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1. Control under limited communications

We study a problem of sampled-data control for an It6 diffusion process. In particular,
we allow the sampling of the state process to be event-triggered and place a bound on
the sampling rate. Such limits arise in Networked control systems where, the sensors,
the controller and the actuators may be connected to each other over data networks.
Although these networked control loops suffer from degraded communication, they offer
several cost savings and the advantages of fast installation, easy maintenance, deployment
in mobile environments etc. (see [1] for an overview).

In practical situations such as in wireless industrial control, frequently, it is the link
from sensors to controllers that have restricted rates. Consider such a loop consisting of
three components: the plant, a sensor and a controller (see fig. 1(a)). The link from the
sensor to the controller is over a data network and so, its communication rate is limited.
The other links in the loop have no such limits and can be considered ideal. Assume that
the sensor obtains perfect and continuous measurements of the state process. Because
of the rate limit, continuous transmission of the sensor observations to the controller is
impossible; only a sampled version of the observations can be forwarded to the controller.
The control process is hence generated with some compressed information about the state
process. It is generated based on the timed sequence of samples received, and, is forced
to be piecewise deterministic. The traditional solution is to sample sensor observations
periodically choosing a sampling rate equalling the average communication rate permitted
by the channel. Here, we pursue the more efficient strategy of letting the sensor choose
sampling times to be stopping times w.r.t. its observations. The rate of arrival of the
stopping times then should be no greater than the rate permitted by the channel.

This pursuit boils down to designing two elements namely, an Event detector at the
sensor end which applies a set of stopping rules to generate samples, and, a Control
generator inside the controller node which produces piece-wise deterministic waveforms
derived from the sequence of received samples. In mathematical terms, we get a sequential
decision problem for a two person team where, the control signal, and, sampling times
are decision variables. Moreover, this decision problem has a non-standard information
pattern with the control values and the stopping times being chosen based on different
information.

1.1. Updating control waveforms at stopping times. We study the finite hori-
zon version of the problem. The communication constraint is a hard limit on the number
of times inside the finite horizon when the control waveform is modified based upon
samples from the sensor. On the horizon [0, 7], consider the controlled scalar Diffusion



2 M. RABI AND K. H. JOHANSSON

CAUSAL SAMPLER

PLANT Lt / .{_Tﬂ :qifﬂi)'

NOISE

Uy

CONTROLLER fpeecccccccccca== ]

(a) Control with limited samples (b) Zero order hold Control

FIGURE 1. Subfig.(a) is the block diagram for control based on limited
samples. The dashed blue link represents a channel with a restricted com-
munication rate. Subfig.(b) shows an important subclass of allowed con-
trols namely, the Zero order hold with piece-wise constant waveforms which
jump only at sample times.

process x; which obeys the SDE:
(1) dry = p(x) dt + o () dBy + K (x4) uedt,

where, B; is a standard scalar Brownian motion process, the functions pu, o, and,  satisfy
the usual Lipschitz and regularity conditions ensuring existence and uniqueness of the
state process x;. The control signal is as usual required to be measurable w.r.t. the
filtration F;’. Because the control is actually generated based on compressed information
regarding the state, it has a further restriction in the manner of its generation. This is
explained subsequently.

Based on its observations, the sensor chooses up to N sampling times {7y, 7o, ... 7x}.
The controller observes its own output continuously and the discrete sequence of sampling
times and sample values passed on from the sensor. Based on its observations, the
controller updates the control waveform at the sampling times generated by the sensor.
Thus an admissible control process must be measurable w.r.t. the filtration generated by
the output of the sensor.

The goal of the control system designer is to keep the state as close to the origin
as possible while using no more than N samples. We adopt the standard squared error
distortion as the control performance measure. Hence, given the initial value xy, the
objective is to pick the sequence of N stopping times {T}i]il and the control policy U so
that the following aggregate control error is minimized:

.CIZ'O:| .

T
2) In (xo,u,{r}jil) —E U 22ds
0

1.2. Relation to previous works. The problem of choosing the time instants to
sample sensor measurements has received early attention in the literature. Kushner [9]
studied the deterministic choice of measurement times in a discrete-time, finite-horizon
LQG optimal control problem. He found that controls can be chosen like in a conventional
LQG control problem with fixed deterministic sampling instants. Using this fact, he
shows that the best (deterministic) sampling schedule can be found by solving a nonlinear
optimization problem. Skafidas & Nerode [22] also adopt the same setting but allow the
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sensor measurement times to be chosen online by the controller. Their conclusion is that
the optimal choice of measurement times can be made offline. Their simplified scheduling
problem is the same as Kushner’s deterministic one.

The Sensor scheduling problem is a generalization of the problem of choosing
measurement times which has been studied for estimation, detection and control
tasks [13, 12, 3, 26]. The problem asks for online schedules of when to gather mea-
surements from different sensors available; in some setups, at most one sensor can be
scheduled at a time. However, the information pattern for this problem is the same as
the the works of Kushner and of Skafidas & Nerode. The notable fact about this informa-
tion pattern is that the flow of data from sensors to their recipients namely, controllers
estimators etc., is regulated by the recipient. Such sensor sampling is of the “pull” type.
an alternative is the “push” type of sampling where sensor itself regulates the flow of its
data. When only one sensor is available, it has more information than the controller and
hence, its conclusions on when to communicate its measurements can potentially improve
performance.

Astrom & Bernhardsson [2] treat a minimum variance control problem with the push
type of sampling. The control consists of impulses which reset the state to the origin,
but there is an upper limit on the rate at which impulses can be applied. Under such a
constraint the design asks for a schedule of the application times for the impulses. For
scalar Gaussian diffusions, they perform explicit calculations to show that the application
of impulses triggered by fixed levels is more efficient than periodic application. In the
setting of discrete time, Imer & Basar [7] study the problem of efficiently using a limited
number of discrete-time impulses. For a finite-horizon LQG optimal control problem, they
use backward dynamic programming to show that time-varying thresholds are optimal.

For the regular control problem for which the control waveform is piecewise continuous
and is of bounded energy and magnitudes, the work of Borkar & Varaiya [5] provides a
suitable starting point. They have studied Finitely switched systems which are controlled
[to processes that are time-discretized using the instants the process freshly crosses a
prescribed set of levels. This framework has been adopted by [16, 17] for studying Level-
triggered control where, the control signal is updated at the times of crossings of fixed
levels.

A deterministic analysis of level-triggered control is carried out in the works [6, 23, 25]
using techniques from Hybrid systems theory. An interesting choice of time-varying levels
is made in [24] again for a deterministic system. The drawback with these approaches is
that they cannot prescribe the optimal or near-optimal design of events. They do help
us analyze a given set of event-based rules. A treatment of the Level-triggered control of
linear diffusions using Rice’s formula [21, 20] is presented in [11].

For the finite-horizon optimal control problems, it is quite easy to see that using fixed
levels for triggering samples is not optimal. In our paper, we give a procedure for the
optimal design of events which turn out to be fresh-crossings of time-varying boundaries.
The results presented here extend earlier work [19] by the authors.

1.3. Contributions and outline of the paper. We focus on the single sampling
problem where the sample budget NV is exactly one. The multiple sampling problem is not
much harder and it can be solved by recursively solving N problems of the single sampling
type. We further specialize to the case of the controller which generates piecewise constant
control waveforms, the so called Zero order hold waveforms (see Fig. 1(b)).

In section 2, we write down the person by person optimality conditions for the pair
of control and sampling policies. We also derive a simpler expression for the cost which
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enables us to see that the optimal pair is such that the stopping rule for sampling is the
first hitting time of a time-varying, double-sided barrier.

In section 3, we furnish an iterative algorithm for finding the optimal pair of policies.
We also establish the convergence of the algorithm and the uniqueness of the resulting
reduced cost. Section 3 applies this algorithm for the case of a Brownian Motion process
where the convergence is found to be quite fast. Finally, in the last section, we conclude
with some remarks about future work.

2. Properties of the optimal choice of stopping times and control updates
For the single stopping problem, the control waveform has the form:
Uo(.on,T) if 0<t<m,
U+ =
"0 (w7 T) if T<ELT,

where, the switch time 7 is a stopping time w.r.t. the z-process, one which is restricted
to fall inside the interval [0, T']. Thus the set of decision variables is the triple: (Uy, Uy, 7).
Because of the non-classical information pattern, we cannot use the existing results on
combined stopping and control [14, 8]. We can however describe some properties of the
optimal choice of policies.

We will first decompose the aggregate quadratic cost. Let ®yftq,t;, ) denote the
solution to the SDE 1 at time t5 withe initial condition at time t; < t5 being x, and, with
the constant control input U over the interval [t1,t5). Then,

T T T T
In (x0,{Uo, Ur},7) = E {/ v2ds —l—/ xgds} =E {/ D7 (5,0, 20) ds +/ D7 (s, T, xT)ds] ,
OT T . 0 . T
= [/ ®7,(s,0,20) ds —/ ®7,(s,0,20) ds+/ ®7 (s, 7, ;) ds] ,
- 0 T . T
= /0 E [(I%O(s, O,xo)} ds — E {/ {<I>2Uo(s, 0,z0) — <I>2U1(5,7', xT)} ds] ,

T T
= /0 Py, (8:70) ds — E {/ {®F(s,0,20) — P} (s, 7, 2,) } ds} :

where, pUO(s, xg) is the second moment of the state at time ¢, under the constant control
value Uy. Denote the first intergral by o (zg, Uy, T). Now, using iterated expectations,

we get:

T
= a(xg, Uy, T) — E / E [@%]O(s, 0,20) — <I>2U1(s, T, xT)| T, xT} ds} ,

- T
In (0, {Uo, U1}, 7) = a(x0,Up, T) — E |E [ {®}(s,0,20) — P} (s,7,2,) } ds

T
= a (29, Uy, T) — E / E [®7 (s, T, 2,) — ®F (s, 7, x7)] ds] :

where, for a given, Uy and 7, the integral fTTE [@F (s, 7,3,) — P} (s,7,2,)] ds can be
minimized by a straightforward choice of U; via a standard optimal control problem for
the integral cost. Let U] (z,,7,T) denote an optimal choice obtained this way. Then the
aggregate control distortion can be described as:

(3) Ix (20, {Uo, Un}, 7) 2 (20, T) — E[B (20, Up, 7, T)]
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where the function: 3 (zg, Uy, 7,T) = fTTE [(I)%]O(S,T, T,) — @?]f(rT’T’T)(s,T, :L'T)] Notice

that we can first minimize E [3] over all possible 7 and use it to find the optimal choice
of Uy. Minimizing the expected value of the function 3 is an optimal stopping problem
with a reward collected at the stopping time. Although the reward is time-varying, the
problem in is standard form and can be converted into a time-homogeneous problem by
adding time as a state variable. Its solution is the first time the state hits time-varying
and double sided barriers, or, if the current time exceeds the length of the horizon [15].

2.1. Person-by-person optimality. A standard result from Team theory states
that the optimal set of action policies should satisfy an equilibrium condition. Essentially,
any optimal set of policies SP is such that, each person/agent employs a policy which is
the best possible as long as the others employ the fixed policies as per SP. This provides
us with the following necessary conditions for optimality:

7" (x9) =esssup E[B(xo, U] (20),7,T)],

4 T
@ Uj (xg) = infU{& (20, U, T) —E[B (x, U, 7" () ,T)]}.

3. An iterative search procedure

The procedure we provide is inspired by the necessary conditions for optimality de-
scribed earlier (eqn. 4). In this scheme, we find the optimal combination of policies for
sampling and control through a possibly infinite sequence of policy iteration steps. In
each round of the iteration, we execute two steps. In step one, we seek the best sampling
policy for the previously derived control policy. This is an optimal stopping problem in
standard form. In the second step, we utilize the newly computed sampling policy and
seek the best control update policy that goes with it. The second step is thus an optimal
control problem. This solution scheme leads to the optimal policies because of the team
nature of the problem and because the system being controlled is linear. However, each
round of the solution scheme is computationally intensive.
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Iterative Search Algorithm
Step 0: Initialize the | Set the counter k := 0. To initialize the policies, any admissible
algorithm pair of initial control v, and the stopping time 6 would do. Use:
Vg = —Tﬂfo, 90 = %

Compute the cost:

no = a(xg, —Txo,T) — (xo, —Tx, %, T).
We expect improvements in the cost and need a threshold on
the improvement of the cost in each round. For that purpose,
pick a small non-negative number €. If the improvement in the
cost after an iteration is less than this threshold, the algorithm
terminates.
Step 1: Improve the | The improved stopping time is given by:
stopping rule Op+1 :=esssup E[B (zo,vg, 7,T)].

Step 2: Improve the | The improved control level is given by:
puitial control policy s = iptda (00, 0,7) B[ 5 0.0 600,7)] |
And, the new lowered cost is:

Nkl = a (2o, Vey1, T) — E {5 (20, Vg1, Okt T)} :

Step 3: Decide on ter- | If  nmp1 —mp <€, then, STOP.
mination Else, Increase the counter: k :=k + 1, and,
Go To Step 1.

Notice that in each execution of steps 1, 2, the cost may or may not be lowered but
never increased. In practical implementation, the order of execution of the steps has no
influence on the outcome of the algorithm. The order of steps we have given however,
allows an interpretation of the procedure as policy iteration.

3.1. Equivalence to policy iteration.

THEOREM 1 (Global convergence of iterative search). The iterative search procedure
of equations converges for any feasible pair of initial policies and the limit of the policy
iterates 1S unique.

Proor. Convergence of the iterations is easy to establish because at each step, the
cost can only decrease or stay the same. Since the cost is lower bounded by zero, the
sequence of iterates is necessarily convergent.

We discretize time and establish convergence and the uniqueness of the limit. We
attack the continuous time problem using a continuity argument by making the time-
discretizations infinitesimally fine. We use two key properties of the optimization problem
to show that the iterates converge . The first fact is that the optimal stopping problem
of step 1 of our algorithm has as its solution, the first hitting time of barriers subject to
a time-out namely, the length of the horizon. This means that the search for a stopping
time is the search for double-sided time-varying barriers. The latter search can be viewed
as a problem of control up to an absorption time [10, 4] also called a stochastic shortest
path problem. Such a conversion is in general not possible for stopping time problems.
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But here, we use the finiteness of the horizon and the threshold crossing nature of the
optimal stopping time to enable this conversion.

Consider the Markov process &, = (x[n], u[n]). We stop this process when it is absorbed
by a double sided barrier (of the sort that produce the optimal stopping time). We
mandate that the upper and lower barriers are both equal to zero at the end time of the
horizon T'. This makes sure that all admissible trajectories are stopped at least by 7.

We now specify the control sets. At time zero, ujy can be chosen to be any real
number. We also choose two levels (barriers Upp,, Low, with Upp, > Low,) to be
applied to the state at the next discrete time step. This is a device which allows us to
“control” the probability of getting absorbed at the next time tick. At all other times,
the control set is such that up, cannot be influenced. But we are allowed to choose two
real-valued levels to determine absorption at the next time-tick. In the penultimate and
ultimate time-ticks, the control set is really the Null set. The dynamics of the discrete
process & inherit the dynamics of the x and u processes. Notice that in our setup, u can
be chosen arbitrarily at the zeroth time-tick but not influenced at all subsequently.

Why is this characterization useful to us ? Because, it casts the mapping:
(v, {Uppn(k), Low,(k)}) — (Vks1, {Uppn(k), Low,(k)}) as policy iteration. In fact, our
iterative procedure of carries out policy iteration by backwards dynamic programming.
If we start with finite levels for the barriers at each time tick, the transition kernel of the
Markov process & is always strictly contractive. From this, the existence of a limit and
its uniqueness follow [10, 4].

Because the controlled process is continuous and the integrand of the cost is a C?
function, as the time-discretizations get infinitesimally finer, the limiting policy and cost
converge to the optimal one for the continuous time problem. O

4. Single stopping for controlling Brownian motion

Here, we utilize the results of the previous section for a controlled Brownian motion
process:

d.rt = Utdt + dBt

The optimal terminal control level U} is the linear feedback law [19]:
3T,
20T —71)

Then, the variables Uy and 7 can be chosen by minimizing the cost:

2 N \/§ Unv/'1 ? = \/§ DO\/T (1 — —T) ?
1 7 ) 1 V1 0 D VT T
T (xg,u, ) - <_V7> * 2 * ( 2 " \/§ > - ( 2 ! \/g ) (1

This suggests that the length of the horizon does not really matter for the optimization

problem. We can use a new time scale with time s = % and also use the change of

variables: T = \";—OT and @ = Uyv/T. In this time-scale, the length of the horizon is exactly
one. Hence we will simply assume that 7" = 1.

U (7, T —7) = —

4.1. Case of zero initial condition. If the initial value is zero, then, the optimal
control and its performance can be explicitly computed in closed form [19]. Because of
symmetry, Uy. The optimal stopping rule is the symmetric quadratic envelope:

T*:inf{tfo\/g(T—t)}.

N
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FIGURE 2. Subfigs (a,b) show the results of the iterative search procedure
for a relatively modest value of 0.5 for xy. The convergence to the optimal
pair happens by the third round and the minimum aggregate distortion
J(0.5,U*(0.5),7%(0.5)) = 0.29. Subfigs (c,d) show the results for a value
of xg = 1.45. This puts the optimal initial control effort “on the edge” of
becoming an impulse. Here, the optimal pair is obtained at round five and
the minimum aggregate distortion J (1.45,4* (1.45),7* (1.45)) = 0.47.

The expected control performance cost incurred by the optimal switching scheme is then
%Tz, while the cost of using deterministic switching is %T2.

4.2. Starting away from zero. One admissible strategy is to have a very large
magnitude initial control level Uy to drive the state quickly towards zero and to switch
off the control level when the state does reach zero. Since we do not penalize control effort
directly, the cost of this strategy if not impacted by the magnitude of the initial condition.
This cost is actually equal to 0.5. This means that for a given initial condition, if no
admissible policy can incur a cost lesser than 0.5, the one we described will be optimal.
This situation does occur for a range of initial values (See fig. 3).
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FIGURE 3. Subfig (a) shows the minimum aggregate control error
J (zo,U, 1) for Brownian Motion with one allowed sample due to deter-
ministic switching and due to optimal switching. When the initial value
xo approaches 1.5, the cost approaches the critical value of 0.5. Subfig (b)
shows the initial control policy mapping the initial value zy to the initial
control level Uy. Notice that the optimal switching scheme is less aggressive
than the deterministic one when zy approaches 1.5.

4.2.1. Optimal sampling. We determine the optimal initial control level and the opti-
mal envelope (double-side barrier) by the iterative algorithm of defn. 1. Notice that for
xo larger than 1.5, immediate resetting to zero is the best option.

5. Further remarks

It is important to extend the results of this paper to the general piece-wise determin-
istic class of control waveforms. Extension to the vector case and the partially observed
case would also be useful. Finally, we need to examine the impact of different control
performance measures.
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