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Abstract— In this paper we consider two examples of syn-
chronization problems, i.e., a network of oscillators and a net-
work of rigid bodies. We propose a controller that requires only
the knowledge of the relative distances among the neighboring
systems in the network. The controller is based on an extremum
seeking controller, that steers the overall system to the minimum
of an optimization problem on a manifold. Using a Lie bracket
approximation for extremum seeking systems, we show that the
controller leads to a synchronization of the overall network in
both examples.

I. INTRODUCTION

The problem of synchronizing dynamical systems (agents)
has attained more and more attraction in the last decades.
It arises in many fields, such as biological systems, power
networks, social networks and many more. For an overview
we refer to e.g. [2], [5], [13], [19] and the references therein.

In order to reach synchronization in a network, the
controller usually requires the knowledge of the position
mismatches of the agents. One can distinguish between
relative position measurements (vector valued information)
and distances measurements (scalar valued information), see
e.g. [21]. In many applications the relative positions are
unavailable or difficult to obtain. In such cases, however,
the measurements of the distances among the agents may be
available and can be obtained, for example, with ultrasonic
sensors or infrared sensors.

The motivation of this paper is to demonstrate that ex-
tremum seeking controllers on manifolds could be applied
to synchronization problems with distance measurements.
The objective is to consider two specific synchronization
problems and to construct a controller that requires only the
knowledge of a scalar distance measurement.

First, we consider the problem of synchronizing a family
of coupled harmonic oscillator, each one evolving on the
unit-circle in the plane.
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Second, we consider the problem of synchronizing a
family of rigid bodies. Again, the rigid bodies can only
measure the distances to their neighbors’ attitude.

The main result of this paper is to propose for both prob-
lems a control law, that achieves synchronization among the
agents and uses hereby only measurements of the distances
between neighboring agents. We formulate the problems as
optimization problems on manifolds, where the synchronized
state of the agents coincides with the minimum of a scalar
distance function, see e.g. [1], [17]. The design is based on
an extremum seeking scheme on manifolds, introduced in
[6].

The remainder of the paper is structured as follows.
In Section II we introduce both problems and state the
assumptions on the desired controller. In Section III we recall
the necessary results of [7] and in Section IV, we extend these
results and outline the proposed solution. In Section V we
summarize the results.

A. Notation

We use the following notation. Q (Q++) are the (positive)
rational numbers. Rn is equipped with the standard scalar
product (standard metric) 〈x, y〉 = xT y. The Euclidian norm
of a vector v ∈ Rn is denoted by ‖v‖ =

√
〈v, v〉. Let

M ⊆ Rn be a smooth submanifold of Rn. The tangent
space of M at x is denoted by TxM . We denote by Cn

with n ∈ N the set of n times continuously differentiable
functions. The Lie bracket [., .] : TxM × TxM → TxM
between two vector fields g1, g2 ∈ C1 : M → TxM
is defined as: [g1(x), g2(x)] = ∂g2(x)

∂x g1(x) − ∂g1(x)
∂x g2(x).

Note that the vector field [g1(x), g2(x)] is again a vector
field on M (see Corollary 8.28 in [14]). Let U ⊆ R be
open, M ⊆ U and f : U → R. We denote with f |M :
M → R the restriction of f to M . The gradient vector
field of f on the Riemannian manifold (Rn, 〈., .〉) is denoted
by ∇f(x) = [∂f(x)∂x1

, ..., ∂f(x)∂xn
]T and the gradient vector

field of f on the manifold M is denoted by gradf |M . Let
X1, . . . , XN ∈ Rn×n and let xj = vec(Xj), j ∈ 1, . . . , N
be their vectorizations [9], i.e., the stacked vector of columns
of Xj . We define for the block matrix

X =

X1

...
XN

 ∈ RnN×n (1)
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the vectorization as follows

vec(X) =

 vec(X1)
...

vec(XN )

 =

x1...
xN

 ∈ Rn
2N . (2)

We also introduce the scalar product for matrices 〈X,Y 〉 :=
trace(X>Y ) = vec(X)>vec(Y ) and see that if X,Y ∈
RnN×n we obtain that 〈X,Y 〉 =

∑N
i=1 vec(Xi)

>vec(Yi).
We define for a function f ∈ C1 : RnN×n → R

∂f(X)

∂Xi
=


∂f(X)
∂Xi,11

. . . ∂f(X)
∂Xi,1n

...
...

∂f(X)
∂Xi,n1

. . . ∂f(X)
∂Xi,nn

 (3)

and

∂f(X)

∂X
=


∂f(X)
∂X1

...
∂f(X)
∂XN

 . (4)

II. PROBLEM FORMULATION

In this section, we consider two synchronization problems,
that can be formulated as optimization problems on mani-
folds.

In both problems, we consider a group of N ∈ N agents.
The information topology underlying the overall system is
modeled by a connected, undirected graph G = (V,E) with
vertices V and edges E (see e.g. Fig. 1). Each vertex repre-

2

1 3

Fig. 1: Network of Oscillators

sents an agent which is an oscillator or a system with rigid-
body-like dynamics. The state of a single agent is denoted
by xj , which evolves on a manifold M . The state vector of
the overall system is denoted by x> = [x>1 , . . . , x

>
N ]. The

dynamics of each agent j is given by an input affine system

ẋj = gj,0(x) +

p∑
i=1

gi(x)uj,i (5)

where p ∈ N ∪ {0} denotes the number of inputs. In (5)
we assume that the control vector fields gi are the same for
every agent. The class of optimization problems we consider
is given by

min f(x)

s.t. x ∈M × . . .×M =: MN .
(6)

The goal is to construct controller inputs uj,i that steer the
agents to the minimum of f , i.e., to the optimum of (6). The
function f is designed in such a way that its minimum is

attained if and only if the agents synchronize (see e.g. [10],
[17]). Furthermore, the control input uj,i of agent j should
in particular only depend on the distances to its neighbors.
In that sense, the controller we construct is distributed.

A. Synchronization on the Circle

The respective dynamics of agent j ∈ V is given by

ẋj =

[
ξ̇j
η̇j

]
= (ν + uj,1)

[
−ηj
ξj

]
=

[
0 (ν + uj,1)

−(ν + uj,1) 0

]
xj ,

(7)

where ν ∈ R\{0} denotes the natural frequency (see [4]) of
the oscillators and is, in this case, the same for all agents.
Note that, each of the oscillators evolves on the circle S1 =
{[ξj , ηj ]> ∈ R2 : ξ2j + η2j = 1}. The goal is to construct
control inputs uj,1 that steer the overall system to the solution
of the following optimization problem

min f(x) =
1

2

∑
(j,k)∈E

‖xj − xk‖2

s.t. x ∈ S1 × . . .× S1 =: TN .

(8)

The sum
∑

(j,k)∈E ‖xj − xk‖2 represents the distances
among the agents of the network. For agent j, the control
input uj,1 should depend only on the distances to its direct
neighbors.

B. Synchronization of Rigid Bodies

Consider now a network of N ∈ N rigid bodies. The
attitude of a rigid body is described by the set of special
orthogonal matrix (rotation matrix) SO(3) = {X ∈ R3×3 :
X>X = I, det(X) = +1}. The dynamics of agent j ∈ V
is given by

Ẋj =

3∑
i=1

(νi + uj,i)XjΩi, (9)

where Xj ∈ SO(3) and

Ω1 =

 0 1 0
−1 0 0
0 0 0

, Ω2 =

 0 0 1
0 0 0
−1 0 0

,
Ω3 =

0 0 0
0 0 1
0 −1 0

 .
(10)

The parameters νi ∈ R\{0}, i = 1, 2, 3 correspond to the
natural frequency ν of the foregoing problem and determine
the persistent oscillations of the rigid bodies in the respective
direction determined by the vector fields. Again, the goal is
to construct control inputs uj,i that steer the overall system
to the solution of the following optimization problem

min f(X) =
1

2

∑
(j,k)∈E

trace((Xj −Xk)>(Xj −Xk))

s.t. X ∈ SO(3)× . . .× SO(3) =: SO(3)N .

(11)
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The function f is the sum of squares of the distances in
attitudes of the rigid bodies in the network. In other words, it
measures the distances of the body axes between neighboring
agents.

This problem setup is in a similar spirit to the one
presented in [11] where explicitly only relative information
is available to the controller. However, the controller in that
paper requires relative position information, while we will
require only distance information.

III. OPTIMIZATION ON MANIFOLDS AND
EXTREMUM SEEKING

In this section, we review one possible method to construct
a controller that solves the previously introduced problems.
The approach is presented in [7], where extremum seeking
controller for optimization problems on manifolds are con-
sidered.

We consider optimization problems on manifolds, which
can be written as

min f(x)

s.t. x ∈M.
(12)

A necessary condition for a local minimum of (12) is that
the gradient vector field must necessarily vanish at that point,
i.e., if x∗ is a local minimum of (12) then gradf |M (x∗) = 0
(see e.g., p. 284 in [3]). Typically extremum seeking tries
to solve (12) with M = Rn by seeking points where the
gradient vanishes (see e.g. (see e.g. [6], [12]).

In order to characterize the gradient on M in terms of ∇f ,
we need the following lemma (see e.g. p. 48 in [1]):

Lemma 1: Let U ⊆ Rn be open, M ⊆ U and ∇f be the
gradient vector field of f : U → Rn, defined by the standard
scalar product 〈., .〉 in Rn. Then the induced gradient vector
field gradf |M : M → TxM is given by

gradf |M (x) = P(∇f(x)), (13)

where P(y) denotes the orthogonal projection of y ∈ Rn
onto TxM .

We restrict our investigations on submanifolds where the
ambient space is the Euclidian space Rn with standard scalar
product. In view of optimization on manifolds, it was shown
in [7] that the idea of approximating the trajectories of
the extremum seeking by the associated Lie bracket system
translates to systems evolving on manifolds. This is due to
the property of Lie brackets which leave the tangent space
of a manifold invariant (see Corollary 8.28 in [14]). The
following assumptions have to be satisfied:

A1 M ⊆ Rn is a smooth, m-dimensional Riemannian
submanifold without boundary. The metric 〈., .〉M :
TxM ×TxM → R on M is the metric 〈., .〉 induced by
ambient space Rn, i.e., 〈x, y〉M := 〈x, y〉.

A2 There are p ≥ m vector fields gi ∈ C2 : M → TxM ,
i = 1, ..., p, on M such that

span{g1(x), ..., gp(x)} = TxM for all x ∈M, (14)

i.e., for each point x on M , the tangent vectors gi(x),
i = 1, ...,m, span the tangent space TxM and for p =
m the tangent vectors gi(x) form a basis of TxM.

A3 Let U ⊆ Rn be open, M ⊆ U and f ∈ C2 : U → R.
The set of local minima E of f |M is nonempty and we
denote with Ec ⊆ E a compact connected component
of E.

We introduce the extremum seeking system on the manifold
M as follows:

ẋ =

p∑
i=1

cif(x)gi(x)
√
ωi cos(ωit) + αigi(x)

√
ωi sin(ωit)

(15)
with

αi, ci > 0 and
ωi = aiω, ai 6= aj , i 6= j, ai ∈ Q++, ω > 0,

(16)

i, j = 1, ..., p. The parameter ω plays a crucial role in the
definitions of stability (see the appendix). Since gi(x) ∈
TxM for all x ∈ M , the right hand side of the extremum
seeking system (20) defines a vector field on M , i.e., solu-
tions initialized on M are uniformly invariant on M . More
explicitly, x(t0) ∈M implies that x(t) ∈M for all t0 ≤ t <
t0 + tmax, where tmax is the maximal interval of existence.
Similar as in [6], we use a Lie bracket approximation in
order to determine the qualitative behavior of the extremum
seeking system (15). Identifying u1i (ωit) =

√
ωi cos(ωit),

u2i (ωit) =
√
ωi sin(ωit) as inputs, the corresponding Lie

bracket system of (20) on M is given by

ż =
1

2

p∑
i=1

αici[f(z)gi(z), gi(z)]. (17)

An elementary but important calculation shows that

[f(z)gi(z), gi(z)] = −〈∇f(z), gi(z)〉gi(z). (18)

Thus, the Lie bracket system (23) on M can be written as

ż = −1

2

p∑
i=1

αici〈∇f(z), gi(z)〉gi(z). (19)

Clearly, the right hand side of (19) is a vector field on M .
Observe also that when all αi and ci have the same value
α and c and if the tangent vectors gi(x), i = 1, ..., p with
p = m form an orthonormal basis of TxM for all x ∈ M ,
then the right hand side of (19) is exactly −αc2 grad f |M (x).

Using the methodology developed in [6], the following
theorems have been established in [7]. For the stability
definitions used in the following theorems, we refer to the
appendix.

Theorem 1: Consider the Lie bracket system (19) and let
Assumptions A1 – A3 be satisfied. Let W ⊆M be an open
set and let Ec be a compact connected set of minima of f |M
which is contained in W . Assume that the gradient of f |M
vanishes in W only at points in Ec, i.e., gradf |M (z) = 0
if and only if z ∈ Ec for all z ∈ W . Then the set Ec is
asymptotically stable. Moreover, Ec is practically uniformly
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asymptotically stable with respect to the extremum seeking
system (15).
In other words, the extremum seeking system locally con-
verges arbitrary close to the set of local minima of f |M for
sufficiently large ωi, i = 1, ..., p. Theorem 1 provides a local
stability result of the extremum seeking system based on the
Lie bracket system. The next theorem provides a nonlocal
result.

Theorem 2: Consider the Lie bracket system (19) and let
Assumption A1 – A3 be satisfied. Let S ⊆ M and assume
a compact connected set Ec of local minima of f |M is S-
asymptotically stable. Then, Ec is S-practically uniformly
asymptotically stable with respect to the extremum seeking
system (15).

In other words, this theorem states if S is a subset of the
region of attraction of Ec for the Lie bracket system, then S
is also a subset of the ’practical’ region of attraction of Ec
for the extremum seeking system. This notion is similar as
to the notion of semi-global practical stability (e.g. [6], [16])

IV. MAIN RESULTS

In this section we modify the results of the previous
section such that they suit the problem formulation in Section
II, i.e., constructing inputs uj,i in (5) such that the overall
systems converges to the solution of (6). Specifically, we
incorporate dynamical systems with drift vector fields and
consider the case of individual cost functions. Since in these
problems, we consider multiple dynamical systems, each one
evolving on the same manifold, we introduce a modification
of Assumption A3:

A3’ Let U ⊆ Rn be open, MN ⊆ U and f ∈ C1 : U → R.
The set of local minima E of f |MN is nonempty and we
denote with Ec ⊆ E a compact connected component
of E.

Next, we introduce the extremum seeking agents on the
manifold M with dynamics as follows:

ẋj = gj,0(xj) +

p∑
i=1

cifj(x)gi(xj)
√
ωj,i cos(ωj,it)

+ αigi(xj)
√
ωj,i sin(ωj,it), j ∈ V

(20)

with
fj ∈ C2 : MN → R (21)

satisfying
∇xj

fj(x) = ∇xj
f(x), j ∈ V, (22)

with f in (6). The constants satisfy αi, ci > 0 and all ωj,i
are rational multiples of some ω > 0 and pairwise distinct.
The idea of requiring that each of the individual functions
fj satisfies Eq. (22) originates in Potential Games, see [15].
It allows us to use f as a Lyapunov function for the Lie
bracket system of the overall system (see also [6], where a
similar approach has been used). Note that by this choice
of vector fields, the manifold M is invariant for each agent
j ∈ V . Identifying again u1i (ωit) =

√
ωi cos(ωit), u2i (ωit) =

√
ωi sin(ωit) as inputs, the corresponding Lie bracket system

for agent j (see Eq. (20)) on M is given in this case by

żj = gj,0(zj) +
1

2

p∑
i=1

αici[fj(z)gi(zj), gi(zj)]. (23)

We also observe that

[fj(z)gi(zj), gi(zj)] = −〈∇zjfj(z), gi(zj)〉gi(zj). (24)

Together with (22), we obtain

[fj(z)gi(zj), gi(zj)] = −〈∇zjf(z), gi(zj)〉gi(zj). (25)

The Lie bracket system for the overall system is then
obtained by defining z> = [z>1 , . . . , z

>
N ], which then yields

ż = G0(z)− 1

2

∑
j∈V

p∑
i=1

αici〈∇f(z), Gj,i(z)〉Gj,i(z), (26)

with

G0(x) =

 g1,0(x1)
...

gN,0(xN )

 , (27)

G1,1(x) =


g1(x1)

0
...
0

 , . . . , GN,p(x) =


0
...
0

gp(xN )

 . (28)

Note that the tangent space TxM
N of MN is the

product space of the tangent spaces TxM of M , i.e.,
TxM

N = TxM × . . . × TxM (see Chapter 1.2, Exercise 9
in [8]). Therefore, the right hand side of (23) is a vector
field on TxMN . Observe also that when all αi and ci have
the same value α and c and if the tangent vectors gi(x),
i = 1, ..., p with p = m form an orthonormal basis of
TxM

N for all x ∈ MN , then the right hand side of (26) is
exactly −αc2 grad f |MN (x).

Using the methodology above, the following corollaries
can be shown in a similar way as Theorems 1 and 2.

Corollary 1: Consider the Lie bracket system (23). Sup-
pose (21), (22) and

〈∇f(x), G0(x)〉 = 0, x ∈MN (29)

hold. Furthermore, let Assumptions A1, A2, A3’ be satisfied
and let W ⊆ MN be an open set and let Ec be a compact
connected set of minima of f |MN which is contained in W .
Assume that the gradient of f |M vanishes in W only at
points in Ec, i.e., gradf |MN (z) = 0 if and only if z ∈ Ec
for all z ∈ W . Then the set Ec is asymptotically stable.
Moreover, Ec is practically uniformly asymptotically stable
with respect to the extremum seeking system (20).

Theorem 1 provides a local stability result of the extremum
seeking system based on the Lie bracket system. The next
theorem provides a nonlocal result.
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Corollary 2: Consider the Lie bracket system (23). Sup-
pose (21), (22) and

〈∇f(x), G0(x)〉 = 0, x ∈MN (30)

hold. Furthermore, let Assumptions A1, A2, A3’ be satisfied
and let S ⊆ M and assume a compact connected set Ec of
local minima of f |M is S-asymptotically stable. Then, Ec
is S-practically uniformly asymptotically stable with respect
to the extremum seeking system (20).
In both corollaries, we additionally assume that the drift
vector field G0 is orthogonal to the gradient of the objective
function of the optimization problem. The orthogonality
condition (29) (see also (30)) assures that persistent dynamics
are invariant with respect to the level sets of f . In particular,
the condition is meaningful in order to allow persistent
oscillations by the drift vector field G0 once the agents are
synchronized. Compared to the extremum seeking based on
an averaging analysis (see e.g. [12]), we do not require an
additional time-scale separation among the dynamics of the
agents and the dynamics of the extremum seeking controller.

V. PROBLEM SOLUTION

In this section, we exploit the results of the previous
section to solve the problems introduced in Section II. We
exploit the structures of the optimization problems (8) and
(11) and construct objective functions fj that satisfy (21),
(22) and consists only of distance measurements among
the agents. In this way, we are able to propose for each
synchronization problem a distributed extremum seeking
controller of the form (20). We then apply the results of
the previous section and show that the extremum seeking
system converges to a solution of (8) and (11) respectively.

Consider a Graph G = (V,E). In the following, we denote
the neighbors of a agent j ∈ V as

Nj = {k ∈ V : (j, k) ∈ E}. (31)

We consider each of the synchronization problems separately.
We propose a controller for synchronization on the circle and
show that the overall system is related to the well-known
Kuramoto model but requires only distance measurements.
Then, we show that a similar controller as for the synchro-
nization on the circle can also be used for synchronization
of rigid bodies.

A. Synchronization on the Circle

In the following, we consider the setup introduced in
Section II.A. Consider f from (8), we introduce individual
objective functions of agent j ∈ V as

fj(x) =
1

2

∑
k∈Nj

‖xj − xk‖2. (32)

One can immediately verify that the functions fj satisfy (22).
Furthermore, we also observe that each of the functions fj
only depend on the distances among agent j ∈ V and its
neighbors.

Consider furthermore the dynamics of the agents in (7),
we note that there is for each agent only one control input.
We propose the following controller for agent j ∈ V

uj,1 = cjfj(x)
√
ωj cos(ωjt) + αj

√
ωj sin(ωjt). (33)

We see that the closed loop of agent (7) with (33) can be
written in the form (20) with p = 1 and

gj,0(xj) = ν

[
−ηj
ξj

]
, g1(xj) =

[
−ηj
ξj

]
, j ∈ V. (34)

Next, we will apply Corollary 1 of the foregoing section. We
note that Assumptions A1, A2 and A3’ are satisfied. In par-
ticular, Assumption A1 is satisfied since S1 is a smooth one-
dimensional submanifold of R2. Assumption A2 is satisfied,
since the vector field g1 satisifies (14). Assumption A3’ is
satisfied since f |TN (x) ≥ 0 for all x ∈ TN and furthermore
f |TN (x) = 0 if and only if x ∈ Es := {x ∈ TN : xj = xk}.
Therefore, Es ⊆ E with E being the set of local minima of
f and E is nonempty. Let Ec be a connected component of
Es. Since TN is compact, Ec is also compact.

Next, we show that there are only finitely many connected
components of the set of critical points of f . Note that
the gradient of f in (8) can be calculated using (13),
the projection onto the tangent space of S1 in [1], i.e.,
P (∇f(x)) = (I −xx>)∇f(x), and that TN = S1× . . . S1,
which yields

gradTN f(x) =

 (I − x1x>1 )
∑
k∈N1

(x1 − xk)
...

(I − xNx>N )
∑
k∈NN

(xN − xk)

 (35)

Since TN is a zero-level set of polynomials and the gradient
of f in (35) is also polynomial, we may use Theorem 3
in [20] which states that the zero set of a polynomial has
only a finite number of connected components. Thus, every
connected component Ec is isolated from other connected
components of the set of critical points of f . Therefore, there
exists a neighborhood W ⊆ TN containing every Ec and
satisfying the conditions required in Corollary 1. We may
thus apply Corollary 1 and conclude that the solution of (8)
is practically uniformly asymptotically stable with respect to
the extremum seeking consisting of (7) with controller (33).
We also note that

〈∇f(x), G0(x)〉 = ν
∑

(j,k)∈E

[
ξj − ξk
ηj − ηk

]> [−ηj
ξj

]

−
[
ξj − ξk
ηj − ηk

]> [−ηk
ξk

]
= ν

∑
(j,k)∈E

−
[
ξk
ηk

]> [−ηj
ξj

]

−
[
ξj
ηj

]> [−ηk
ξk

]
= 0, (36)

for all [ξi, ηi]
> ∈ S1, i ∈ V , which shows that (30) is

satisfied.
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The following observation may help to get a better intu-
ition about the extremum seeking system for synchronization
on the circle. We now show that after transforming the
extremum seeking system consisting of (7) with controller
(33) to polar coordinates, the corresponding Lie bracket
system coincides with the Kuramoto model. We introduce
the coordinates for the system in (7) as follows

ξj = cos(θj) (37a)
ηj = sin(θj) (37b)

with 0 ≤ θj < 2π, j ∈ V . We then obtain the transformed
extremum seeking system in polar coordinates as

θ̇j = ν +
√
ωjfj(θ) cos(ωjt) + α

√
ωj sin(ωjt), (38)

where we write for short θ> = [θ1, . . . , θN ] and by a slight
abuse of notation we also write

fj(θ) = −1

2

∑
k∈Nj

cos(θj − θk), j ∈ V. (39)

Calculating the Lie bracket system of (38), we obtain

˙̃
θj = ν − α∇θ̃jfj(θ̃) = ν − α

∑
k∈Nj

sin(θ̃j − θ̃k), (40)

which is the well-known Kuramoto model. Therefore, the θ-
coordinates reveal that the Lie bracket system (40) coincides
with the Kuramoto model. This is an interesting fact and
means, that the trajectories of extremum seeking system
using only distance measurements can be interpreted as a
distance-based Kuramoto model for synchronization.

Since the Lie bracket system corresponding to the overall
system (7) with controller (33) coincides with the Kuramoto
model, we may exploit the results in e.g., [4], [18], to con-
clude that the minimum of (8), i.e., the set of local minima
Ec where xj = xk, (j, k) ∈ E, is locally asymptotically
stable for the Lie bracket system. In terms of the stability
definitions used in here, this means that there exists a set
S ⊆ TN such that Ec is S-asymptotically stable for the Lie
bracket system. With Corollary 2 we may then conclude that
the set Ec is S-practically uniformly asymptotically stable
with respect to the overall system (7) with controller (33).

B. Synchronization of Rigid Bodies

Consider the objective function (11). We observe that the
function f can be written as

f(X) =
1

2

∑
(j,k)∈E

‖Xj −Xk‖2F ,

where ‖ · ‖F denotes the Frobenius matrix norm. Similar as
in the problem before, we introduce the individual objective
functions for agent j ∈ V as

fj(X) =
1

2

∑
k∈Nj

‖Xj −Xk‖2F

=
1

2

∑
k∈Nj

trace((Xk −Xj)
>(Xk −Xj)). (41)

Again, one can immediately verify that the functions fj ,
j ∈ V satisfy (22). As in the problem above, we observe
that each of the functions fj only depend on the distances
among agent j ∈ V and its neighbors. In contrast to the
dynamics on the circle (7), which have only one control
input, the dynamics on SO(3) have three inputs. We propose
the following controller for agent j ∈ V and control input
i = 1, 2, 3 as follows

uj,i = cjfj(X)
√
ωj,i cos(ωj,it) + αj

√
ωj,i sin(ωj,it). (42)

The closed loop of agent j ∈ V can be written in the form
(20) with p = 3, by vectorizing the matrices and using the
conventions of Section I.A, i.e., we introduce for i = 1, 2, 3

g̃j,0(Xj) =

3∑
i=1

νiXjΩi, g̃i(Xj) = XjΩi (43)

and

G̃0(X) =

 g̃1,0(Xj)
...

g̃N,0(Xj)

 (44)

and observe that we obtain (20) with gj,0(Xj) =
vec(g̃j,0(Xj)), gi(Xj) = vec(g̃i(Xj)) and furthermore
G0(X) = vec(G̃0(X)) with G0(X) in (27). Next, we will
apply Corollary 1 of the foregoing section. We note that
Assumptions A1, A2 and A3’ are satisfied. In particular,
Assumption A1 is satisfied since SO(3) is a smooth three-
dimensional submanifold of R3×3 and therefore also a
smooth submanifold of R9. Assumption A2 is satisfied, since
the particular choice of matrices Ωi, i = 1, 2, 3 span the set
of skew-symmetric matrices and thus the vector fields gi,
i = 1, 2, 3 satisify (14). Assumption A3’ is satisfied since
f |SO(3)N (X) ≥ 0 for all X ∈ SO(3)N and furthermore
f |SO(3)N (X) = 0 if and only if X ∈ Es := {X ∈ SO(3)N :
Xj = Xk}. Therefore, Es ⊆ E with E being the set of local
minima of f and E is nonempty. Let Ec be a connected
component of Es. Since TN is compact, Ec is also compact.

By the same arguments as in the previous problem solution
one can show that there are only finitely many connected
components of the set of critical points of f .

Next, we verify condition (29). We see that

∂f(X)

∂Xj
=
∑
k∈Nj

Xj −Xk, j ∈ V (45)

and with the conventions in Section I.A that

∇f(X) =


∂f(X)
∂vec(X1)

>

...
∂f(X)

∂vec(XN )

>

 = vec



∂f(X)
∂X1

...
∂f(X)
∂XN


 . (46)
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With these observations, we obtain

〈∇f(X), G0(X)〉 =

〈
∂f(X)

∂X
, G̃0(X)

〉
=

∑
(j,k)∈E

3∑
i=1

trace((X>j −X>k )XjΩi)νi

+ trace(X>k −X>j )XkΩi)νi

= −
∑

(j,k)∈E

3∑
i=1

trace((X>k Xj +X>j Xk)Ωi)νi

= 0, (47)

where we have used that the trace of the product of a
symmetric and a skew-symmetric matrix is zero.

We may thus apply Corollary 1 and conclude that the
solution of (11) is practically uniformly asymptotically stable
with respect to the extremum seeking consisting of (9) with
controller (42).

C. Discussion

First, one can see that the two synchronization problems
are similar in the sense that the minimum of the objective
functions in (8) and (11) is attained where xj = xk
respectively Xj = Xk, (j, k) ∈ E. Strictly speaking,
Corollaries 1 and 2 do not exclude trivial behavior of the
agents on the set Ec. One has to extend them in order to
guarantee also practical synchronization of the agents, i.e.,
asymptotic stability of a periodic solution of the Lie bracket
system implies practical uniform asymptotic stability of the
extremum seeking system. However, due to (29) and (30) we
see that drift vector fields in (34) and (44) are orthogonal
to the gradient of the objective functions in (8) and (11).
Therefore, one can intuitively expect that the agents admit
a non-trivial behavior on the solution sets of (8) and (11)
which is determined by the drift vector field. This will be
shown in the next section using a numerical simulation.

Second, one could have also required in the problem
formulations in Section II that the controller inputs uj,1,
j ∈ V in the synchronization problem on the circle and
uj,i, i = 1, 2, 3 in the synchronization of rigid bodies vanish
for agents being at the minimum of the respective objective
function. However, we see that the controller inputs (33) and
(42) contain periodic excitations which never vanish. Thus,
an extremum seeking controller of this kind can not satisfy
such a requirement.

VI. NUMERICAL EXAMPLES

In this section, we show two examples for the extremum
seeking controllers constructed in the section above.

A. Synchronization on the Circle

We show a numerical example for the synchronization on
the circle, by considering the network of three agents as in
Fig. 1. We choose the constants ν = 1 for the dynamics
(7) as well as cj = 1, αj = 0.1 and ωj,1 = 18 + 2j for
the controller (33) of agent j = 1, 2, 3. In Figs. 2 and
3 we see that for different initial conditions of the agents,
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Fig. 2: Synchronization on the Circle, ξ-components of
Agents
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Fig. 3: Synchronization on the Circle, η-components of
Agents

the respective components synchronize in the sense that they
reach a common non-trivial closed solution.

B. Synchronization of Rigid Bodies

We show a numerical example for the synchronization of
rigid bodies by considering a network of two agents. We
choose the constants ν1 = ν3 = 0 and ν2 = 1 for the
dynamics (9) as well as cj = 0.4, αj = 0.1, ω1,i = 45 + 5i,
ω2,i = 60+5i, i = 1, 2, 3 for the controller (42) of Agents 1
and 2. In Fig. 4 we see that coordinate frames of each agent
synchronizing on a rotation tangential to the body frame axis
which is induced by the drift vector field.

VII. SUMMARY

We presented two examples of synchronization problems
on manifolds using only the distance measurements among
neighboring agents. We demonstrated the potential use of
extremum seeking on manifolds to solve synchronization
problems. The results also reveal that the approximating
Lie bracket system for the synchronization on the circle
coincides with the well-known Kuramoto model. We showed
that the Lie bracket approximation for extremum seeking
systems can also be exploited for systems on Lie groups, in
particular we showed how to construct a controller that leads
to synchronization of rigid bodies.

APPENDIX

Consider the dynamical system

ẋ = fω(t, x) (48)

with x(t0) = x0, t0 ∈ R and which depends on a parameter
ω > 0.

Definition 1: A compact set E ⊆ M is said to be
practically uniformly stable for (48) if for every ε > 0
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Fig. 4: Synchronization of Rigid Bodies (body-frame of rigid
body 1: red, dash-dotted line, body-frame of rigid body 2:
blue, solid line)

there exist a δ > 0 and an ω0 > 0 such that for all t0 ∈ R
and for all ω > ω0

x(t0) ∈ UEδ ⇒ x(t) ∈ UEε , t ≥ t0. (49)
Definition 2: A compact set E ⊆ M is said to be

practically uniformly attractive for (48) if there exists a
δ > 0 such that for every ε > 0 there exist a tf ≥ 0 and an
ω0 > 0 such that for all t0 ∈ R and all ω > ω0

x(t0) ∈ UEδ ⇒ x(t) ∈ UEε , t ≥ t0 + tf . (50)
Definition 3: A compact set E ⊆ M is said to be

practically uniformly asymptotically stable for (48) if it
is practically uniformly stable and it is practically uniformly
attractive.

Definition 4: Let S ⊆M . A compact set E ⊆M is said
to be S-practically uniformly asymptotically stable for
(48) if it is practically uniformly stable and for every δ, ε > 0
there exist a tf ≥ 0, a c > 0 and ω0 > 0 such that for all
t0 ∈ R and all ω > ω0

x(t0) ∈ S ∩ UEδ ⇒ x(t) ∈ UEε , t ≥ t0 + tf

and x(t) ∈ UEc , t ≥ t0.
(51)

For system which are independent of “ω” and “t” we drop
the terms “practically” and “uniformly” in the definitions
above. That this results in the common notion of Lyapunov
stability.
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