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Abstract— The space of finite games can be decomposed
into three orthogonal subspaces, which are the subspaces of
pure potential games, nonstrategic games, and pure harmonic
games as shown in a paper by Candogan et al. [2]. This
decomposition provides a systematic characterization for the
space of finite games. Explicit expressions for the orthogonal
projections onto the subspaces are helpful in analyzing general
properties of finite games in the subspaces and the relationships
of finite games in different subspaces. In the work by Candogan
et al., for the two-player case, explicit expressions for the
orthogonal projections onto the subspaces are given. In the
current paper, we give an algorithm for computing explicit
expressions for the n-player case by developing our framework
in the semitensor product of matrices and the group inverses
of matrices. Specifically, using the algorithm, once we know the
number of players, no matter whether we know their number
of strategies or their payoff functions, we can obtain explicit
expressions for the orthogonal projections. These projections
can then be used to analyse the dynamical behaviors of games
belonging to these subspaces.

I. INTRODUCTION

Rosenthal initiated the concept of potential games, and
proved that every potential game has a pure Nash equilibrium
in 1973 [12]. Monderer and Shapley [11] systematically
investigate potential games, give a method to verify whether
a given game is potential, and prove that every potential game
is isomorphic to a congestion game. Intuitively speaking, a
potential game is a game with a function that reflects the
deviations of the payoffs of all players caused by the strategy
deviation of one player. Partially due to the fact that there
is one common function describing the deviation of every
player’s payoff, potential games have been applied to many
problems, e.g., traffic networks [10], [14], [13], cooperative
control [9], optimization of distributed coverage of graphs
[17], etc.

Although potential games possess so good properties and
wide applications, there are other types of games that are
not potential but still have good properties and applications.
For example, the Rock-Paper-Scissors game is not potential,
but has the uniformly mixed strategy profile as a mixed
Nash equilibrium [2]. It is desirable to give a systematic
characterization for finite games to investigate properties of
other types of games and find their practical applications.
When the number of players and the numbers of their
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strategies are fixed, Candogan et al. [2] identify the set of
finite games with a finite-dimensional Euclidean space, and
decompose this space into three orthogonal subspaces as

︸ ︷︷ ︸
Potential games

P ⊕
Harmonic games︷ ︸︸ ︷
N ⊕ H , (1)

where these subspaces are the pure potential subspace P , the
nonstrategic subspace N , and the pure harmonic subspace
H. It is also demonstrated that the pure potential subspace
plus the nonstrategic subspace is the potential subspace,
denoted as GP = P ⊕ N ; and the pure harmonic subspace
plus the nonstrategic subspace is the harmonic subspace,
denoted as GH = H⊕N . Nonstrategic games are such that
every strategy profile is a pure Nash equilibrium. Harmonic
games generically do not have pure Nash equilibria, but
always have the uniformly mixed strategy profiles as mixed
Nash equilibria.

Explicit expressions for the orthogonal projections onto
these subspaces for the two-player case have been given in [2,
Subsection 4.3]. It is important to obtain explicit expressions
for the orthogonal projections, because they are helpful to
analyse general properties of finite games. However, it is not
easy to find explicit expressions for the case with more than
two players. As shown in [2], in order to obtain them, one
needs to find the explicit expressions of δ†0 and D† in [2,
Theorem 4.1], where δ0 =

∑M
i=1 Di, D = [D∗

1 , ..., D
∗
M ]∗,

(·)∗ denotes the adjoint operator of ·, (·)† stands for the
Moore-Penrose inverse [1] of ·, D1, ..., DM are correspond-
ing linear operators. The explicit expression for D† has been
given in [2, Lemma 4.4], while the explicit expression for
δ†0 are difficult to obtain because of its complexity structure.

Due to the importance and difficulty of obtaining the ex-
plicit expressions for the orthogonal projections onto finite-
game subspaces, in this paper we aim at looking a different
way to solving the problem. The main contribution of the
paper is an algorithm for computing explicit expressions for
the orthogonal projections for n-player games. Specifically,
using the algorithm, once we know the number of players, no
matter whether we know their number of strategies or their
payoff functions, we can obtain explicit expressions for the
orthogonal projections onto these subspaces. In a companion
paper [5], bases for these subspaces are given, which can be
used to compute the orthogonal projections. However, bases
do not help in obtaining the explicit expressions. The inner
product considered in [2] is the same as the one considered
in the current paper but is not the conventional inner product.
In [15], when the conventional inner product is considered,
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we show that even though the pure potential games and
the nonstrategic games are the same as those considered in
[2], the corresponding pure harmonic games are different.
Our results are given in the framework of the semitensor
product (STP) of matrices built by Cheng [4], in which a
linear equation (called potential equation) is defined such
that a finite game is potential if and only if the potential
equation has a solution. It is also proved that if the potential
equation has a solution, then the potential function of the
corresponding game can be computed from any solution.
The STP of matrices was for the first time proposed by
Cheng [3] in 2001. STP is a natural generalization of
the conventional matrix product, and has been applied to
many problems, e.g., control problems of Boolean control
networks [6], Morgen’s problem [3], symmetry of dynamical
systems [7], differential geometry [8], etc. In this paper,
under the STP framework, we use the group inverse as a
key tool to obtain our main results. Group inverses are a
class of generalized inverses of matrices, which have wide
applications in singular differential and difference equations,
Markov chains, iterative methods, cryptography, etc. [1].

The remainder of this paper are arranged as follows. Sec-
tion II introduces necessary background on group inverses,
noncooperative finite games and their vector space structure
in STP, and finite-dimensional Euclidean spaces. Section
III shows orthogonal projections onto subspaces of finite
games in the framework of STP. Section IV shows the main
contribution of this paper: an algorithm that receives the
number of players and returns explicit expressions for the
orthogonal projections onto the subspaces of pure potential
games, nonstrategic games, and pure harmonic games. Sec-
tion V ends up with some remarks.

II. PRELIMINARIES

In this section, we introduce necessary basic knowledge.
Notations are first shown as below.

A. Notations

• ∅: the empty set
• 2S : the power set of set S
• |S|: the cardinality of set S
• R: the set of real numbers
• Rm: the set of m-dimensional real column vector space
• Rm×n: the set of m× n real matrices
• In: the n× n identity matrix
• δin: the i-th column of the identity matrix In
• ∆n: the set of columns of In
• [1, p]: the set of the first p positive integers
• im(A) (resp. ker(A)): the image (resp. kernel) space of

matrix A
• AT : the transpose of matrix A
• 1k: (1, . . . , 1︸ ︷︷ ︸

k

)T

• 1m×n (0m×n): the m× n matrix with all entries equal
to 1 (0)

• A♯: the group inverse of square matrix A

• A1 ⊕ A2 ⊕ · · · ⊕ An:


A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · An

, where

A1, . . . , An are real matrices

B. Group inverses

In this subsection we introduce necessary basic knowledge
on group inverses. The following Propositions 2.1 and 2.2
over the complex field can be found in [1]. Their current
version over the real field can be proved similarly by using
the singular value decomposition of matrices over the real
field. The proof is omitted.

For a matrix A ∈ Rn×n, a matrix X ∈ Rn×n satisfying
AXA = A,XAX = X,AX = XA is called the group
inverse of A, and is denoted by X = A♯.

Proposition 2.1: A matrix A ∈ Rn×n has at most one
group inverse. The matrix A has a group inverse if and only
if rank(A) = rank(A2). If A has a group inverse A♯, then
A♯ is a polynomial of A, and (rA)♯ = 1

rA
♯ for each nonzero

real number r.
Proposition 2.2: For every matrix A ∈ Rm×n,

AAT (AAT )♯ = A(ATA)♯AT .
The following Proposition 2.3 is a special case of our

previous result [16, Theorem 4.1], and is the key proposition
that will be used to establish the main results of the current
paper.

Proposition 2.3 ([16]): A matrix A ∈ Rn×n has a group
inverse if and only if there is a matrix X ∈ Rn×n such that
A2X = A. If A has a group inverse, then for every matrix
Y ∈ Rn×n satisfying A2Y = A, A♯ = AY 2.

C. Finite games in the framework the semitensor product of
matrices

A noncooperative finite game can be described as a triple
(N,S, c), where

1) N = {1, . . . , n} is the set of players,
2) Si = {1, . . . , ki} denotes the set of strategies of player

i, i = 1, . . . , n, S =
∏n

i=1 S
i stands for the set of

strategy profiles,
3) c = {c1, c2, . . . , cn}, where function ci : S → R

denotes the payoff of player i, i = 1, . . . , n.
Hereinafter S−i denotes

∏n
j=1,j ̸=i S

j , and similarly for
a strategy profile s = (s1, . . . , sn) ∈ S, s−i denotes
(s1, . . . , si−1, si+1, . . . , sn).

Next we introduce the vector space structure of finite
games based on the STP of matrices built in [4]. In this
framework, the payoffs of players can be expressed as real
vectors.

Definition 2.4: [6] Let A ∈ Rm×n, B ∈ Rp×q , and α =
lcm(n, p) be the least common multiple of n and p. The STP
of A and B is defined as

A⋉B = (A⊗ Iα
n
)(B ⊗ Iα

p
),

where ⊗ denotes the Kronecker product.
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The STP of matrices is a generalization of conventional
matrix product, and preserves many properties of the conven-
tional matrix product valid, e.g., associative law, distributive
law, reverse-order law ((A⋉B)T = BT ⋉AT ). Besides, for
all x ∈ Rt and A ∈ Rm×n, one has x ⋉ A = (It ⊗ A)x.
Throughout this paper, the default matrix product is STP, so
the product of two arbitrary matrices is well defined, and the
symbol ⋉ is usually omitted.

For a finite game G = (N,S, c) with n players, for each
player i, we identify his/her strategy j with δjki

, denoted
as j ∼ δjki

, j = 1, . . . , ki, then Si is identified with ∆ki ,
i = 1, . . . , n. It follows that the payoffs can be expressed as

ci(x1, . . . , xn) = V c
i ⋉n

j=1 x̃j , i = 1, . . . , n, (2)

where xj ∈ Sj , x̃j ∈ ∆kj , and xj ∼ x̃j , j = 1, . . . , n; then
(V c

i )
T ∈ Rk is uniquely determined by ci, and called the

structure vector of ci, hereinafter k :=
∏n

i=1 ki. Define the
structure vector of a game G by

(V c
G)

T = (V c
1 , V

c
2 , . . . , V

c
n )

T ∈ Rnk, (3)

where (V c
i )

T is the structure vector of the ith player’s payoff,
i = 1, . . . , n. Then it is clear that the set G[n;k1,...,kn] of finite
games such that each game of G[n;k1,...,kn] has n players, and
the ith players of every two games of G[n;k1,...,kn] share the
same strategy set of cardinality ki, i = 1, . . . , n, has a natural
vector space structure as

G[n;k1,...,kn] ∼ Rnk. (4)

That is, games of G[n;k1,...,kn] correspond to vectors of Rnk.

D. Euclidean spaces and orthogonality

Consider the Euclidean space Rnk with the weighted inner
product: for all x, y ∈ Rnk, ⟨x, y⟩Q := xTQy, where the
weight

Q = k1Ik ⊕ · · · ⊕ knIk (5)

is a positive definite symmetric matrix, ki is the number of
strategies of player i (i ∈ [1, n]) in a noncooperative n-player
game with n ∈ Z+, k =

∏n
i=1 ki.

It is not difficult to obtain that for each matrix A in Rnk×p,
where p is a positive integer, the orthogonal projection of
Rnk onto im(A) is

A(ATQA)♯ATQ, (6)

where the projection comes from (A(ATQA)♯ATQ)2 =
A(ATQA)♯ATQ, and the orthogonality comes from
that for all x ∈ Rnk, ⟨A(ATQA)♯ATQx, x −
A(ATQA)♯ATQx⟩Q = 0.

Remark 2.1: In [15], the conventional inner product (i.e.,
when the weight is the identity matrix Ink) is considered.

III. PRELIMINARY RESULTS: ORTHOGONAL PROJECTIONS
ONTO SUBSPACES OF FINITE GAMES

In this section, we show basic knowledge on subspaces of
finite games, and necessary preliminary results.

A. Subspace of nonstrategic games

Let us define some notations. Part of these notations for
the first time appear in [4].

Define

k[p,q] :=

{ ∏q
j=p kj , if q ≥ p,

1, if q < p,
(7)

Ei :=Ik[1,i−1] ⊗ 1ki ⊗ Ik[i+1,n] ∈ Rk× k
ki ,

ei :=EiE
T
i = Ik[1,i−1] ⊗ 1ki×ki ⊗ Ik[i+1,n] ∈ Rk×k,

i ∈ [1, n].

(8)

Proposition 3.1: For each i ∈ [1, n],

(ei)
2 = kiei, (ei)

♯ =
1

k2i
ei.

Define

BN := E1 ⊕ · · · ⊕ En ∈ R(nk)×
(∑n

i=1
k
ki

)
. (9)

It directly follows that each Ei is of full column rank,
hence so is BN , i.e.,

rank(BN ) =
n∑

i=1

k

ki
. (10)

From the results in [2], nonstrategic games are exactly the
games such that the payoff of each player does not depend
on the strategy played by the player himself/herself. Then
the formal definition is obtained as below.

Definition 3.2: The nonstrategic games are exactly the
games (N,S, c) in G[n;k1,...,kn] satisfying that

∀i ∈ [1, n], ∀y ∈ Si,∀s ∈ S−i,

1

ki

∑
x∈Si

ci(x, s)− ci(y, s) = 0. (11)

In the framework of STP, by (6), Definition 3.2 can be
represented as the following Theorem 3.3.

Theorem 3.3: Consider the finite game space G[n;k1,...,kn].
The nonstrategic subspace is

N = im(BN ) = im(E1 ⊕ · · · ⊕ En)

= im

(
1

k1
e1 ⊕ · · · ⊕ 1

kn
en

)
.

(12)

Proof By [5, Definition 3.4], one has N = im(BN ). Then
by (6), Propositions 2.1, 2.2, and 3.1, we have

BN (BT
NQBN )♯BT

NQ

=(E1 ⊕ · · · ⊕ En)(k1E
T
1 E1 ⊕ · · · ⊕ knE

T
nEn)

♯

(k1E
T
1 ⊕ · · · ⊕ knE

T
n )

=(E1(k1E
T
1 E1)

♯k1E
T
1 )⊕ · · · ⊕ (En(knE

T
nEn)

♯knE
T
n )

=(E1(E
T
1 E1)

♯ET
1 )⊕ · · · ⊕ (En(E

T
nEn)

♯ET
n )

=(E1E
T
1 (E1E

T
1 )

♯)⊕ · · · ⊕ (EnE
T
n (EnE

T
n )

♯)

=
1

k1
e1 ⊕ · · · ⊕ 1

kn
en,

i.e., (12) holds, and
(

1
k1
e1 ⊕ · · · ⊕ 1

kn
en

)
is the explicit

expression for the orthogonal projection onto N .
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The following result follows from Theorem 3.3.
Theorem 3.4: The projection of a game (N,S, c) ∈

G[n;k1,...,kn] onto the nonstrategic subspace N is (N,S, c′),
where c = {c1, . . . , cn}, c′ = {c′1, . . . , c′n}, for all i ∈ [1, n],
all x ∈ Si, all y ∈ S−i, c′i(x, y) =

1
ki

∑
z∈Si ci(z, y).

Remark 3.1: Note that although we consider a different
inner product in [15], the explicit expression for the or-
thogonal projection onto the nonstrategic subspace shown
in Theorem 3.3 is the same as the explicit expression for the
nonstrategic games considered in [15].

B. Subspace of potential games

In [11], potential games are defined as the games (N,S, c)
in G[n;k1,...,kn] satisfying

∃ϕ : S → R, ∀i ∈ [1, n], ∀x, y ∈ Si, ∀z ∈ S−i,

ci(x, z)− ci(y, z) = ϕ(x, z)− ϕ(y, z),
(13)

where ϕ is called potential function. The result of [11] shows
that the difference of two potential functions of a potential
game is a constant function.

From this definition, nonstrategic games are exactly the
potential games that have constant potential functions.

Necessary notations are given as follows. Regard 2[1,n] as
an index set, for all Ns ⊂ [1, n],

eNs :=

{ ∏
i∈Ns

ei, if Ns ̸= ∅,
Ik, otherwise,

(14)

where ei’s are as in (8).
Then

eNs = A1 ⊗A2 ⊗ · · · ⊗An, (15)

where
Ai =

{
Iki , if i /∈ Ns,
1ki×ki , if i ∈ Ns.

(16)

Define

BP :=


Ik E1 0 0 · · · 0
Ik 0 E2 0 · · · 0
Ik 0 0 E3 · · · 0
...

...
...

...
. . .

...
Ik 0 0 0 · · · En

 ∈ R(nk)×
(
k+

∑n
i=1

k
ki

)
.

(17)
The following theorem follows from [5, Theorem 2.2].
Theorem 3.5: Consider the finite game space G[n;k1,...,kn].

The potential subspace is GP = im(BP ).
By Theorem 3.5 and (6), BP (B

T
PQBP )

♯BT
PQ is the

orthogonal projection onto GP , where Q is as shown in
(5). Later on we will design an algorithm for returning the
explicit expression of (BT

PQBP )
♯ in terms of ki’s and eNs ’s

as shown in (14).

C. Subspace of pure potential games

Define

PN :=

Ik − 1
k1
e1

...
Ik − 1

kn
en

 ∈ R(nk)×k, (18)

where e1, . . . , en are defined in (8).
It follows that

PT
NQBN = 0, (19)

[
PN , BN

]
= BP


Ik

− 1
k1
ET

1 I k
k1

...
. . .

− 1
kn

ET
n I k

kn

 , (20)

where BN is defined in (9), Q is shown in (5), and
E1, . . . , En are defined in (8).

In view of (19) and (20), the following theorem holds.
Theorem 3.6: Consider the finite game space G[n;k1,...,kn].

The pure potential subspace is P = im(PN ) =
im(PN (PT

NQPN )♯PT
NQ), where PN (PT

NQPN )♯PT
NQ is the

orthogonal projection onto P .
Proof Eqn. (19) implies that im(PN )⊥N . Eqn. (20)

implies that im(PN )⊕N = im(BP ) = GP . Then im(PN ) =
P .

Theorem 3.7: The pure potential games are exactly the
games (N,S, c) in G[n;k1,...,kn] satisfying (13) and

∀i ∈ [1, n], ∀y ∈ S−i,
∑
x∈Si

ci(x, y) = 0. (21)

Proof Let (V c
G)

T = (V c
1 , . . . , V

c
n )

T ∈ Rnk be an arbitrary
pure potential game. Then V c

G ∈ N⊥, which by Theorem 3.3
is equivalent to

V c
i ei = 0, ∀i ∈ [1, n],

which is also equivalent to

∀i ∈ [1, n], ∀j1 ∈ [1, k[1,i−1]], ∀j2 ∈ [1, k[i+1,n]],

V c
i δ

j1
k[1,i−1] ⋉

 ki∑
j=1

δjki

⋉ δj2
k[i+1,n] = 0,

which is equivalent to (21).
It is evident that game V c

G is pure potential if and only if
V c
G is potential and V c

G ∈ N⊥, which completes the proof.

Remark 3.2: Finite games satisfying (21) are called nor-
malized in [2], and the subspace of normalized games is
the orthogonal complement of the nonstrategic subspace for
both the conventional inner product and the weighted inner
product considered in the current paper.

Remark 3.3: Note that although the subspace of pure
potential games here is the same as those considered in [15],
the orthogonal projection onto the pure potential subspace
considered in [15] is PN (PT

NPN )♯PT
N , which is different

from the one in the current paper (see Theorem 3.6), because
a different inner product is considered in [15].

D. Subspace of harmonic games
Theorem 3.8: The harmonic games are exactly the games

(N,S, c) in G[n;k1,...,kn] satisfying that

∀s ∈ S,

n∑
i=1

∑
x∈Si

(
ci(x, s

−i)− ci(s)
)
= 0. (22)
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The harmonic subspace is

GH = N ⊕H = ker
([
k1Ik − e1 · · · knIk − en

])
.

(23)
Proof Note that Eqn. (22) has already appeared in [2].

Here we give an alternative proof in the framework of
STP. Let (V c

G)
T = (V c

1 , . . . , V
c
n )

T ∈ Rnk be an arbitrary
harmonic game.

It is evident that

im(PN )⊕ ker(PT
NQ) = Rnk,

where PN is shown in (18), and P = im(PN ). Hence
ker(PT

NQ) is the harmonic subspace, i.e., (23) holds.
Let (V c

G)
T = (V c

1 , . . . , V
c
n )

T ∈ Rnk be an arbitrary har-
monic game. Then (V c

G)
T ∈ ker(PT

NQ), which is equivalent
to

n∑
i=1

(kiV
c
i − V c

i ei) = 0, (24)

which is also equivalent to
n∑

i=1

(
kici(s)−

∑
x∈Si

ci(x, s
−i)

)
= 0, ∀s ∈ S, (25)

and
n∑

i=1

∑
x∈Si

(
ci(s)− ci(x, s

−i)
)
= 0, ∀s ∈ S, (26)

which is the same as (22).

Remark 3.4: The harmonic games considered in [15] are
exactly the games (N,S, c) in G[n;k1,...,kn] satisfying that

∀s ∈ S,
n∑

i=1

(
1

ki

∑
x∈Si

ci(x, s
−i)− ci(s)

)
= 0, (27)

and the harmonic subspace is

GH = N ⊕H = ker
([
Ik − 1

k1
e1 · · · Ik − 1

kn
en
])

,
(28)

which are different from those in the current paper.

E. Subspace of pure harmonic games

A finite game in G[n;k1,...,kn] is pure harmonic if and only
if the game is orthogonal to both P and N .

Theorem 3.9: Consider the finite game space G[n;k1,...,kn].
The pure harmonic subspace is H = im(BP )

⊥.
Theorem 3.10: The pure harmonic games are exactly the

games (N,S, c) in G[n;k1,...,kn] satisfying

∀s ∈ S,

n∑
i=1

kici(s) = 0, (29)

and (21).
Proof This result has already appeared in [2], here we give

an alternative proof in the framework of STP. By Theorems
3.7 and 3.8, pure harmonic games are exactly the games
(N,S, c) in G[n;k1,...,kn] satisfying (21) and (22). Plugging

(21) into (22), we have pure harmonic games are exactly the
games (N,S, c) in G[n;k1,...,kn] satisfying (21) and (29).

Remark 3.5: The pure harmonic games here are not nec-
essarily zero-sum games, but the harmonic games considered
in [15] are zero-sum games. The pure harmonic games in
[15] are exactly the games (N,S, c) in G[n;k1,...,kn] satisfying

∀s ∈ S,
n∑

i=1

ci(s) = 0, (30)

and (21).

IV. THE MAIN RESULT: AN ALGORITHM FOR COMPUTING
EXPLICIT EXPRESSIONS FOR THE ORTHOGONAL
PROJECTIONS ONTO FINITE-GAME SUBSPACES

In this section, we show the main results.
In Section III, the explicit expression for the orthog-

onal projection onto the nonstrategic subspace N , i.e.,(
1
k1
e1 ⊕ · · · ⊕ 1

kn
en

)
, is given in Theorem 3.3. In what

follows, based on the results in Section III, we give an
algorithm that receives the number of players and returns
explicit expressions for the orthogonal projections onto the
pure potential subspace P and the pure harmonic subspace
H.

Theorem 3.6 shows that PN (PT
NQPN )♯PT

NQ is the or-
thogonal projection onto the pure potential subspace P .
Hence in order to compute the explicit expression for the or-
thogonal projection, we must compute the explicit expression
for (PT

NQPN )♯ = (
∑n

i=1 (kiIk − ei))
♯. Next we design an

algorithm to compute this explicit expression for (PT
NQPN )♯

in terms of ki’s and ei’s. The following proposition plays an
important role in designing this algorithm.

Proposition 4.1: Consider the finite game space
G[n;k1,...,kn]. Matrices eNs , Ns ⊂ [1, n] (defined in
(14)), are linearly independent.

Proof Let cNs ∈ R, Ns ⊂ [1, n], and∑
Ns⊂[1,n]

cNs
eNs

= 0. (31)

Next we verify that cNs = 0 for all Ns ⊂ [1, n].
First we consider the (1, k)-entry of eNs

, Ns ⊂ [1, n]. It
can be seen that e[1,n](1, k) = 1, and for all Ns ⊊ [1, n],
eNs(1, k) = 0. Hence c[1,n] = 0. Remove c[1,n]e[1,n] from
(31).

Second we consider the (1, k
k1
)-entry of eNs , Ns ⊊ [1, n].

It can be seen that e[2,n](1, k
ki
) = 1, and for all [2, n] ̸= Ns ⊊

[1, n], eNs(1,
k
ki
) = 0. Hence c[2,n] = 0. Remove c[2,n]e[2,n]

from (31). Similarly we have for all i ∈ [1, n], c[1,n]\{i} = 0.
Remove all cNs

eNs
from (31), where |Ns| = n− 1.

Similarly for all Ns ⊂ [1, n] satisfying |Ns| = n − 2,
cNs = 0. Remove cNseNs from (31), where |Ns| = n− 2.

Repeat this procedure until |Ns| = 0. Finally we have for
all Ns ⊂ [1, n], cNs = 0.

Based on the above analysis, matrices eNs , Ns ⊂ [1, n],
are linearly independent.
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By Proposition 2.1, (
∑n

i=1 (kiIk − ei))
♯ is a polynomial

of
∑n

i=1 (kiIk − ei). Then by Propositions 3.1 and 4.1, one
has (

∑n
i=1 (kiIk − ei))

♯ is of the form
∑

Ns⊂[1,n] cNseNs ,
where all coefficients cNs ’s belong to R and are unique.

We construct a linear equation(
n∑

i=1

(kiIk − ei)

)2
 ∑

Ns⊂[1,n]

dNseNs

 =

n∑
i=1

(kiIk − ei) ,

(32)

where dNs ∈ R, Ns ⊂ [1, n], are variables to be de-
termined. Since

∑
Ns⊂[1,n] cNseNs = (

∑n
i=1 (kiIk − ei))

♯,
(c∅, . . . , c[1,n]) is a solution to Eqn. (32).

On the other hand, the left hand side of Eqn. (32) is
of the form

∑
Ns⊂[1,n] eNs(dS , S ⊂ Ns)eNs , where each

eNs(dS , S ⊂ Ns) ∈ R is a linear combination of dS , S ⊂
Ns, then from (32) we obtain a linear equation

e∅(d∅) =

(
n∑

i=1

ki

)2

d∅ =

(
n∑

i=1

ki

)
,

e{i}(d∅, d{i}) =

 n∑
j=1

kj − ki

2

d{i}+(
ki − 2

n∑
i=1

ki

)
d∅ = −1, i ∈ [1, n],

eNs(dS , S ⊂ Ns) =

 ∑
j∈[1,n]\Ns

kj

2

dNs + · · · = 0,

Ns ⊂ [1, n], |Ns| > 1.
(33)

By Proposition 4.1, the solutions to Eqn. (32) coincide
with the solutions to Eqn. (33). It is directly seen that for
every two solutions to (33), the dNs th components of them
are equal, since

∑
j∈[1,n]\Ns

kj ̸= 0, where Ns ⊊ [1, n].
Algorithm 4.2: 1) Find a solution {d0Ns

∈ R|Ns ⊂
[1, n]} to Eqn. (33) according to the following steps:
first find the unique d0∅ = 1∑n

j=1 kj
; second find the

unique d0{i} = 1

(
∑n

j=1 kj)(
∑n

j=1 kj−ki)
, i ∈ [1, n]; . . . ;

find the unique d0Ns
satisfying that Ns ⊂ [1, n] and

|Ns| = n− 1; finally find an arbitrary d0[1,n].

2) Use Proposition 2.3 to compute (
∑n

i=1 (kiIk − ei))
♯
=

(
∑n

i=1 (kiIk − ei))
(∑

Ns⊂[1,n] d
0
Ns

eNs

)2
=:(∑

Ns⊂[1,n] e
0
Ns

eNs

)
, where e0Ns

∈ R is a polynomial
of d0∅, . . . , d

0
[1,n], Ns ⊂ [1, n].

Proposition 4.3: In Algorithm 4.2, d0Ns
= e0Ns

, where
Ns ⊊ [1, n]; e0Ns

are unique, where Ns ⊂ [1, n].
Proof Since

∑
Ns⊂[1,n] e

0
Ns

eNs
= (
∑n

i=1 (kiIk − ei))
♯,

(e0∅, . . . , e
0
[1,n]) is a solution to Eqn. (32). By the uniqueness

of the group inverse and Proposition 4.1, the conclusion
holds.

By Proposition 4.3, when executing 2) of Algorithm 4.2,
one does not need to compute e0Ns

, where Ns ⊊ [1, n]. By
using Algorithm 4.2, for any given n, one can obtain the
explicit expression for (

∑n
i=1 (kiIk − ei))

♯.
Example 4.4: Consider 2-player games, where the players

have k1 and k2 strategies, respectively. Denote k := k1k2.
One obtains the corresponding Eqn. (33) as


(k1 + k2)

2d∅ = k1 + k2,

d{i}k
2
3−i + d∅(−ki − 2k3−i) = −1, i = 1, 2,

· · · .
(34)

By executing 1) of Algorithm 4.2, one obtains the solution
to Eqn. (34) as ( 1

k1+k2
, 1
k2(k1+k2)

, 1
k1(k1+k2)

, ∗), where ∗ can
be any real number, then by executing 2) of Algorithm 4.2
one has

(
2∑

i=1

(kiIk − ei)

)♯

=
1

k1 + k2
Ik +

1

k2(k1 + k2)
e1 +

1

k1(k1 + k2)
e2−

k21 + k1k2 + k22
k21k

2
2(k1 + k2)

e1e2.

(35)

By using Eqn. (35), one can obtain explicit expressions for
the orthogonal projections onto the pure potential subspace
P , the nonstrategic subspace N , and the pure harmonic
subspace H as

[
Ik − 1

k1
e1

Ik − 1
k2
e2

]
(∗)
[
k1Ik − e1
k2Ik − e2

]T
,

(
1

k1
e1 ⊕

1

k2
e2

)
,

and

I2k −
[
Ik − 1

k1
e1

Ik − 1
k2
e2

]
(∗)
[
k1Ik − e1
k2Ik − e2

]T
−
(

1

k1
e1 ⊕

1

k2
e2

)
,

where (∗) is the right hand side of (35), ei’s are defined in
(8).

The above explicit expressions are obtained for the first
time to the best of our knowledge, although explicit ex-
pressions in different froms have also been obtained in [2,
Subsection 4.3].

Example 4.5: Consider 3-player games, where the players
have k1, k2 and k3 strategies, respectively. Denote k :=
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k1k2k3. By using Algorithm 4.2, one has(
3∑

i=1

(kiIk − ei)

)♯

=
1∑3

j=1 kj
Ik +

1

(k2 + k3)
∑3

j=1 kj
e1+

1

(k1 + k3)
∑3

j=1 kj
e2 +

1

(k1 + k2)
∑3

j=1 kj
e3+

k1 + k2 + 2k3

k3(k1 + k3)(k2 + k3)(
∑3

j=1 kj)
e1e2+

k1 + 2k2 + k3

k2(k1 + k2)(k2 + k3)(
∑3

j=1 kj)
e1e3+

2k1 + k2 + k3

k1(k1 + k2)(k1 + k3)(
∑3

j=1 kj)
e2e3−

e1e2e3

k21k
2
2k

2
3(k1 + k2)(k1 + k3)(k2 + k3)(

∑3
j=1 kj)

(5k21k
2
2k

2
3+

k41k2k3 + k1k
4
2k3 + k1k2k

4
3+

k41k
2
2 + k21k

4
2 + k42k

2
3 + k22k

4
3 + k41k

2
3 + k21k

4
3+

2(k31k
3
2 + k31k

3
3 + k32k

3
3) + 4(k1k

2
2k

3
3 + k1k

3
2k

2
3+

k21k2k
3
3 + k21k

3
2k3 + k31k2k

2
3 + k31k

2
2k3)).

(36)

By using Eqn. (36), one can obtain explicit expressions for
the orthogonal projections onto the pure potential subspace
P , the nonstrategic subspace N , and the pure harmonic
subspace H asIk − 1

k1
e1

Ik − 1
k2
e2

Ik − 1
k3
e3

 (∗)

k1Ik − e1
k2Ik − e2
k3Ik − e3

T

,

(
1

k1
e1 ⊕

1

k2
e2 ⊕

1

k3
e3

)
,

and

I3k −

Ik − 1
k1
e1

Ik − 1
k2
e2

Ik − 1
k3
e3

 (∗)

k1Ik − e1
k2Ik − e2
k3Ik − e3

T

−

(
1

k1
e1 ⊕

1

k2
e2 ⊕

1

k3
e3

)
,

where (∗) is the right hand side of (36), ei’s are defined in
(8).

The above explicit expressions are obtained for the first
time to the best of our knowledge.

By using Algorithm 4.2, for n-player games, where n is
an arbitrary positive integer, one can compute the explicit
expression for (PT

NQPN )♯ = (
∑n

i=1 (kiIk − ei))
♯. Hence

one can use this algorithm to compute the explicit expres-
sion for PN (PT

NQPN )♯PT
NQ, the explicit expression for the

orthogonal projection onto the pure potential subspace P
in terms of n and ei’s. On the other hand, we have got
that the explicit projection onto the nonstrategic subspace N
is
(

1
k1
e1 ⊕ · · · ⊕ 1

kn
en

)
. Hence the explicit expression for

the explicit projection onto the pure harmonic subspace H,
Ink−PN (PT

NQPN )♯PT
NQ−

(
1
k1
e1 ⊕ · · · ⊕ 1

kn
en

)
, can also

be computed in terms of n and ei’s.

V. CONCLUSION

In this paper, we gave an algorithm for computing ex-
plicit expressions for the orthogonal projections onto the
subspaces of pure potential games, nonstrategic games, and
pure harmonic games. Specifically, using the algorithm, once
we know the number of players, no matter whether we
know their number of strategies or payoff functions, we can
obtain the explicit expressions for the orthogonal projections.
Further works include the study of general properties of
finite games belongs to these subspaces based on the explicit
expressions and their applications to dynamical behaviors of
these types of finite games.
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