scalars τ1, τ2, τ3 and τ4 satisfying

⎡
⎢⎢⎢⎢⎢⎣

W A
T + AW + τ1W � � � �

SB
T − KW − Z −2S � � �

(BE + BKE)T −KT
E −τ2 R � �

BT
D 0 0 −τ3 QD �

(BW + BKW)T KT
W 0 0 −τ4 QW

⎤
⎥⎥⎥⎥⎥⎦

≺ 0 (32)

−τ1δεDεW + τ2ηεDεW + τ3ηδεW + τ4ηδεD < 0 (33)

[
W ZT

(i)
Z(i) ηu2

0(i)

]
� 0, i ∈ {1, ..., m} (34)

then for any e ∈ W , d ∈ VD, w ∈ VW and x0 ∈ E(P, η) with P = W−1, the state x(t)
of the event-triggered control loop 14, 15 does not leave the ellipsoid E(P, η) for all
future times t > 0.
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Proof In addition to the requirements of Theorem 1, Eqs. 3 and 31 need to be
considered. Therefore, Eq. 24 can be extended by

V̇(x) + τ1(xT Px − η−1) + τ2
(
δ−1 − eT Re

)

+ τ3

(
ε−1

D − dT QDd
)

+ τ4
(
ε−1

W − wT QWw
)

< 0

with τ1, τ2, τ3, τ4 > 0. Again, this inequality can be split into two inequalities:

− τ1δεDεW + τ2ηεDεW + τ3ηδεW + τ4ηδεD < 0 (35)

V̇(x) + τ1xT Px − τ2eT Re − τ3dT QDd − τ4w
T QWw < 0. (36)

Equation 35 directly leads to condition 33. Extending Eq. 36 by using sector condi-
tion 20 with u = Kx + KWw + KEe yields

V̇(x) + τ1xT Px − τ2eT Re − τ3dT QDd − τ4w
T QWw

≤ V̇(x) + τ1xT Px − τ2eT Re − τ3dT QDd − τ4w
T QWw

− 2φT T (φ + Kx + KWw + KEe + Gx) < 0.

Finally, by considering Eq. 14 and by using the transformations W = P−1, S = T−1

and Z = GW , condition 32 is obtained. ��

Moreover, the next result brings about how the lower bound on the minimum
inter-event time is affected by exogenous signals.

Corollary 2 Assume that the event-triggered control loop 14, 15 with w(t) and d(t)
according to Eqs. 3 and 31 satisf ies the inequalities 32–34, then for x0 ∈ E(P, η) the
minimum inter-event time Tmin is lower bounded by

Tmin ≥ Td = arg min
t

{
ẽd(t) =

√
1

δ||R||

}
(37)

with

ẽd(t) = max
t

∥∥∥C̃(eÃt − In)

∥∥∥ xmax +
t∫

0

∥∥∥C̃eÃ(t−τ)
∥∥∥dτ

(
||B̃||u0max + ‖B̃D‖dmax

)
, (38)

xmax and u0max according to Eqs. 29 and 30, and

dmax = max
d∈VD

||d||.

Proof The plant dynamics are described by the state-space model 1, 2 which yields
the output trajectory

y(t) = C̃eÃtx0 + C̃
∫ t

0
eÃ(t−τ)

(
B̃ũ(τ ) + B̃Dd(τ )

)
dτ.
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By considering the same over-approximation as in the proof of Theorem 2, the norm
of the output error can be upper bounded by

||e(t)|| =
∥∥∥∥C̃

(
eÃt − In

)
x0 + C̃

∫ t

0
eÃ(t−τ)(B̃ũ(τ ) + B̃Dd(τ ))dτ

∥∥∥∥ ≤ ẽd(t)

(tk = 0) with ẽd(t) given by Eq. 38. By means of relation 37, ẽd(t) is used to derive a
lower bound on the minimum inter-event time. ��

Note that the communication bound is not affected by the reference signal w(t).
The reason for this is given by the fact that w(t) only directly affects the output of the
controller (Eq. 9), which is upper bounded by the saturation limits, and the controller
state xc(t) (Eq. 8). However, the controller state is not used for the event generation.

4 Anti-windup compensation

4.1 Event-triggered control loop with anti-windup compensation

For continuous-time controlled systems, there exists a large repertoire of so-called
anti-windup techniques to compensate the potential performance degradation due
to saturating actuators (see Tarbouriech et al. 2011; Zaccarian and Teel 2011). This
section presents an extensions of the previous event-triggered control loop by using
a static anti-windup mechanism which is illustrated in Fig. 3 for event-triggered
PI control, i.e., Ãc = O, B̃c = Ir, B̃cW = −Ir, C̃c = K I, D̃c = KP, D̃cW = −KP (cf.
Eqs. 8 and 9).

The main characteristic of this scheme is that the difference between the actual
actuator output and the unconstraint controller output, which corresponds to the
dead-zone nonlinearity 13 according to sat(u(t)) − u(t) = φ(u(t)), is fed back through
the static gain K AW in order to affect the evolution of the controller state xc(t).
Thereby, the controller Eq. 8 has to be extended in the following way:

ẋc(t) = Ãcxc(t) + B̃c y(t) + B̃ce(t) + B̃cWw(t) + K AWφ(u(t)), xc(0) = xc0. (39)

Fig. 3 Event-triggered PI
controller with static
anti-windup compensation
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By using the plant description 1, 2, the adapted controller state 39, the controller
output 9 and the dead-zone transformation 13, the closed-loop state-space represen-
tation reads

ẋ(t) = Ax(t) + BAWφ (Kx(t) + KWw(t)KEe(t)) (40)

+BDd(t) + (BW + BKW) w(t) + (BE + BKE) e(t), x(0) = x0

y(t) = Cx(t) (41)

with

BAW =
[

B̃
K AW

]
. (42)

The difference to model 14 is given by the different definition of the matrix B.
Therefore, by adapting the matrix B to BAW , the method presented in Section 3
can be used straightforward to calculate the regions of stability for event-triggered
control with anti-windup compensation.

4.2 Stability analysis

Corollary 3 If there exist a symmetric positive def inite matrix W ∈ Rn×n, a positive
def inite diagonal matrix S ∈ Rm×m, a matrix Z ∈ Rm×n , a positive scalar η and four
a priori f ixed positive scalars τ1, τ2, τ3 and τ4 satisfying

⎡
⎢⎢⎢⎢⎢⎣

W A
T + AW + τ1W � � � �

SB
T
AW − KW − Z −2S � � �

(BE + BKE)T −KT
E −τ2 R � �

BT
D 0 0 −τ3 QD �

(BW + BKW)T KT
W 0 0 −τ4 QW

⎤
⎥⎥⎥⎥⎥⎦

≺ 0 (43)

−τ1δεDεW + τ2ηεDεW + τ3ηδεW + τ4ηδεD < 0

[
W ZT

(i)
Z(i) ηu2

0(i)

]
� 0, i ∈ {1, ..., m}

then for any e ∈ W , d ∈ VD, w ∈ VW and x0 ∈ E(P, η) with P = W−1, the state x(t)
of the event-triggered control loop 40–42 does not leave the ellipsoid E(P, η) for all
future times t > 0.

The only difference to the previous result (Corollary 1) is that the matrix BAW

now includes the anti-windup gain K AW . This parameter acts as an additional design
parameter which can be used to improve the behavior of the event-triggered control
loop, e.g, by enlarging the region of stability. As the anti-windup mechanism only
affects the controller structure, it has no influence on the lower bound Td on
the minimum inter-event Tmin due to the limitations of the plant input ũ(t) (see
Section 3.5).
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5 Evaluation

5.1 Determination of the region of stability

The stability conditions presented in this article include the linear decision vari-
ables W , S, Z and η if the parameters τi are fixed. R and δ are either a priori
given or additional decision variables depending on the objective of the algorithm
(Tarbouriech et al. 2011). The following algorithm has been used to determine the
regions of stability within this section:

1. Given R and δ, choose a suitable objective function f (E(P, η)).
2. Fix τ1, τ2, τ3 and τ4.
3. Solve for W , S, Z and η the optimization problem

min{ f (E(P, η))}
subject to the inequalities of either Theorem 1, Corollary 1 or Corollary 3.

In order to execute this algorithm, a suitable size criterion has to be found for
maximizing the respective region of stability. There are several possibilities that
translate into different objective functions f (E(P, η)) (see Tarbouriech et al. 2011).
Two examples are:

– f (E(P, η)) = n log(η) + log(det(P)) referring to volume maximization.
– f (E(P, η)) = β0η + β1trace(P) with weighting parameters β0 and β1 which leads

to ellipsoids that are homogeneous in all directions.

However, the objective functions above become nonlinear due to the transformation
P = W−1. To avoid this, the optimization problem

min{trace(−W)}
subject to inequalities Eqs. 16–18

has been used in the following evaluation which was solved by means of the YALMIP
toolbox (Löfberg 2004).

Note that the outcome of the optimization might severely depend on the selection
of the parameters τi. Therefore, in order to obtain the maximum region of stability,
a grid of corresponding τi needs to be defined based on which the optimization has
to be carried out for every grid point.

5.2 Simulations

The simulation results are borrowed from Lehmann et al. (2012), where the unstable
scalar system

ẋp(t) = 0.1xp(t) + ũ(t), xp(0) = xp0

has been considered which is controlled by the event-triggered PI controller

ẋc(t) = xp(tk), xc(tk) = xck

u(t) = −xc(t) − 1.6xp(tk)
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(t ∈ [tk, tk+1), w(t) = d(t) = 0). The state information xp(tk) is sent from the event
generator to the controller whenever the event condition

|e(t)| = |x(tk) − x(t)| = e (44)

is met. Considering the definition of the general event condition 7, this event
condition results by setting R = 1 and δ = e−2. Furthermore, the actuator output ũ(t)
is subject to limitations according to ũ(t) = sat(u(t)) with u0 = 0.4 (see Eq. 4).

Behavior of the event-triggered control loop Figure 4 shows the stability regions for
different values of the event threshold ē and τ1 = τ2 = 0.1. The figure indicates that
the size of the region decreases by increasing the event threshold, where ē = 0.15
denotes the maximum threshold for which the inequalities 16–18 yield a feasible
solution. The region obtained for ē = 0.15 is denoted in the following by E(0.15).

The behavior of the event-triggered PI-control loop is depicted in Fig. 5. Here,
the upper plot shows the plant state xp(t). The controller state xc(t) is depicted in the
middle plot. Three different scenarios are considered.

The behavior using ē = 0.15 with x0 ∈ E(0.15) is drawn by the solid lines. As
expected, the behavior remains stable. The dashed lines indicate the behavior
obtained by starting from the same initial condition x0 but with an increased event
threshold (ē = 0.9). The behavior becomes unstable. The same holds by choosing
an admissible event threshold ē = 0.15 but considering an initial state x0 /∈ E(0.15)

(x0 = [
1.9 0.5

]T) depicted by the dotted lines. In the latter two cases the instability
results from the fact that the input signal ũ(t) is kept almost always in its saturation
bounds (see lower plot of the figure) which is caused by a large controller state xc(t)
resulting from integrator windup.

Anti-windup compensation Figure 6 shows how the anti-windup extension affects
the region of stability. Choosing

KAW = −2,

Fig. 4 Stability regions for
different event thresholds;
ē = 0 indicates the region of
stability for the corresponding
continuous-time PI-control
loop
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Fig. 5 Behavior of the
event-triggered PI-control
loop for: 1. ē = 0.15,
x0 ∈ E(0.15) (solid lines), 2.
ē = 0.9, x0 ∈ E(0.15) (dashed
lines), 3. ē = 0.15, x0 /∈ E(0.15)

(dotted lines)

the region is significantly increased and even includes the region obtained for
continuous-time PI control without compensation.

Moreover, Fig. 7 compares the resulting trajectories obtained with and without
anti-windup control (KAW = −2) for x0 ∈ E(0.15) and ē = 0.15. It is shown that the
overshoot with anti-windup control is much smaller compared to the scheme without
compensation (upper plot) due to a much smaller controller state (second plot). This
leads to a significant shorter period in which the actuator is saturated which can be
seen at the beginning of the simulation (third plot). The lower plot of Fig. 7 shows the
event times. The anti-windup control (AW) decreases the overall number of events

Fig. 6 Increase of the stability
region due to anti-windup
compensation
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Fig. 7 Behavior of the
event-triggered PI-control
loop with (dotted lines) and
without (solid lines)
anti-windup compensation

p

c

(9 instead of 13 events in the time interval considered) primarily by reducing the
communication during the transient behavior.

5.3 Experiments

For the experimental evaluation a first-order tank system controlled by an event-
triggered PI-controller has been used. The experimental setup is depicted in Fig. 8.
The central component of the experiment is a cylindrical tank whose inflow can be
controlled by a pump with ũ ∈ [0, 12] V. The plant state xp(t) refers to the water

Fig. 8 Experimental setup
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level within the tank which can be continuously measured by a pressure sensor.
Moreover, the outflow of the tank depends on the current water level. The node
incorporating the event generator has access to the current measurements and uses
a wireless communication network to send new information to the controller. The
controller and the actuator are connected by wire.

As such a tank system usually possesses nonlinear dynamics (see Lehmann and
Lunze 2011), the system has been linearized around the operating point

xOP = 10 cm, ũOP = 5.43 V

which leads to the stable linear state-space model

∂ ẋp(t) = − 1
15

∂xp(t) + 4
15

∂ũ(t), ∂xp(0) = ∂xp0

with ∂xp(t) = xp(t) − xOP and ∂ũ(t) = ũ(t) − ũOP.
The event-triggered PI controller that controls the tank is given by

ẋc(t) = ∂xp(tk) + KAW(ũ(t) − u(t)), xc(tk) = xck

∂u(t) = −0.1xc(t) − ∂xp(tk)

(t ∈ [tk, tk+1)) which gets the state information ∂xp(tk) from the event generator
whenever event condition 44 is satisfied.

Fig. 9 Stability regions for e = 1 and u0 = 1 (solid line), e = 2 and u0 = 1 (dotted line), and e = 1 and
u0 = 0.5 (dashed line)
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As the saturation limits are non-symmetric (ũ ∈ [0, 12] V) and in order to be able
to adapt the bounds, the saturation limits are artificially set around the operating
point ũOP = 5.43 V according to

umax = ũOP + u0

umin = ũOP − u0.

Behavior of the event-triggered control loop Figure 9 shows the stability regions
obtained for different event thresholds e, different values of the saturation limit
u0 and no anti-windup compensation (KAW = 0). The figure illustrates that, as
expected, both increasing the event threshold e and reducing the saturation bound
u0 decrease the region of stability.

The behavior of the event-triggered control loop with xp(0) = 5 cm and xc(0) = 0
and no anti-windup compensation is depicted in Fig. 10. The upper plot depicts the
plant state xp(t) (circles and stars indicate the event times), the middle plot shows the
controller state xc(t) and the plant input ũ(t) is drawn in the lower plot.

It can be seen that by using u0 = 1 and e = 1, the behavior of the event-triggered
control loop remains stable. In fact, since the plant is stable and the input is subject to
saturation, it is not possible to obtain an unbounded increase of the plant state xp(t).

However, by setting the saturation limit to u0 = 0.1 and the event threshold to
e = 2, an unstable behavior of the controller state xc(t) can be observed (dashed
lines). This behavior is caused by the sticking effect (Tiberi et al. 2012; Vasyutynskyy

Fig. 10 Behavior of the event-triggered control loop for u0 = 1, e = 1 (solid lines) and u0 = 0.1, e =
2 (dashed lines)
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Fig. 11 Stability regions for e = 1, u0 = 1 with (large region) and without (small region) anti-windup
compensation

Fig. 12 Behavior of the event-triggered control loop for u0 = 1, e = 1 (solid lines) and u0 = 0.1, e =
2 (dashed lines) both with anti-windup compensation and gain KAW = −1
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and Kabitzsch 2006), where, in this case, the severe actuator saturation avoids
further events after the second event time (indicated by the second star in the
upper plot of the figure). As the state information used by the controller deviates
from the operating point at that time instance, the controller state xc(t) increases
monotonically for all future times.

Anti-windup compensation Figures 11 and 12 show the effect of anti-windup
compensation with gain KAW = −1 on the behavior of the event-triggered control
loop.

It is clearly demonstrated that anti-windup compensation improves both, the
region of stability (see Fig. 11) and the behavior of the event-triggered control
loop (see Fig. 12) in terms of a better transient behavior (solid lines) and a stable
integrator state (dashed lines). In contrast to the simulation results no decrease of the
information exchange can be obtained which might be caused by model uncertainties
leading to slightly different plant dynamics in the experiments.

In the simulation and the experiment an event-triggered PI controller has been
used to control a first-order plant whose state is measurable. These rather simple
examples have been chosen to demonstrate the consequences of actuator saturation
in an illustrative and clear way. However, remember that the method proposed in this
article can be more generally applied to linear plants of arbitrary order controlled by
a general dynamic output feedback controller.

6 Conclusions

In this article, the influence of actuator saturation on event-triggered control has
been addressed. As a main result LMI conditions have been derived which allow
to determine regions of stability for the event-triggered closed-loop system. The
results have been extended by incorporating a static anti-windup mechanism. It has
been shown that in both cases the information exchange over the feedback link is
bounded.

Simulations and experimental results with a wirelessly controlled tank system have
validated the theoretical results and showed that by using anti-windup compensation
the performance of the event-triggered control loop can be significantly improved in
terms of larger regions of stability and a better overall performance.

Future work will include alternative methods for deriving the stability regions,
the design of event-triggered anti-windup mechanisms and the consideration of
communication imperfections.
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