
IFAC PapersOnLine 54-5 (2021) 25–30

ScienceDirectScienceDirect

Available online at www.sciencedirect.com

2405-8963 Copyright © 2021 The Authors. This is an open access article under the CC BY-NC-ND license.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2021.08.469

10.1016/j.ifacol.2021.08.469 2405-8963

Copyright © 2021 The Authors. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0)

Assume/Guarantee Contracts for
Dynamical Systems:

Theory and Computational Tools �

Miel Sharf ∗ Bart Besselink ∗∗ Adam Molin ∗∗∗

Qiming Zhao ∗∗∗∗ Karl Henrik Johansson ∗

∗ Division of Decision and Control Systems, KTH Royal Institute of
Technology, and Digital Futures. 10044 Stockholm, Sweden (e-mail:

{sharf,kallej}@kth.se).
∗∗ Bernoulli Institute for Mathematics, Computer Science and

Artificial Intelligence, University of Groningen. 9700 AK Groningen,
The Netherlands (e-mail: b.besselink@rug.nl).

∗∗∗ DENSO Automotive Deutschland GmbH. Freisinger Str. 21-23,
85386 Eching, Germany (e-mail: a.molin@eu.denso.com).

∗∗∗∗ DENSO International America, Inc. 24777 Denso Dr., Southfield,
MI 48033, USA (e-mail: qiming.zhao@na.denso.com).

Abstract: Modern engineering systems include many components of different types and
functions. Verifying that these systems satisfy given specifications can be an arduous task,
as most formal verification methods are limited to systems of moderate size. Recently,
contract theory has been proposed as a modular framework for defining specifications. In
this paper, we present a contract theory for discrete-time dynamical control systems relying
on assume/guarantee contracts, which prescribe assumptions on the input of the system and
guarantees on the output. We then focus on contracts defined by linear constraints, and
develop efficient computational tools for verification of satisfaction and refinement based on
linear programming. We exemplify these tools in a simulation example, proving a certain safety
specification for a two-vehicle autonomous driving setting.

1. INTRODUCTION

Engineering systems are often comprised of many compo-
nents having different types and functions, including sens-
ing, control, and actuation. Moreover, systems are subject
to many specifications, such as safety and performance.
The former are captured using notions of set-invariance,
and the latter are usually defined in terms of dissipativity.
However, modern systems such as intelligent transporta-
tion systems and smart manufacturing systems have more
complex specifications which cannot be captured by these
frameworks, e.g. behaviour, tracking, and temporal logic
specifications. Formal methods in control have been devel-
oped to address this issue (Belta et al. (2017); Tabuada
(2009); Wongpiromsarn et al. (2010)). Unfortunately, the
sheer size of modern engineering systems implies that for-
mal verification methods are ineffective, as the need to dis-
cretize the state-space results in a curse of dimensionality.
Such verification processes can also be extremely wasteful,
as even a minuscule change to the dynamical system (e.g.,
a small change in one of its components) requires starting
the verification processes from scratch.

In this paper we present a verification approach relying on
contract theory. Contract theory was first developed in the
field of software engineering as a modular approach to sys-
tem design (Meyer (1992)), and it has proved useful for de-

� This work was supported by DENSO Automotive Deutsch-
land GmbH. A full version of the paper is available on
https://arxiv.org/abs/2012.12657, see Sharf et al. (2020).

sign of cyber-physical systems (Nuzzo et al. (2014, 2015);
Phan-Minh et al. (2019)). Contracts prescribe assumptions
on the environments a software component can act in,
and guarantees on its behaviour in those environments
(Benveniste et al. (2018)). We focus on assume/guarantee
contracts, which put assumptions on the input to a soft-
ware component and prescribe guarantees on its output.
Computational tools for verifying that a given component
satisfies a given contract are needed in order to apply the
theory. In recent years, some attempts were made to define
a contract theory for dynamical (control) systems. An as-
sume/guarantee framework for continuous-time dynamical
systems based on the notion of simulation was considered
in Besselink et al. (2019)Assume/guarantee contracts have
also been considered in Saoud et al. (2018, 2019), in which
assumptions are made on the input signals and guarantees
are on the state and output signals.

In this paper, we present a framework for assume/guarantee
contracts that prescribe assumptions on the inputs and
guarantees on the output, extending the framework of
Saoud et al. (2018, 2019). First, we allow the requirement
on the output to depend on the input, which is natural for
sensor systems and tasks like tracking. Second, we do not
limit the internal structure of the component, for instance,
we do not specify its state. In particular, the analysis of
a system can be conducted at a preliminary design stage,
before we even know whether, for example, the controller
will be static or not. We also define satisfaction, refine-

Assume/Guarantee Contracts for
Dynamical Systems:

Theory and Computational Tools �

Miel Sharf ∗ Bart Besselink ∗∗ Adam Molin ∗∗∗

Qiming Zhao ∗∗∗∗ Karl Henrik Johansson ∗

∗ Division of Decision and Control Systems, KTH Royal Institute of
Technology, and Digital Futures. 10044 Stockholm, Sweden (e-mail:

{sharf,kallej}@kth.se).
∗∗ Bernoulli Institute for Mathematics, Computer Science and

Artificial Intelligence, University of Groningen. 9700 AK Groningen,
The Netherlands (e-mail: b.besselink@rug.nl).

∗∗∗ DENSO Automotive Deutschland GmbH. Freisinger Str. 21-23,
85386 Eching, Germany (e-mail: a.molin@eu.denso.com).

∗∗∗∗ DENSO International America, Inc. 24777 Denso Dr., Southfield,
MI 48033, USA (e-mail: qiming.zhao@na.denso.com).

Abstract: Modern engineering systems include many components of different types and
functions. Verifying that these systems satisfy given specifications can be an arduous task,
as most formal verification methods are limited to systems of moderate size. Recently,
contract theory has been proposed as a modular framework for defining specifications. In
this paper, we present a contract theory for discrete-time dynamical control systems relying
on assume/guarantee contracts, which prescribe assumptions on the input of the system and
guarantees on the output. We then focus on contracts defined by linear constraints, and
develop efficient computational tools for verification of satisfaction and refinement based on
linear programming. We exemplify these tools in a simulation example, proving a certain safety
specification for a two-vehicle autonomous driving setting.

1. INTRODUCTION

Engineering systems are often comprised of many compo-
nents having different types and functions, including sens-
ing, control, and actuation. Moreover, systems are subject
to many specifications, such as safety and performance.
The former are captured using notions of set-invariance,
and the latter are usually defined in terms of dissipativity.
However, modern systems such as intelligent transporta-
tion systems and smart manufacturing systems have more
complex specifications which cannot be captured by these
frameworks, e.g. behaviour, tracking, and temporal logic
specifications. Formal methods in control have been devel-
oped to address this issue (Belta et al. (2017); Tabuada
(2009); Wongpiromsarn et al. (2010)). Unfortunately, the
sheer size of modern engineering systems implies that for-
mal verification methods are ineffective, as the need to dis-
cretize the state-space results in a curse of dimensionality.
Such verification processes can also be extremely wasteful,
as even a minuscule change to the dynamical system (e.g.,
a small change in one of its components) requires starting
the verification processes from scratch.

In this paper we present a verification approach relying on
contract theory. Contract theory was first developed in the
field of software engineering as a modular approach to sys-
tem design (Meyer (1992)), and it has proved useful for de-

� This work was supported by DENSO Automotive Deutsch-
land GmbH. A full version of the paper is available on
https://arxiv.org/abs/2012.12657, see Sharf et al. (2020).

sign of cyber-physical systems (Nuzzo et al. (2014, 2015);
Phan-Minh et al. (2019)). Contracts prescribe assumptions
on the environments a software component can act in,
and guarantees on its behaviour in those environments
(Benveniste et al. (2018)). We focus on assume/guarantee
contracts, which put assumptions on the input to a soft-
ware component and prescribe guarantees on its output.
Computational tools for verifying that a given component
satisfies a given contract are needed in order to apply the
theory. In recent years, some attempts were made to define
a contract theory for dynamical (control) systems. An as-
sume/guarantee framework for continuous-time dynamical
systems based on the notion of simulation was considered
in Besselink et al. (2019)Assume/guarantee contracts have
also been considered in Saoud et al. (2018, 2019), in which
assumptions are made on the input signals and guarantees
are on the state and output signals.

In this paper, we present a framework for assume/guarantee
contracts that prescribe assumptions on the inputs and
guarantees on the output, extending the framework of
Saoud et al. (2018, 2019). First, we allow the requirement
on the output to depend on the input, which is natural for
sensor systems and tasks like tracking. Second, we do not
limit the internal structure of the component, for instance,
we do not specify its state. In particular, the analysis of
a system can be conducted at a preliminary design stage,
before we even know whether, for example, the controller
will be static or not. We also define satisfaction, refine-

Assume/Guarantee Contracts for
Dynamical Systems:

Theory and Computational Tools �

Miel Sharf ∗ Bart Besselink ∗∗ Adam Molin ∗∗∗

Qiming Zhao ∗∗∗∗ Karl Henrik Johansson ∗

∗ Division of Decision and Control Systems, KTH Royal Institute of
Technology, and Digital Futures. 10044 Stockholm, Sweden (e-mail:

{sharf,kallej}@kth.se).
∗∗ Bernoulli Institute for Mathematics, Computer Science and

Artificial Intelligence, University of Groningen. 9700 AK Groningen,
The Netherlands (e-mail: b.besselink@rug.nl).

∗∗∗ DENSO Automotive Deutschland GmbH. Freisinger Str. 21-23,
85386 Eching, Germany (e-mail: a.molin@eu.denso.com).

∗∗∗∗ DENSO International America, Inc. 24777 Denso Dr., Southfield,
MI 48033, USA (e-mail: qiming.zhao@na.denso.com).

Abstract: Modern engineering systems include many components of different types and
functions. Verifying that these systems satisfy given specifications can be an arduous task,
as most formal verification methods are limited to systems of moderate size. Recently,
contract theory has been proposed as a modular framework for defining specifications. In
this paper, we present a contract theory for discrete-time dynamical control systems relying
on assume/guarantee contracts, which prescribe assumptions on the input of the system and
guarantees on the output. We then focus on contracts defined by linear constraints, and
develop efficient computational tools for verification of satisfaction and refinement based on
linear programming. We exemplify these tools in a simulation example, proving a certain safety
specification for a two-vehicle autonomous driving setting.

1. INTRODUCTION

Engineering systems are often comprised of many compo-
nents having different types and functions, including sens-
ing, control, and actuation. Moreover, systems are subject
to many specifications, such as safety and performance.
The former are captured using notions of set-invariance,
and the latter are usually defined in terms of dissipativity.
However, modern systems such as intelligent transporta-
tion systems and smart manufacturing systems have more
complex specifications which cannot be captured by these
frameworks, e.g. behaviour, tracking, and temporal logic
specifications. Formal methods in control have been devel-
oped to address this issue (Belta et al. (2017); Tabuada
(2009); Wongpiromsarn et al. (2010)). Unfortunately, the
sheer size of modern engineering systems implies that for-
mal verification methods are ineffective, as the need to dis-
cretize the state-space results in a curse of dimensionality.
Such verification processes can also be extremely wasteful,
as even a minuscule change to the dynamical system (e.g.,
a small change in one of its components) requires starting
the verification processes from scratch.

In this paper we present a verification approach relying on
contract theory. Contract theory was first developed in the
field of software engineering as a modular approach to sys-
tem design (Meyer (1992)), and it has proved useful for de-

� This work was supported by DENSO Automotive Deutsch-
land GmbH. A full version of the paper is available on
https://arxiv.org/abs/2012.12657, see Sharf et al. (2020).

sign of cyber-physical systems (Nuzzo et al. (2014, 2015);
Phan-Minh et al. (2019)). Contracts prescribe assumptions
on the environments a software component can act in,
and guarantees on its behaviour in those environments
(Benveniste et al. (2018)). We focus on assume/guarantee
contracts, which put assumptions on the input to a soft-
ware component and prescribe guarantees on its output.
Computational tools for verifying that a given component
satisfies a given contract are needed in order to apply the
theory. In recent years, some attempts were made to define
a contract theory for dynamical (control) systems. An as-
sume/guarantee framework for continuous-time dynamical
systems based on the notion of simulation was considered
in Besselink et al. (2019)Assume/guarantee contracts have
also been considered in Saoud et al. (2018, 2019), in which
assumptions are made on the input signals and guarantees
are on the state and output signals.

In this paper, we present a framework for assume/guarantee
contracts that prescribe assumptions on the inputs and
guarantees on the output, extending the framework of
Saoud et al. (2018, 2019). First, we allow the requirement
on the output to depend on the input, which is natural for
sensor systems and tasks like tracking. Second, we do not
limit the internal structure of the component, for instance,
we do not specify its state. In particular, the analysis of
a system can be conducted at a preliminary design stage,
before we even know whether, for example, the controller
will be static or not. We also define satisfaction, refine-

Assume/Guarantee Contracts for
Dynamical Systems:

Theory and Computational Tools �

Miel Sharf ∗ Bart Besselink ∗∗ Adam Molin ∗∗∗

Qiming Zhao ∗∗∗∗ Karl Henrik Johansson ∗

∗ Division of Decision and Control Systems, KTH Royal Institute of
Technology, and Digital Futures. 10044 Stockholm, Sweden (e-mail:

{sharf,kallej}@kth.se).
∗∗ Bernoulli Institute for Mathematics, Computer Science and

Artificial Intelligence, University of Groningen. 9700 AK Groningen,
The Netherlands (e-mail: b.besselink@rug.nl).

∗∗∗ DENSO Automotive Deutschland GmbH. Freisinger Str. 21-23,
85386 Eching, Germany (e-mail: a.molin@eu.denso.com).

∗∗∗∗ DENSO International America, Inc. 24777 Denso Dr., Southfield,
MI 48033, USA (e-mail: qiming.zhao@na.denso.com).

Abstract: Modern engineering systems include many components of different types and
functions. Verifying that these systems satisfy given specifications can be an arduous task,
as most formal verification methods are limited to systems of moderate size. Recently,
contract theory has been proposed as a modular framework for defining specifications. In
this paper, we present a contract theory for discrete-time dynamical control systems relying
on assume/guarantee contracts, which prescribe assumptions on the input of the system and
guarantees on the output. We then focus on contracts defined by linear constraints, and
develop efficient computational tools for verification of satisfaction and refinement based on
linear programming. We exemplify these tools in a simulation example, proving a certain safety
specification for a two-vehicle autonomous driving setting.

1. INTRODUCTION

Engineering systems are often comprised of many compo-
nents having different types and functions, including sens-
ing, control, and actuation. Moreover, systems are subject
to many specifications, such as safety and performance.
The former are captured using notions of set-invariance,
and the latter are usually defined in terms of dissipativity.
However, modern systems such as intelligent transporta-
tion systems and smart manufacturing systems have more
complex specifications which cannot be captured by these
frameworks, e.g. behaviour, tracking, and temporal logic
specifications. Formal methods in control have been devel-
oped to address this issue (Belta et al. (2017); Tabuada
(2009); Wongpiromsarn et al. (2010)). Unfortunately, the
sheer size of modern engineering systems implies that for-
mal verification methods are ineffective, as the need to dis-
cretize the state-space results in a curse of dimensionality.
Such verification processes can also be extremely wasteful,
as even a minuscule change to the dynamical system (e.g.,
a small change in one of its components) requires starting
the verification processes from scratch.

In this paper we present a verification approach relying on
contract theory. Contract theory was first developed in the
field of software engineering as a modular approach to sys-
tem design (Meyer (1992)), and it has proved useful for de-

� This work was supported by DENSO Automotive Deutsch-
land GmbH. A full version of the paper is available on
https://arxiv.org/abs/2012.12657, see Sharf et al. (2020).

sign of cyber-physical systems (Nuzzo et al. (2014, 2015);
Phan-Minh et al. (2019)). Contracts prescribe assumptions
on the environments a software component can act in,
and guarantees on its behaviour in those environments
(Benveniste et al. (2018)). We focus on assume/guarantee
contracts, which put assumptions on the input to a soft-
ware component and prescribe guarantees on its output.
Computational tools for verifying that a given component
satisfies a given contract are needed in order to apply the
theory. In recent years, some attempts were made to define
a contract theory for dynamical (control) systems. An as-
sume/guarantee framework for continuous-time dynamical
systems based on the notion of simulation was considered
in Besselink et al. (2019)Assume/guarantee contracts have
also been considered in Saoud et al. (2018, 2019), in which
assumptions are made on the input signals and guarantees
are on the state and output signals.

In this paper, we present a framework for assume/guarantee
contracts that prescribe assumptions on the inputs and
guarantees on the output, extending the framework of
Saoud et al. (2018, 2019). First, we allow the requirement
on the output to depend on the input, which is natural for
sensor systems and tasks like tracking. Second, we do not
limit the internal structure of the component, for instance,
we do not specify its state. In particular, the analysis of
a system can be conducted at a preliminary design stage,
before we even know whether, for example, the controller
will be static or not. We also define satisfaction, refine-

Assume/Guarantee Contracts for
Dynamical Systems:

Theory and Computational Tools �

Miel Sharf ∗ Bart Besselink ∗∗ Adam Molin ∗∗∗

Qiming Zhao ∗∗∗∗ Karl Henrik Johansson ∗

∗ Division of Decision and Control Systems, KTH Royal Institute of
Technology, and Digital Futures. 10044 Stockholm, Sweden (e-mail:

{sharf,kallej}@kth.se).
∗∗ Bernoulli Institute for Mathematics, Computer Science and

Artificial Intelligence, University of Groningen. 9700 AK Groningen,
The Netherlands (e-mail: b.besselink@rug.nl).

∗∗∗ DENSO Automotive Deutschland GmbH. Freisinger Str. 21-23,
85386 Eching, Germany (e-mail: a.molin@eu.denso.com).

∗∗∗∗ DENSO International America, Inc. 24777 Denso Dr., Southfield,
MI 48033, USA (e-mail: qiming.zhao@na.denso.com).

Abstract: Modern engineering systems include many components of different types and
functions. Verifying that these systems satisfy given specifications can be an arduous task,
as most formal verification methods are limited to systems of moderate size. Recently,
contract theory has been proposed as a modular framework for defining specifications. In
this paper, we present a contract theory for discrete-time dynamical control systems relying
on assume/guarantee contracts, which prescribe assumptions on the input of the system and
guarantees on the output. We then focus on contracts defined by linear constraints, and
develop efficient computational tools for verification of satisfaction and refinement based on
linear programming. We exemplify these tools in a simulation example, proving a certain safety
specification for a two-vehicle autonomous driving setting.

1. INTRODUCTION

Engineering systems are often comprised of many compo-
nents having different types and functions, including sens-
ing, control, and actuation. Moreover, systems are subject
to many specifications, such as safety and performance.
The former are captured using notions of set-invariance,
and the latter are usually defined in terms of dissipativity.
However, modern systems such as intelligent transporta-
tion systems and smart manufacturing systems have more
complex specifications which cannot be captured by these
frameworks, e.g. behaviour, tracking, and temporal logic
specifications. Formal methods in control have been devel-
oped to address this issue (Belta et al. (2017); Tabuada
(2009); Wongpiromsarn et al. (2010)). Unfortunately, the
sheer size of modern engineering systems implies that for-
mal verification methods are ineffective, as the need to dis-
cretize the state-space results in a curse of dimensionality.
Such verification processes can also be extremely wasteful,
as even a minuscule change to the dynamical system (e.g.,
a small change in one of its components) requires starting
the verification processes from scratch.

In this paper we present a verification approach relying on
contract theory. Contract theory was first developed in the
field of software engineering as a modular approach to sys-
tem design (Meyer (1992)), and it has proved useful for de-

� This work was supported by DENSO Automotive Deutsch-
land GmbH. A full version of the paper is available on
https://arxiv.org/abs/2012.12657, see Sharf et al. (2020).

sign of cyber-physical systems (Nuzzo et al. (2014, 2015);
Phan-Minh et al. (2019)). Contracts prescribe assumptions
on the environments a software component can act in,
and guarantees on its behaviour in those environments
(Benveniste et al. (2018)). We focus on assume/guarantee
contracts, which put assumptions on the input to a soft-
ware component and prescribe guarantees on its output.
Computational tools for verifying that a given component
satisfies a given contract are needed in order to apply the
theory. In recent years, some attempts were made to define
a contract theory for dynamical (control) systems. An as-
sume/guarantee framework for continuous-time dynamical
systems based on the notion of simulation was considered
in Besselink et al. (2019)Assume/guarantee contracts have
also been considered in Saoud et al. (2018, 2019), in which
assumptions are made on the input signals and guarantees
are on the state and output signals.

In this paper, we present a framework for assume/guarantee
contracts that prescribe assumptions on the inputs and
guarantees on the output, extending the framework of
Saoud et al. (2018, 2019). First, we allow the requirement
on the output to depend on the input, which is natural for
sensor systems and tasks like tracking. Second, we do not
limit the internal structure of the component, for instance,
we do not specify its state. In particular, the analysis of
a system can be conducted at a preliminary design stage,
before we even know whether, for example, the controller
will be static or not. We also define satisfaction, refine-

Assume/Guarantee Contracts for
Dynamical Systems:

Theory and Computational Tools �

Miel Sharf ∗ Bart Besselink ∗∗ Adam Molin ∗∗∗

Qiming Zhao ∗∗∗∗ Karl Henrik Johansson ∗

∗ Division of Decision and Control Systems, KTH Royal Institute of
Technology, and Digital Futures. 10044 Stockholm, Sweden (e-mail:

{sharf,kallej}@kth.se).
∗∗ Bernoulli Institute for Mathematics, Computer Science and

Artificial Intelligence, University of Groningen. 9700 AK Groningen,
The Netherlands (e-mail: b.besselink@rug.nl).

∗∗∗ DENSO Automotive Deutschland GmbH. Freisinger Str. 21-23,
85386 Eching, Germany (e-mail: a.molin@eu.denso.com).

∗∗∗∗ DENSO International America, Inc. 24777 Denso Dr., Southfield,
MI 48033, USA (e-mail: qiming.zhao@na.denso.com).

Abstract: Modern engineering systems include many components of different types and
functions. Verifying that these systems satisfy given specifications can be an arduous task,
as most formal verification methods are limited to systems of moderate size. Recently,
contract theory has been proposed as a modular framework for defining specifications. In
this paper, we present a contract theory for discrete-time dynamical control systems relying
on assume/guarantee contracts, which prescribe assumptions on the input of the system and
guarantees on the output. We then focus on contracts defined by linear constraints, and
develop efficient computational tools for verification of satisfaction and refinement based on
linear programming. We exemplify these tools in a simulation example, proving a certain safety
specification for a two-vehicle autonomous driving setting.

1. INTRODUCTION

Engineering systems are often comprised of many compo-
nents having different types and functions, including sens-
ing, control, and actuation. Moreover, systems are subject
to many specifications, such as safety and performance.
The former are captured using notions of set-invariance,
and the latter are usually defined in terms of dissipativity.
However, modern systems such as intelligent transporta-
tion systems and smart manufacturing systems have more
complex specifications which cannot be captured by these
frameworks, e.g. behaviour, tracking, and temporal logic
specifications. Formal methods in control have been devel-
oped to address this issue (Belta et al. (2017); Tabuada
(2009); Wongpiromsarn et al. (2010)). Unfortunately, the
sheer size of modern engineering systems implies that for-
mal verification methods are ineffective, as the need to dis-
cretize the state-space results in a curse of dimensionality.
Such verification processes can also be extremely wasteful,
as even a minuscule change to the dynamical system (e.g.,
a small change in one of its components) requires starting
the verification processes from scratch.

In this paper we present a verification approach relying on
contract theory. Contract theory was first developed in the
field of software engineering as a modular approach to sys-
tem design (Meyer (1992)), and it has proved useful for de-

� This work was supported by DENSO Automotive Deutsch-
land GmbH. A full version of the paper is available on
https://arxiv.org/abs/2012.12657, see Sharf et al. (2020).

sign of cyber-physical systems (Nuzzo et al. (2014, 2015);
Phan-Minh et al. (2019)). Contracts prescribe assumptions
on the environments a software component can act in,
and guarantees on its behaviour in those environments
(Benveniste et al. (2018)). We focus on assume/guarantee
contracts, which put assumptions on the input to a soft-
ware component and prescribe guarantees on its output.
Computational tools for verifying that a given component
satisfies a given contract are needed in order to apply the
theory. In recent years, some attempts were made to define
a contract theory for dynamical (control) systems. An as-
sume/guarantee framework for continuous-time dynamical
systems based on the notion of simulation was considered
in Besselink et al. (2019)Assume/guarantee contracts have
also been considered in Saoud et al. (2018, 2019), in which
assumptions are made on the input signals and guarantees
are on the state and output signals.

In this paper, we present a framework for assume/guarantee
contracts that prescribe assumptions on the inputs and
guarantees on the output, extending the framework of
Saoud et al. (2018, 2019). First, we allow the requirement
on the output to depend on the input, which is natural for
sensor systems and tasks like tracking. Second, we do not
limit the internal structure of the component, for instance,
we do not specify its state. In particular, the analysis of
a system can be conducted at a preliminary design stage,
before we even know whether, for example, the controller
will be static or not. We also define satisfaction, refine-

Assume/Guarantee Contracts for
Dynamical Systems:

Theory and Computational Tools �

Miel Sharf ∗ Bart Besselink ∗∗ Adam Molin ∗∗∗

Qiming Zhao ∗∗∗∗ Karl Henrik Johansson ∗

∗ Division of Decision and Control Systems, KTH Royal Institute of
Technology, and Digital Futures. 10044 Stockholm, Sweden (e-mail:

{sharf,kallej}@kth.se).
∗∗ Bernoulli Institute for Mathematics, Computer Science and

Artificial Intelligence, University of Groningen. 9700 AK Groningen,
The Netherlands (e-mail: b.besselink@rug.nl).

∗∗∗ DENSO Automotive Deutschland GmbH. Freisinger Str. 21-23,
85386 Eching, Germany (e-mail: a.molin@eu.denso.com).

∗∗∗∗ DENSO International America, Inc. 24777 Denso Dr., Southfield,
MI 48033, USA (e-mail: qiming.zhao@na.denso.com).

Abstract: Modern engineering systems include many components of different types and
functions. Verifying that these systems satisfy given specifications can be an arduous task,
as most formal verification methods are limited to systems of moderate size. Recently,
contract theory has been proposed as a modular framework for defining specifications. In
this paper, we present a contract theory for discrete-time dynamical control systems relying
on assume/guarantee contracts, which prescribe assumptions on the input of the system and
guarantees on the output. We then focus on contracts defined by linear constraints, and
develop efficient computational tools for verification of satisfaction and refinement based on
linear programming. We exemplify these tools in a simulation example, proving a certain safety
specification for a two-vehicle autonomous driving setting.

1. INTRODUCTION

Engineering systems are often comprised of many compo-
nents having different types and functions, including sens-
ing, control, and actuation. Moreover, systems are subject
to many specifications, such as safety and performance.
The former are captured using notions of set-invariance,
and the latter are usually defined in terms of dissipativity.
However, modern systems such as intelligent transporta-
tion systems and smart manufacturing systems have more
complex specifications which cannot be captured by these
frameworks, e.g. behaviour, tracking, and temporal logic
specifications. Formal methods in control have been devel-
oped to address this issue (Belta et al. (2017); Tabuada
(2009); Wongpiromsarn et al. (2010)). Unfortunately, the
sheer size of modern engineering systems implies that for-
mal verification methods are ineffective, as the need to dis-
cretize the state-space results in a curse of dimensionality.
Such verification processes can also be extremely wasteful,
as even a minuscule change to the dynamical system (e.g.,
a small change in one of its components) requires starting
the verification processes from scratch.

In this paper we present a verification approach relying on
contract theory. Contract theory was first developed in the
field of software engineering as a modular approach to sys-
tem design (Meyer (1992)), and it has proved useful for de-

� This work was supported by DENSO Automotive Deutsch-
land GmbH. A full version of the paper is available on
https://arxiv.org/abs/2012.12657, see Sharf et al. (2020).

sign of cyber-physical systems (Nuzzo et al. (2014, 2015);
Phan-Minh et al. (2019)). Contracts prescribe assumptions
on the environments a software component can act in,
and guarantees on its behaviour in those environments
(Benveniste et al. (2018)). We focus on assume/guarantee
contracts, which put assumptions on the input to a soft-
ware component and prescribe guarantees on its output.
Computational tools for verifying that a given component
satisfies a given contract are needed in order to apply the
theory. In recent years, some attempts were made to define
a contract theory for dynamical (control) systems. An as-
sume/guarantee framework for continuous-time dynamical
systems based on the notion of simulation was considered
in Besselink et al. (2019)Assume/guarantee contracts have
also been considered in Saoud et al. (2018, 2019), in which
assumptions are made on the input signals and guarantees
are on the state and output signals.

In this paper, we present a framework for assume/guarantee
contracts that prescribe assumptions on the inputs and
guarantees on the output, extending the framework of
Saoud et al. (2018, 2019). First, we allow the requirement
on the output to depend on the input, which is natural for
sensor systems and tasks like tracking. Second, we do not
limit the internal structure of the component, for instance,
we do not specify its state. In particular, the analysis of
a system can be conducted at a preliminary design stage,
before we even know whether, for example, the controller
will be static or not. We also define satisfaction, refine-

Assume/Guarantee Contracts for
Dynamical Systems:

Theory and Computational Tools �

Miel Sharf ∗ Bart Besselink ∗∗ Adam Molin ∗∗∗

Qiming Zhao ∗∗∗∗ Karl Henrik Johansson ∗

∗ Division of Decision and Control Systems, KTH Royal Institute of
Technology, and Digital Futures. 10044 Stockholm, Sweden (e-mail:

{sharf,kallej}@kth.se).
∗∗ Bernoulli Institute for Mathematics, Computer Science and

Artificial Intelligence, University of Groningen. 9700 AK Groningen,
The Netherlands (e-mail: b.besselink@rug.nl).

∗∗∗ DENSO Automotive Deutschland GmbH. Freisinger Str. 21-23,
85386 Eching, Germany (e-mail: a.molin@eu.denso.com).

∗∗∗∗ DENSO International America, Inc. 24777 Denso Dr., Southfield,
MI 48033, USA (e-mail: qiming.zhao@na.denso.com).

Abstract: Modern engineering systems include many components of different types and
functions. Verifying that these systems satisfy given specifications can be an arduous task,
as most formal verification methods are limited to systems of moderate size. Recently,
contract theory has been proposed as a modular framework for defining specifications. In
this paper, we present a contract theory for discrete-time dynamical control systems relying
on assume/guarantee contracts, which prescribe assumptions on the input of the system and
guarantees on the output. We then focus on contracts defined by linear constraints, and
develop efficient computational tools for verification of satisfaction and refinement based on
linear programming. We exemplify these tools in a simulation example, proving a certain safety
specification for a two-vehicle autonomous driving setting.

1. INTRODUCTION

Engineering systems are often comprised of many compo-
nents having different types and functions, including sens-
ing, control, and actuation. Moreover, systems are subject
to many specifications, such as safety and performance.
The former are captured using notions of set-invariance,
and the latter are usually defined in terms of dissipativity.
However, modern systems such as intelligent transporta-
tion systems and smart manufacturing systems have more
complex specifications which cannot be captured by these
frameworks, e.g. behaviour, tracking, and temporal logic
specifications. Formal methods in control have been devel-
oped to address this issue (Belta et al. (2017); Tabuada
(2009); Wongpiromsarn et al. (2010)). Unfortunately, the
sheer size of modern engineering systems implies that for-
mal verification methods are ineffective, as the need to dis-
cretize the state-space results in a curse of dimensionality.
Such verification processes can also be extremely wasteful,
as even a minuscule change to the dynamical system (e.g.,
a small change in one of its components) requires starting
the verification processes from scratch.

In this paper we present a verification approach relying on
contract theory. Contract theory was first developed in the
field of software engineering as a modular approach to sys-
tem design (Meyer (1992)), and it has proved useful for de-

� This work was supported by DENSO Automotive Deutsch-
land GmbH. A full version of the paper is available on
https://arxiv.org/abs/2012.12657, see Sharf et al. (2020).

sign of cyber-physical systems (Nuzzo et al. (2014, 2015);
Phan-Minh et al. (2019)). Contracts prescribe assumptions
on the environments a software component can act in,
and guarantees on its behaviour in those environments
(Benveniste et al. (2018)). We focus on assume/guarantee
contracts, which put assumptions on the input to a soft-
ware component and prescribe guarantees on its output.
Computational tools for verifying that a given component
satisfies a given contract are needed in order to apply the
theory. In recent years, some attempts were made to define
a contract theory for dynamical (control) systems. An as-
sume/guarantee framework for continuous-time dynamical
systems based on the notion of simulation was considered
in Besselink et al. (2019)Assume/guarantee contracts have
also been considered in Saoud et al. (2018, 2019), in which
assumptions are made on the input signals and guarantees
are on the state and output signals.

In this paper, we present a framework for assume/guarantee
contracts that prescribe assumptions on the inputs and
guarantees on the output, extending the framework of
Saoud et al. (2018, 2019). First, we allow the requirement
on the output to depend on the input, which is natural for
sensor systems and tasks like tracking. Second, we do not
limit the internal structure of the component, for instance,
we do not specify its state. In particular, the analysis of
a system can be conducted at a preliminary design stage,
before we even know whether, for example, the controller
will be static or not. We also define satisfaction, refine-

26 Miel Sharf et al. / IFAC PapersOnLine 54-5 (2021) 25–30

ment, and cascaded composition for contracts. We then
focus on contracts in which the assumptions and guaran-
tees are prescribed using linear inequalities, and present
efficient computational tools for verifying satisfaction and
refinement based on linear programming (LP), which can
be understood as a version of the k-induction method for
model checking (Donaldson et al. (2011)). This is the main
contribution of this paper.

The rest of the paper is organized as follows. Section 2
presents assume/guarantee contracts as well as the notions
of satisfaction, refinement, and cascaded composition, and
gives examples. Section 3 develops computational methods
for verification of satisfaction and refinement. Section 4
provides a simulation example.

Notation We denote the collection of natural numbers by
N = {0, 1, 2, . . .}. For two setsX,Y , we denote their Carte-
sian product by X×Y . For a positive integer n, we denote
the collection of all signals N → Rn by Sn. For vectors
v, u ∈ Rn , we understand v ≤ u as an entry-wise inequal-
ity. Given a state-space system (A,B,C,D), we denote the
observability matrix Om = [C�, (CA)�, . . . , (CAm)�]�

and define the observability index ν as the minimal integer
such that rank Oν = rank Oν+1.

2. ASSUME/GUARANTEE CONTRACTS

In this section, we define the class of systems for which
we introduce an abstract framework of assume/guarantee
contracts, as well as supporting notions such as satisfac-
tion, refinement, and cascaded composition. This is an
adaptation of the framework presented in Benveniste et al.
(2018). In section 3, we will specialize to a class of contracts
for which efficient computational tools can be introduced.

Definition 1. A system Σ is a tuple (X0, A,B,C,D) with
input d ∈ Snd , output y ∈ Sny , and state x ∈ Snx . The set
X0 ⊆ Rnx is a set of initial conditions, and A,B,C,D are
matrices of appropriate sizes such that the state evolution
and output are given by the following equations:


x(0) ∈ X0

x(k + 1) = Ax(k) +Bd(k), ∀k ∈ N
y(k) = Cx(k) +Dd(k), ∀k ∈ N.

(1)

For signals d ∈ Snd and y ∈ Sny , we write y ∈ Σ(d) if there
exists a signal x ∈ Snx such that d(·), x(·), y(·) satisfy (1).

It is essential to include the set of allowable initial states
X0 in the definition of a system in order to discuss various
specifications. For example, asking whether the output of
a system lies in a given safe set is meaningless if we make
no assumptions on the initial state, no matter the value of
the input d(·).
Remark 1. Definition 1 can be generalized by allowing X0

to be dependent of d(0). This is reasonable for systems
trying to track d(·), assuming their initial tracking error is
not too large. This is also reasonable for systems trying
to avoid an obstacle whose position is defined by d(·),
assuming the system does not start on top of the obstacle.

We wish to consider specifications on the behaviour of
dynamical systems. A dynamical system can be thought of
as a map from input signals d(·) ∈ Snd to output signals
y(·) ∈ Sny . As such, we can adopt the formulation of as-
sume/guarantee contracts by merely making assumptions

on the input variable d(·) and demanding guarantees on
the output variable y(·) given the input d(·).
Definition 2. An assume/guarantee contract is a pair
(D,Ω) where D ⊆ Snd are the assumptions and Ω ⊆ Snd×
Sny are the guarantees.

In other words, we put assumptions on the input d(·) and
demand guarantees on the input-output pair (d(·), y(·)).
Example 1. We say that a system d �→ y has finite �2-
gain no more than β if for any d ∈ �2, we have y ∈ �2
and ‖y‖�2 ≤ β‖d‖�2 . This property can be written as an
assume/guarantee contract C = (D,Ω), where D = �2 and
Ω = {(d(·), y(·)) : ‖y‖�2 ≤ β‖d‖�2}.
Example 2. We say that a SISO system d �→ y exponen-
tially tracks constant signals with exponent λ ∈ (0, 1) if
for any constant input d, the output y satisfies |y(k) −
d(k)| ≤ λ|y(k − 1)− d(k − 1)| for all k. This property can
be written as an assume/guarantee contract C = (D,Ω),
where D = {d(·) : d(k + 1) = d(k), ∀k} and Ω =
{(d(·), y(·)) : |y(k + 1)− d(k + 1)| ≤ λ|y(k)− d(k)|, ∀k}.

Let us now define the notion of satisfaction. This no-
tion connects systems and assume/guarantee contracts, by
defining when a given system satisfies the specifications
defined by a given contract.

Definition 3. We say that a system Σ satisfies C = (D,Ω)
(or implements C), and write Σ � C, if for any d ∈ D and
any y ∈ Σ(d), (d, y) ∈ Ω.

2.1 Refinement and Composition

One of the greatest perks of contract theory is its modular-
ity, as one can refine a contract on a composite system by
“smaller” contracts on subsystems, which can be further
refined by even “smaller” contracts on individual compo-
nents. The two notions supporting this idea are refinement,
defining when one contract is stricter than another, and
composition, defining the coupling of multiple contracts. In
this subsection, we define the notion of refinement for as-
sume/guarantee contracts, as well as a restricted notion of
contract composition for cascade systems. Computational
tools for these notions will be provided in the next section.
We start by defining refinement:

Definition 4. Let Ci = (Di,Ωi) be contracts for i = 1, 2.
We say C1 refines C2 (and write C1 � C2) if D1 ⊇ D2

and Ω1 ∩ (D2 × Sny) ⊆ Ω2 ∩ (D2 × Sny), where ny is the
dimension of the output.

Colloquially, C1 � C2 if C1 assumes less than C2, but
guarantees more given the assumptions.

Example 3. Consider two contracts used for tracking. The
first, C = (D,Ω) defines asymptotic tracking of certain
inputs, namely d, y ∈ Sm, D ⊆ Sm, and

Ω = {(d(·), y(·)) : lim
k→∞

‖d(k)− y(k)‖ = 0}

The second, C′ = (D,Ω′), defines exponential convergence,
i.e., we take some λ ∈ (0, 1) and define:

Ω′ = {(d, y) : ‖d(k)− y(k)‖ ≤ λ‖d(k − 1)− y(k − 1)‖}.
By definition, we have C′ � C.

Refinement provides a partial ordering of assume/guarantee
contracts, and it is “harder” to satisfy refined contracts:

Fig. 1. Cascade of contracts

Proposition 1. Let Ci = (Di,Ωi) be assume/guarantee
contracts for i = 1, 2, 3 and Σ be a system. Then, the
following statements hold:

• C1 � C1.
• If C1 � C2 and C2 � C3 then C1 � C3.
• If C1 � C2 and Σ � C1, then Σ � C2.

Proof. See Sharf et al. (2020).

Proposition 1 is important in contract theory, as it shows
two key properties. First, if we have an original contract
C and a refined contract C′, any system satisfying C′ also
satisfies C. Second, if we have an original contract C and a
refined contract C′, any refinement of C′ is also a refinement
of C. These properties allow us to refine a contract on a
composite system by multiple contracts on the individual
subsystems, which can be further refined by a plethora of
contracts on the individual components in the system. If
each component satisfies its corresponding contract, then
the composite system will satisfy the original contract.

We now move to cascaded composition. Consider the block
diagram in Fig. 1. Define the cascaded composition of C1
and C2 such that if Σ1 � C1 and Σ2 � C2, the cascade of
Σ1 and Σ2 satisfies the composition C1 ⊗ C2. First, let us
define the cascade of systems:

Definition 5. Let Σi = (Xi, Ai, Bi, Ci, Di) be systems for
i = 1, 2. The cascade Σ1 ⊗ Σ2 = (X⊗, A⊗, B⊗, C⊗, D⊗)
has input d⊗ = d1, output y⊗ = y2, state x⊗ = [x�

1 , x
�
2]

�,
allowable initial states X⊗ = X1 ×X2, and matrices A⊗ =[

A1 0
B2C1 A2

]
, B⊗ =

[
B1

B2D1

]
, C⊗ = [D2C1 C2] , D⊗ = D2D1.

Consider two contracts Ci = (Di,Ωi) as in Fig. 1. When
defining a contract that is satisfied by the composition,
we at least need d1 ∈ D1 and (d2, y2) ∈ Ω2. The latter
also requires d2 ∈ D2, while the former only implies
(d1, y1) ∈ Ω1. This motivates the following definition:

Definition 6. For two contracts Ci = (Di,Ωi), the cas-
caded composition is C1 ⊗ C2 = (D⊗,Ω⊗) with input
d⊗ = d1, output y⊗ = y2,

D⊗ = {d⊗ : d⊗ ∈ D1, ((d⊗, y1) ∈ Ω1 =⇒ y1 ∈ D2)},
Ω⊗ = {(d⊗, y⊗) : ∃d2 = y1, (d⊗, y1) ∈ Ω1, (d2, y⊗) ∈ Ω2}.

We now prove our main claim about contract composition:

Proposition 2. Let C1, C2 and Σ1,Σ2 be contracts and
systems with inputs d1, d2 and outputs y1, y2. If Σ1 � C1
and Σ2 � C2, then Σ1 ⊗ Σ2 � C1 ⊗ C2.

Proof. See Sharf et al. (2020)

3. COMPUTATIONAL TOOLS FOR VERIFICATION

The previous section presented abstract assume/guarantee
contracts for discrete-time dynamical systems, as well the
notions of satisfaction, refinement and cascaded composi-
tion. In this section, we present computational tools for
verifying satisfaction and refinement, relying on mathe-
matical induction and linear programming. We rely on

linearity of both the systems and specifications. More
precisely, we present computational tools for assumptions
of the form A1d(k + 1) +A0d(k) ≤ a0 for all k, and guar-

antees of the form G1
[
d(k+1)
y(k+1)

]
+G0

[
d(k)
y(k)

]
≤ g0 for all k,

where A0, A1, G0, G1 are matrices and a0, g0 are vectors of
appropriate dimensions. Specifications of this form include
general bounded signals, as well as outputs of dynamical
systems (e.g., the input d is the output of a given first-
order system). In Section 4, we use specifications of this
form to model a contract where the input is assumed to be
a (constrained) trajectory of a dynamical system, and the
guarantee is a linear inequality defining safe behaviour.

3.1 Verifying Satisfaction
Consider a contract C = (D,Ω) where

D = {d(·) : A1d(k + 1) +A0d(k) ≤ a0, ∀k}, (2)

Ω =

{
(d(·), y(·)) : G1

[
d(k+1)
y(k+1)

]
+G0

[
d(k)
y(k)

]
≤ g0, ∀k

}
(3)

for given A0, A1, G0, G1, a0, g0.

Example 4. Suppose d(·) ∈ S2 is the position of a robot
in a field, parameterized by F = {p ∈ R2 : L1 ≤ p1 ≤
U1, L2 ≤ p2 ≤ U2} for constants L1, L2, U1, U2. Assume
that for all k ∈ N, d(k) ∈ F and d(k + 1) = d(k) +
v(k) for some velocity v(k) bounded by Vmax, i.e. that
−[Vmax, Vmax]

� ≤ d(k + 1) − d(k) ≤ [Vmax, Vmax]
�. The

assumptions are of the form (2) where:

A0 =
[
1 −1 0 0 1 −1 0 0
0 0 1 −1 0 0 1 −1

]�
, A1 =

[
0 0 0 0 −1 1 0 0
0 0 0 0 0 0 1 −1

]�

and a0 = [U1 L1 U2 L2 −Vmax Vmax −Vmax Vmax]
�
.

Let us make the following assumption on (2),(3):

Definition 7. Given two matrices V 1, V 0 and a vector v0,
we say (V 1, V 0, v0) is extendable if for any two vectors
u0, u1 and V 1u1 + V 0u0 ≤ v0, there exists some vector u2

such that V 1u2 + V 0u1 ≤ v0.

Assuming (A1, A0, a0) (or (G1, G0, g0)) is extendable is
not very restrictive. It is equivalent to assuming that any
signal v(·) adhering to the assumption, and defined for
times k = 0, . . . , n, can be extended to a signal defined for
all times k ∈ N while satisfying the assumption.

Theorem 3. Let C = (D,Ω) be a contract with (2) and
(3), and let Σ = (X0, A,B,C,D) be a system with x ∈ Sn.
Assume that (A1, A0, a0) is extendable. Then Σ � C if and
only if for any n ∈ N, the following condition holds: for
any d0, x0, y0, . . . , dn+1, xn+1, yn+1, the condition:



x0 ∈ X0,

G1
[
dk+1
yk+1

]
+G0

[
dk
yk

]
≤ g0, ∀k = 0, . . . , n− 1,

A1dk+1 +A0dk ≤ a0, ∀k = 0, . . . , n,

xk+1 = Axk +Bdk, ∀k = 0, . . . , n,

yk = Cxk +Ddk, ∀k = 0, . . . , n+ 1,

(4)

implies G1
[
dn+1
yn+1

]
+G0

[
dn
yn

]
≤ g0.

Proof. See Sharf et al. (2020).

The previous theorem allows one to verify that a given
system satisfies a given contract by proving a sequence
of (infinitely many) implications of the form (4). Roughly
speaking, this implication guarantees that if the system
implements the contract up to time n, then it implements
the contract up to time n+1. Even though this formulation

 Miel Sharf et al. / IFAC PapersOnLine 54-5 (2021) 25–30 27

Fig. 1. Cascade of contracts

Proposition 1. Let Ci = (Di,Ωi) be assume/guarantee
contracts for i = 1, 2, 3 and Σ be a system. Then, the
following statements hold:

• C1 � C1.
• If C1 � C2 and C2 � C3 then C1 � C3.
• If C1 � C2 and Σ � C1, then Σ � C2.

Proof. See Sharf et al. (2020).

Proposition 1 is important in contract theory, as it shows
two key properties. First, if we have an original contract
C and a refined contract C′, any system satisfying C′ also
satisfies C. Second, if we have an original contract C and a
refined contract C′, any refinement of C′ is also a refinement
of C. These properties allow us to refine a contract on a
composite system by multiple contracts on the individual
subsystems, which can be further refined by a plethora of
contracts on the individual components in the system. If
each component satisfies its corresponding contract, then
the composite system will satisfy the original contract.

We now move to cascaded composition. Consider the block
diagram in Fig. 1. Define the cascaded composition of C1
and C2 such that if Σ1 � C1 and Σ2 � C2, the cascade of
Σ1 and Σ2 satisfies the composition C1 ⊗ C2. First, let us
define the cascade of systems:

Definition 5. Let Σi = (Xi, Ai, Bi, Ci, Di) be systems for
i = 1, 2. The cascade Σ1 ⊗ Σ2 = (X⊗, A⊗, B⊗, C⊗, D⊗)
has input d⊗ = d1, output y⊗ = y2, state x⊗ = [x�

1 , x
�
2]

�,
allowable initial states X⊗ = X1 ×X2, and matrices A⊗ =[

A1 0
B2C1 A2

]
, B⊗ =

[
B1

B2D1

]
, C⊗ = [D2C1 C2] , D⊗ = D2D1.

Consider two contracts Ci = (Di,Ωi) as in Fig. 1. When
defining a contract that is satisfied by the composition,
we at least need d1 ∈ D1 and (d2, y2) ∈ Ω2. The latter
also requires d2 ∈ D2, while the former only implies
(d1, y1) ∈ Ω1. This motivates the following definition:

Definition 6. For two contracts Ci = (Di,Ωi), the cas-
caded composition is C1 ⊗ C2 = (D⊗,Ω⊗) with input
d⊗ = d1, output y⊗ = y2,

D⊗ = {d⊗ : d⊗ ∈ D1, ((d⊗, y1) ∈ Ω1 =⇒ y1 ∈ D2)},
Ω⊗ = {(d⊗, y⊗) : ∃d2 = y1, (d⊗, y1) ∈ Ω1, (d2, y⊗) ∈ Ω2}.

We now prove our main claim about contract composition:

Proposition 2. Let C1, C2 and Σ1,Σ2 be contracts and
systems with inputs d1, d2 and outputs y1, y2. If Σ1 � C1
and Σ2 � C2, then Σ1 ⊗ Σ2 � C1 ⊗ C2.

Proof. See Sharf et al. (2020)

3. COMPUTATIONAL TOOLS FOR VERIFICATION

The previous section presented abstract assume/guarantee
contracts for discrete-time dynamical systems, as well the
notions of satisfaction, refinement and cascaded composi-
tion. In this section, we present computational tools for
verifying satisfaction and refinement, relying on mathe-
matical induction and linear programming. We rely on

linearity of both the systems and specifications. More
precisely, we present computational tools for assumptions
of the form A1d(k + 1) +A0d(k) ≤ a0 for all k, and guar-

antees of the form G1
[
d(k+1)
y(k+1)

]
+G0

[
d(k)
y(k)

]
≤ g0 for all k,

where A0, A1, G0, G1 are matrices and a0, g0 are vectors of
appropriate dimensions. Specifications of this form include
general bounded signals, as well as outputs of dynamical
systems (e.g., the input d is the output of a given first-
order system). In Section 4, we use specifications of this
form to model a contract where the input is assumed to be
a (constrained) trajectory of a dynamical system, and the
guarantee is a linear inequality defining safe behaviour.

3.1 Verifying Satisfaction
Consider a contract C = (D,Ω) where

D = {d(·) : A1d(k + 1) +A0d(k) ≤ a0, ∀k}, (2)

Ω =

{
(d(·), y(·)) : G1

[
d(k+1)
y(k+1)

]
+G0

[
d(k)
y(k)

]
≤ g0, ∀k

}
(3)

for given A0, A1, G0, G1, a0, g0.

Example 4. Suppose d(·) ∈ S2 is the position of a robot
in a field, parameterized by F = {p ∈ R2 : L1 ≤ p1 ≤
U1, L2 ≤ p2 ≤ U2} for constants L1, L2, U1, U2. Assume
that for all k ∈ N, d(k) ∈ F and d(k + 1) = d(k) +
v(k) for some velocity v(k) bounded by Vmax, i.e. that
−[Vmax, Vmax]

� ≤ d(k + 1) − d(k) ≤ [Vmax, Vmax]
�. The

assumptions are of the form (2) where:

A0 =
[
1 −1 0 0 1 −1 0 0
0 0 1 −1 0 0 1 −1

]�
, A1 =

[
0 0 0 0 −1 1 0 0
0 0 0 0 0 0 1 −1

]�

and a0 = [U1 L1 U2 L2 −Vmax Vmax −Vmax Vmax]
�
.

Let us make the following assumption on (2),(3):

Definition 7. Given two matrices V 1, V 0 and a vector v0,
we say (V 1, V 0, v0) is extendable if for any two vectors
u0, u1 and V 1u1 + V 0u0 ≤ v0, there exists some vector u2

such that V 1u2 + V 0u1 ≤ v0.

Assuming (A1, A0, a0) (or (G1, G0, g0)) is extendable is
not very restrictive. It is equivalent to assuming that any
signal v(·) adhering to the assumption, and defined for
times k = 0, . . . , n, can be extended to a signal defined for
all times k ∈ N while satisfying the assumption.

Theorem 3. Let C = (D,Ω) be a contract with (2) and
(3), and let Σ = (X0, A,B,C,D) be a system with x ∈ Sn.
Assume that (A1, A0, a0) is extendable. Then Σ � C if and
only if for any n ∈ N, the following condition holds: for
any d0, x0, y0, . . . , dn+1, xn+1, yn+1, the condition:



x0 ∈ X0,

G1
[
dk+1
yk+1

]
+G0

[
dk
yk

]
≤ g0, ∀k = 0, . . . , n− 1,

A1dk+1 +A0dk ≤ a0, ∀k = 0, . . . , n,

xk+1 = Axk +Bdk, ∀k = 0, . . . , n,

yk = Cxk +Ddk, ∀k = 0, . . . , n+ 1,

(4)

implies G1
[
dn+1
yn+1

]
+G0

[
dn
yn

]
≤ g0.

Proof. See Sharf et al. (2020).

The previous theorem allows one to verify that a given
system satisfies a given contract by proving a sequence
of (infinitely many) implications of the form (4). Roughly
speaking, this implication guarantees that if the system
implements the contract up to time n, then it implements
the contract up to time n+1. Even though this formulation

28 Miel Sharf et al. / IFAC PapersOnLine 54-5 (2021) 25–30

requires infinitely many steps in general, we will soon see
that only finitely many implications of the form (4) needs
to be verified. Importantly, the implication (4) can be cast
as an optimization problem. For any n, p ∈ N such that
n ≥ p, we consider the following optimization problem:

max max
i

[
e�i

(
G1

[
dn+1
yn+1

]
+G0

[
dn
yn

]
− g0

)]
(5)

s.t. G1
[
dk+1
yk+1

]
+G0

[
dk
yk

]
≤ g0 ,∀k = p, . . . , n− 1,

A1dk+1 +A0dk ≤ a0 ,∀k = p, . . . , n,

xk+1 = Axk +Bdk ,∀k = p, . . . , n,

yk = Cxk +Ddk ,∀k = p, . . . , n+ 1,

xp ∈ Xp,

dk ∈ Rnd , xk ∈ Rnx , yk ∈ Rny ,∀k = p, . . . , n+ 1,

where ei are the standard basis elements, and Xp for
p = 1, 2, . . . , n are sets to be defined later. We denote this
problem as Vn,n−p and let θn,n−p be its value. Here, n is
the last time at which the we know the guarantee holds,
p is the first time we consider, and � = n− p is the length
of history we consider. When taking p = 0, the problem
(5) computes the “worst-case violation” of the guarantee
at time n + 1, given that the guarantees hold up to time
n. For that reason, Theorem 3 can be restated as:

Corollary 4. Under the assumptions of Theorem 3, Σ � C
if and only if θn,n ≤ 0 for all n ∈ N.

Proof. θn,n ≤ 0 if and only if whenever (4) holds,

G1
[
dn+1
yn+1

]
+G0

[
dn
yn

]
−g0 ≤ 0 also holds, which is equivalent

to Σ � C by Theorem 3. �

The corollary implies that it suffices to compute θn,n for
all n ∈ N in order to verify Σ � C. We however prefer to
compute θn,� for small � = n−p, as this leads to a simpler
problem that can be solved more efficiently with existing
numerical methods. The main difficulty in reducing the
verification to problems Vn,� for small � is that it requires
knowledge of the state trajectory x(·) at time p = n − l,
captured in (5) via the constraint xp ∈ Xp. This simply
reduces to the initial value x0 ∈ X0 for problems Vn,n.

An efficient solution of Vn,� for small � requires a charac-
terization of Xp satisfying the following criteria. First, it
is desirable that Xp is a polyhedral set 1 , as (5) reduces to
a linear problem for which efficient solvers are available,
e.g., Yalmip (Löfberg (2004)). Second, we would like Xp

to be independent of p, as this will imply verification
of contract satisfaction can be done by solving a finite
number of optimization problems (thus not requiring the
computation of all θn,n as in Corollary 4). Third, Vn,� is
equivalent to Vn+1,� where Xp+1 is the image of Xp under
the dynamics xp+1 = Axp +Bdp. Combining the last two
points, we search for Xp which is a robust invariant set.

However, these criteria might be contradictory. The last
two dictate choosing Xp as smallest robust invariant set
containing X0, but this set might not be polyhedral even if
X0 = {0} (Fisher and Gayek (1988)). In fact, the question
of whether the minimal robust invariant set containing
X0 = {0} is polyhedral is related to the rationality of the
eigenvalues of the matrix A of Σ. We can try and find
some polyhedral robust invariant set containing X0, not
necessarily the smallest one. Rakovic et al. (2005) offer a

1 i.e., it is of the form {x : Fx ≤ f} for a matrix F and a vector f .

very partial solution for X0 = {0}, but a general solution
is not known to the authors.

To avoid these difficulties, we simply set Xp = Rnx , at
the cost of a more conservative test for contract imple-
mentation. Namely, a choice of Xp that is larger than
necessary (i.e., larger than the smallest robust invariant
set containing X0) will make the demand θn,� ≤ 0 stricter.
The following theorem formalizes this case.

Theorem 5. Let Σ = (X0, A,B,C,D) be a system, and let
ν be its observability index. Take a contract C = (D,Ω)
such that (2) and (3) hold. Define Xp = Rnx for all p �= 0.
The following claims hold:

• For any n ∈ N, θn,n ≤ θn,n−1 ≤ θn,n−2 ≤ . . . ≤ θn,0.
Moreover, for any � ≥ 0, we have θ�,� ≤ θ�+1,� =
θ�+2,� = θ�+3,� = · · · .

• Suppose D� = {(d0, d1) : A1d1 + A0d0 ≤ a0} is
bounded, and that for any bounded set E ⊆ R2nd , the
intersection of E × R2ny with Ω� = {(d0, d1, y0, y1) :
G1

[
d1
y1

]
+G0

[
d0
y0

]
≤ g0} is bounded. Then θn,� < ∞

for n ≥ � ≥ ν − 1, and θn,� = ∞ if n, ν − 1 > �.
• Given � ≥ 0, if θn,n ≤ 0 for any 0 ≤ n < � and
θ�+1,� ≤ 0, then Σ � C.

Proof. See Sharf et al. (2020).

Remark 2. Theorem 5 shows that θ�+1,� = ∞ if � ≤ ν− 2.
Thus, we will use the third part of Theorem 5 for � = ν−1
to verify implementation.

Remark 3. Consider Vn,p for Xp = Rnx . By using the
transfer function associated with the state-space sys-
tem (A,B,C,D), we can find matrices E1, . . . , Em and
F0, . . . , Fm such that the state-space representation is
equivalent to the recursive equation y(k) =

∑m
r=1 Ery(k−

r)+
∑m

r=0 Frd(k− r). Thus, Vn,� for � ≥ m, p = n− � and
Xp = Rnx can be recast as:

max max
i

[
ei

� (
G1

[
dn+1
yn+1

]
+G0

[
dn
yn

]
− g0

)]
(6)

s.t. G1
[
dk+1
yk+1

]
+G0

[
dk
yk

]
≤ g0 , ∀k = p, . . . , n− 1,

A1dk+1 +A0dk ≤ a0 , ∀k = p, . . . , n,

yk =

m∑
r=1

Eryk−r +

m∑
r=0

Frdk−r

, ∀k = p+m, . . . , n+ 1,

dk ∈ Rnd , yk ∈ Rny , ∀k = p, . . . , n+ 1.

This reformulation of (5) is more computationally efficient,
as it removes a large number of constraints and variables.

To conclude this section, we showed one can verify a
system Σ satisfies a contract C by solving ν + 1 linear
programs, where ν is the observability index of the system.
The first ν problems assert that θn,n ≤ 0 for n = 0, . . . , ν−
1, and the last asserts that θν+1,ν ≤ 0. The first ν problems
deal with the initial conditions of the system, and the last
problem deals with the long-term behaviour of the system.

3.2 Verifying Refinement

In this section, we prescribe computational tools for ver-
ifying refinement between contracts defined by linear in-
equalities. These tools are similar to the ones presented in
the work of Sankaranarayanan et al. (2005).

Consider now two contracts C1 = (D1,Ω1) and C2 =
(D2,Ω2) of the form (2) and (3), i.e.:

D1 = {d(·) : A1d(k + 1) +A0d(k) ≤ a0, ∀k}, (7)

Ω1 = {(d(·), y(·) : G1
[
d(k+1)
y(k+1)

]
+G0

[
d(k)
y(k)

]
≤ g0, ∀k},

D2 = {d(·) : B1d(k + 1) +B0d(k) ≤ b0, ∀k},

Ω2 = {(d(·), y(·) : H1
[
d(k+1)
y(k+1)

]
+H0

[
d(k)
y(k)

]
≤ h0, ∀k},

for some A1, A0, G1, G0, B1, B0, H1, H0, a0, g0, b0, h0. We
search for a computationally viable way to verify that
C1 � C2. It suffices to show that any d ∈ D2 satisfies
d ∈ D1, and that if (d, y) ∈ Ω1 and d ∈ D2 then (d, y) ∈ Ω2.
As before, we can use inductive reasoning:

Proposition 6. Let C1, C2 be contracts as in (7), where
G1 = [G1

d, G
1
y] and G0 = [G0

d, G
0
y], and assume both([

B1 0
G1

d G1
y

]
,
[
B0 0
G0

d G0
y

]
,
[
b0

g0

])
and (B1, B0, b0) are extend-

able. C1 � C2 if and only if the following two implications
hold for any d0, d1, y0, y1:

• If B1d1 +B0d0 ≤ b0, then A1d1 +A0d0 ≤ a0.
• If B1d1 + B0d0 ≤ b0 and G1

[
d1
y1

]
+ G0

[
d0
y0

]
≤ g0,

then H1
[
d1
y1

]
+H0

[
d0
y0

]
≤ h0.

Proof. See Sharf et al. (2020).

Similarly to the previous subsection, we can verify these
implications using linear optimization problems:

Theorem 7. Suppose the assumptions of Proposition 6
hold. C1 � C2 if and only if ψD and ψΩ, the optimal values
of the problems below, are non-positive:

ψD = max max
i

[
ei

� (
A1d1 +A0d0 − a0

)]

s.t. B1d1 +B0d0 ≤ b0, d0, d1 ∈ Rnd

ψΩ = max max
i

[
ei

� (
H1

[
d1
y1

]
+H0

[
d0
y0

]
− h0

)]

s.t. G1
[
d1
y1

]
+G0

[
d0
y0

]
≤ g0, B1d1 +B0d0 ≤ b0

d0, d1 ∈ Rnd , y0, y1 ∈ Rny

Proof. Follows from Proposition 6, as the implications
hold if and only if ψD and ψΩ are non-positive. �

To conclude this section, we showed that for contracts de-
fined by time-independent linear inequalities, satisfaction
and refinement can be verified using linear programming.

4. SIMULATION EXAMPLE

We exemplify the tools prescribed in Section 3.1 using a
simulation example. An application example of the tools
in Section 3.2 is available in Sharf et al. (2020).

Consider two vehicles driving along a single-lane highway,
as in Fig. 2. We are given a headway h > 0, and our goal is
to verify that the follower keeps at least the given headway
from the leader. Denoting the position and velocity of the
follower as p1(k), v1(k), and the position and velocity of
the leader as p2(k), v2(k), we want to show that p2(k) −
p1(k) − hv1(k) ≥ 0 holds at any time k ∈ N. We address
this problem using assume/guarantee contracts.

The input signal to the follower d(·) is d(k) = [p2(k), v2(k)].
It is reasonable to assume the leader vehicle follows the
kinematic laws, i.e.,

p2(k + 1) = p2(k) + ∆tv2(k), v2(k + 1) = v2(k) + ∆ta2(k),

a2(k) ∈ [−amin, amax]

where a2(k) is the acceleration to the leading vehicle and
∆t > 0 is the length of a discrete time step. As for
guarantees, we want to assure that p2(k)−p1(k)−hv1(k) ≥
0 holds for any k ∈ N. It is clear that these assumptions
and guarantees are given by linear inequalities, meaning
that the methods of Section 3 can be applied. Explicitly,
the set of assumptions is of the form (2) and the set of
guarantees is of the form (3), for:

A1 =

[
1 0
−1 0
0 1
0 −1

]
, A0 =

[−1 −∆t
1 ∆t
0 −1
0 1

]
a0 =

[
0
0

∆tamax

∆tamin

]
,

G1 = [0 0 0 0] , G0 = [−1 0 1 h] , g0 = [0].

We must also specify the system. We assume the follower
vehicle also satisfies the kinematic laws, with an accelera-
tion dictated by an affine control law:

p1(k + 1) = p1(k) + ∆tv1(k), v1(k + 1) = v1(k) + ∆ta1(k),

a1(k) =
p2(k)− p1(k)

h∆t
−
(
1

h
+

1

∆t

)
v1(k) +

v2(k)

h
− 1m/s2 ,

In other words, the follower can be modeled by a system
Σ defined by the equations x(k + 1) = Ax(k) + Bd(k) +
w, y(k) = Cx(k) + Dd(k), where x = y = [p1, v1]

�,
d = [p2, v2]

�, X0 depends on d(0) as we assume the initial
state satisfies p2(0) − p1(0) − hv1(0) ≥ 0 (see Remark 1),
and the dynamics are given by the matrices:

A =
[

1 ∆t
− 1

h −∆t
h

]
, B =

[
0 0
1
h

∆t
h

]
, C = I, D = 0, w =

[
0

−∆t

]

We want to prove that Σ � C , and we do so using Theorem
5. The system Σ is observable, and its observability index
is ν = 1. Thus, it suffices to prove θ0,0, θ2,1 ≤ 0, where:

θ0,0 = max − (p2(0)− p1(0)− hv1(0))

s.t. p2(0)− p1(0)− hv1(0) ≥ 0

p1(0), p2(0), v1(0), v2(0) ∈ R
θ2,1 = max − (p+2 − p+1 − hv+1)

s.t. p2 − p1 − hv1 ≥ 0

p+2 = p2 +∆tv2, v+2 = v2 +∆ta2

a2 ∈ [−amin, amax]

p+1 = p1 +∆tv1, v+1 = v1 +∆ta1

a1 =
p2 − p1

h∆t
−
(
1

h
+

1

∆t

)
v1 +

v2

h
− 1

p+2 , p+1 , v+2 , v+1 , a+2 , a+1 , p2, p1, v2, v1, a2, a1 ∈ R.

In the problem defining θ2,1, the parameters with “+”
correspond to time k = 2, and the ones without “+”
correspond to time k = 1. We choose parameters amin =
amax = 9.8m/s2, ∆t = 0.1sec, h = 2sec, and solve both
LP problems using Yalmip (Löfberg (2004)), computing
θ0,0 = 0, θ2,1 = −0.2, meaning that Σ � C as θ0,0, θ2,1 ≤ 0.

We exemplify that Σ � C through simulation. We consider
the following trajectory of the leader - its initial speed is
about 110km/h, which is roughly kept for 10 seconds. It
then starts to sway wildly for 10 seconds between 80km/h
and 110km/h, braking and accelerating as hard as possible.

Fig. 2. The two-vehicle scenario of Section 4

 Miel Sharf et al. / IFAC PapersOnLine 54-5 (2021) 25–30 29

Consider now two contracts C1 = (D1,Ω1) and C2 =
(D2,Ω2) of the form (2) and (3), i.e.:

D1 = {d(·) : A1d(k + 1) +A0d(k) ≤ a0, ∀k}, (7)

Ω1 = {(d(·), y(·) : G1
[
d(k+1)
y(k+1)

]
+G0

[
d(k)
y(k)

]
≤ g0, ∀k},

D2 = {d(·) : B1d(k + 1) +B0d(k) ≤ b0, ∀k},

Ω2 = {(d(·), y(·) : H1
[
d(k+1)
y(k+1)

]
+H0

[
d(k)
y(k)

]
≤ h0, ∀k},

for some A1, A0, G1, G0, B1, B0, H1, H0, a0, g0, b0, h0. We
search for a computationally viable way to verify that
C1 � C2. It suffices to show that any d ∈ D2 satisfies
d ∈ D1, and that if (d, y) ∈ Ω1 and d ∈ D2 then (d, y) ∈ Ω2.
As before, we can use inductive reasoning:

Proposition 6. Let C1, C2 be contracts as in (7), where
G1 = [G1

d, G
1
y] and G0 = [G0

d, G
0
y], and assume both([

B1 0
G1

d G1
y

]
,
[
B0 0
G0

d G0
y

]
,
[
b0

g0

])
and (B1, B0, b0) are extend-

able. C1 � C2 if and only if the following two implications
hold for any d0, d1, y0, y1:

• If B1d1 +B0d0 ≤ b0, then A1d1 +A0d0 ≤ a0.
• If B1d1 + B0d0 ≤ b0 and G1

[
d1
y1

]
+ G0

[
d0
y0

]
≤ g0,

then H1
[
d1
y1

]
+H0

[
d0
y0

]
≤ h0.

Proof. See Sharf et al. (2020).

Similarly to the previous subsection, we can verify these
implications using linear optimization problems:

Theorem 7. Suppose the assumptions of Proposition 6
hold. C1 � C2 if and only if ψD and ψΩ, the optimal values
of the problems below, are non-positive:

ψD = max max
i

[
ei

� (
A1d1 +A0d0 − a0

)]

s.t. B1d1 +B0d0 ≤ b0, d0, d1 ∈ Rnd

ψΩ = max max
i

[
ei

� (
H1

[
d1
y1

]
+H0

[
d0
y0

]
− h0

)]

s.t. G1
[
d1
y1

]
+G0

[
d0
y0

]
≤ g0, B1d1 +B0d0 ≤ b0

d0, d1 ∈ Rnd , y0, y1 ∈ Rny

Proof. Follows from Proposition 6, as the implications
hold if and only if ψD and ψΩ are non-positive. �

To conclude this section, we showed that for contracts de-
fined by time-independent linear inequalities, satisfaction
and refinement can be verified using linear programming.

4. SIMULATION EXAMPLE

We exemplify the tools prescribed in Section 3.1 using a
simulation example. An application example of the tools
in Section 3.2 is available in Sharf et al. (2020).

Consider two vehicles driving along a single-lane highway,
as in Fig. 2. We are given a headway h > 0, and our goal is
to verify that the follower keeps at least the given headway
from the leader. Denoting the position and velocity of the
follower as p1(k), v1(k), and the position and velocity of
the leader as p2(k), v2(k), we want to show that p2(k) −
p1(k) − hv1(k) ≥ 0 holds at any time k ∈ N. We address
this problem using assume/guarantee contracts.

The input signal to the follower d(·) is d(k) = [p2(k), v2(k)].
It is reasonable to assume the leader vehicle follows the
kinematic laws, i.e.,

p2(k + 1) = p2(k) + ∆tv2(k), v2(k + 1) = v2(k) + ∆ta2(k),

a2(k) ∈ [−amin, amax]

where a2(k) is the acceleration to the leading vehicle and
∆t > 0 is the length of a discrete time step. As for
guarantees, we want to assure that p2(k)−p1(k)−hv1(k) ≥
0 holds for any k ∈ N. It is clear that these assumptions
and guarantees are given by linear inequalities, meaning
that the methods of Section 3 can be applied. Explicitly,
the set of assumptions is of the form (2) and the set of
guarantees is of the form (3), for:

A1 =

[
1 0
−1 0
0 1
0 −1

]
, A0 =

[−1 −∆t
1 ∆t
0 −1
0 1

]
a0 =

[
0
0

∆tamax

∆tamin

]
,

G1 = [0 0 0 0] , G0 = [−1 0 1 h] , g0 = [0].

We must also specify the system. We assume the follower
vehicle also satisfies the kinematic laws, with an accelera-
tion dictated by an affine control law:

p1(k + 1) = p1(k) + ∆tv1(k), v1(k + 1) = v1(k) + ∆ta1(k),

a1(k) =
p2(k)− p1(k)

h∆t
−
(
1

h
+

1

∆t

)
v1(k) +

v2(k)

h
− 1m/s2 ,

In other words, the follower can be modeled by a system
Σ defined by the equations x(k + 1) = Ax(k) + Bd(k) +
w, y(k) = Cx(k) + Dd(k), where x = y = [p1, v1]

�,
d = [p2, v2]

�, X0 depends on d(0) as we assume the initial
state satisfies p2(0) − p1(0) − hv1(0) ≥ 0 (see Remark 1),
and the dynamics are given by the matrices:

A =
[

1 ∆t
− 1

h −∆t
h

]
, B =

[
0 0
1
h

∆t
h

]
, C = I, D = 0, w =

[
0

−∆t

]

We want to prove that Σ � C , and we do so using Theorem
5. The system Σ is observable, and its observability index
is ν = 1. Thus, it suffices to prove θ0,0, θ2,1 ≤ 0, where:

θ0,0 = max − (p2(0)− p1(0)− hv1(0))

s.t. p2(0)− p1(0)− hv1(0) ≥ 0

p1(0), p2(0), v1(0), v2(0) ∈ R
θ2,1 = max − (p+2 − p+1 − hv+1)

s.t. p2 − p1 − hv1 ≥ 0

p+2 = p2 +∆tv2, v+2 = v2 +∆ta2

a2 ∈ [−amin, amax]

p+1 = p1 +∆tv1, v+1 = v1 +∆ta1

a1 =
p2 − p1

h∆t
−
(
1

h
+

1

∆t

)
v1 +

v2

h
− 1

p+2 , p+1 , v+2 , v+1 , a+2 , a+1 , p2, p1, v2, v1, a2, a1 ∈ R.

In the problem defining θ2,1, the parameters with “+”
correspond to time k = 2, and the ones without “+”
correspond to time k = 1. We choose parameters amin =
amax = 9.8m/s2, ∆t = 0.1sec, h = 2sec, and solve both
LP problems using Yalmip (Löfberg (2004)), computing
θ0,0 = 0, θ2,1 = −0.2, meaning that Σ � C as θ0,0, θ2,1 ≤ 0.

We exemplify that Σ � C through simulation. We consider
the following trajectory of the leader - its initial speed is
about 110km/h, which is roughly kept for 10 seconds. It
then starts to sway wildly for 10 seconds between 80km/h
and 110km/h, braking and accelerating as hard as possible.

Fig. 2. The two-vehicle scenario of Section 4

30 Miel Sharf et al. / IFAC PapersOnLine 54-5 (2021) 25–30

0 5 10 15 20 25 30

Time [sec]

75

80

85

90

95

100

105

110

L
e

a
d

e
r

V
e

lo
c
it
y
 [

k
m

/h
]

(a) Velocity of leader

0 5 10 15 20 25 30

Time [sec]

-10

-8

-6

-4

-2

0

2

4

6

8

10

L
e

a
d

e
rA

c
c
e

le
ra

ti
o

n
 [

m
/s

e
c

2
]

(b) Acceleration of leader

Fig. 3. Leader vehicle in simulation.

0 5 10 15 20 25 30

Time [sec]

80

85

90

95

100

105

110

F
o

llo
w

e
r

V
e

lo
c
it
y
 [

k
m

/h
]

(a) Velocity of follower vehicle

0 5 10 15 20 25 30

Time [sec]

2.006

2.008

2.01

2.012

2.014

2.016

2.018

2.02

2.022

2.024

2.026

H
e

a
d

w
a

y
 =

 p
2
 -

 p
1
/v

1
 [

s
e

c
]

(b) Headway between vehicles

Fig. 4. Velocity of follower vehicle and headway.

Finally, it stops swaying and keeps its velocity for 10 more
seconds. The velocity and acceleration of the leader can be
seen in Fig. 3. The follower starts 45m behind the leader,
so the headway is kept at time 0. We run the simulation

for both vehicles, and plot the headway p2(k)−p1(k)
v1(k)

and the

velocity of the follower in Fig. 4. It can be seen that the
headway is kept throughout the run, so the guarantees are
satisfied, as predicted by our analysis.

5. CONCLUSIONS AND FUTURE RESEARCH

We presented an assume/guarantee contract framework
for discrete-time dynamical systems. The framework puts
assumptions on the input signal to the system, and pre-
scribes guarantees on the output relative the the input.
In particular, as the guarantees do not include the state,
systems of different orders can satisfy the same contract.
We also defined corresponding fundamental notions such
as satisfaction, refinement, and cascaded composition. Per-
haps more importantly, we showed that for contracts de-
fined using linear inequalities, satisfaction and refinement
can be verified using linear programming, which can be
solved efficiently using off-the-shelf optimization software.
Finally, we exemplified our methods using a case study on
a 2-vehicle leader-follower scenario, where the goal was to
obey a certain headway. Future research can extend our
results by extending the methods presented in this work
for nonlinear, uncertain, or hybrid systems, as well as for
verifying compositional refinement, i.e. that a composition
of multiple contracts on individual components or subsys-
tems refines a contract on the composite system.

REFERENCES

Belta, C., Yordanov, B., and Gol, E.A. (2017). Formal
methods for discrete-time dynamical systems, volume 89.
Springer.

Benveniste, A., Caillaud, B., Nickovic, D., Passerone, R.,
Raclet, J.B., Reinkemeier, P., Sangiovanni-Vincentelli,

A.L., Damm, W., Henzinger, T.A., Larsen, K.G., et al.
(2018). Contracts for system design. Foundations and
Trends in Electronic Design Automation, 12(2-3), 124–
400.

Besselink, B., Johansson, K.H., and Van Der Schaft, A.
(2019). Contracts as specifications for dynamical sys-
tems in driving variable form. In Proceedings of the 18th
European Control Conference (ECC), 263–268.

Donaldson, A.F., Haller, L., Kroening, D., and Rümmer, P.
(2011). Software verification using k-induction. In Inter-
national Static Analysis Symposium, 351–368. Springer.

Fisher, M.E. and Gayek, J. (1988). Estimating reachable
sets for two-dimensional linear discrete systems. Journal
of Optimization Theory and Applications, 56(1), 67–88.

Löfberg, J. (2004). Yalmip : A toolbox for modeling and
optimization in matlab. In Proceedings of the CACSD
Conference. Taipei, Taiwan.

Meyer, B. (1992). Applying ’design by contract’. Com-
puter, 25(10), 40–51.

Nuzzo, P., Sangiovanni-Vincentelli, A.L., Bresolin, D.,
Geretti, L., and Villa, T. (2015). A platform-based
design methodology with contracts and related tools for
the design of cyber-physical systems. Proceedings of the
IEEE, 103(11), 2104–2132.

Nuzzo, P., Xu, H., Ozay, N., Finn, J.B., Sangiovanni-
Vincentelli, A.L., Murray, R.M., Donzé, A., and Seshia,
S.A. (2014). A contract-based methodology for aircraft
electric power system design. IEEE Access, 2, 1–25.

Phan-Minh, T., Cai, K.X., and Murray, R.M. (2019). To-
wards assume-guarantee profiles for autonomous vehi-
cles. In Proceedings of the IEEE 58th Conference on
Decision and Control (CDC), 2788–2795. IEEE.

Rakovic, S.V., Kerrigan, E.C., Kouramas, K.I., and
Mayne, D.Q. (2005). Invariant approximations of the
minimal robust positively invariant set. IEEE Transac-
tions on Automatic Control, 50(3), 406–410.

Sankaranarayanan, S., Sipma, H.B., and Manna, Z. (2005).
Scalable analysis of linear systems using mathematical
programming. In International Workshop on Verifica-
tion, Model Checking, and Abstract Interpretation, 25–
41. Springer.

Saoud, A., Girard, A., and Fribourg, L. (2018). On the
composition of discrete and continuous-time assume-
guarantee contracts for invariance. In Proceedings of the
European Control Conference (ECC), 435–440. IEEE.

Saoud, A., Girard, A., and Fribourg, L. (2019). Assume-
guarantee contracts for discrete and continuous-time
systems.

Sharf, M., Besselink, B., Molin, A., Zhao, Q., and Jo-
hansson, K.H. (2020). Assume/guarantee contracts for
dynamical systems: Theory and computational tools.
arXiv preprint arXiv:2012.12657.

Tabuada, P. (2009). Verification and control of hybrid
systems: a symbolic approach. Springer Science &
Business Media.

Wongpiromsarn, T., Topcu, U., and Murray, R.M. (2010).
Receding horizon control for temporal logic specifica-
tions. In Proceedings of the 13th ACM international
conference on Hybrid systems: computation and control,
101–110.

