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Abstract: A control architecture for executing multi-vehicle search algorithms is pre-
sented. The proposed hierarchical structure consists of three control layers: maneuver
controllers, vehicle supervisors and team controllers. The system model is described as
a dynamic network of hybrid automata in the programming language Shift and allows
reasoning about specification and dynamical properties in aformal setting. The particular
search problem that is studied is that of finding the minimum of a scalar field using a team
of autonomous submarines. As an illustration, a coordination scheme based on the Nelder-
Mead simplex optimization algorithm is presented and illustrated through simulations.
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1. INTRODUCTION

The problem of coordinating the operations of multi-
ple autonomous underwater vehicles (AUV’s) in the
search for extremal points of oceanographic scalar
fields is addressed in the paper. The coordination en-
tails exchanging real-time information and commands
among vehicles and controllers whose roles, relative
positions, and dependencies change during operations.
The class of search algorithms for multi-vehicle sys-
tems considered in this paper is characterized by: i)
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anzon are partially supported by the European Commission through
the RECSYS and the RUNES Projects, the Swedish Strategic Re-
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a setI ⊂ R
3 of initial points; ii) a measurement

functionm : R
3 → R from locations to measurements

of a given scalar field; iii) a sequenceL of visited lo-
cations and measurements; iv) a way-point generation
functiong : L → R

3, which returns the set of points
to visit next; and v) a termination criteria.

The approach depicted in this paper is to structure
the system into a control hierarchy (Varaiya, 1997),
which consists of maneuver controllers, vehicle su-
pervisors, and team controllers. The maneuver con-
trollers implement elemental feedback control maneu-
vers for the AUV’s. Each AUV has attached a vehicle
supervisor, which makes decisions on what maneu-
ver to execute. The team controllers run the multi-
vehicle coordination algorithm, but also handle struc-
tural adaptation and reconfiguration for the system of



AUV’s. The control hierarchy is described as inter-
acting hybrid automata using the Shift specification
language (Deshpandeet al., 1997).

The paper is organized as follows. Section 2 intro-
duces the problem formulation and the system spec-
ification. Section 3 formulates the input–output be-
havior of the components and how they interact as a
dynamic network of hybrid automata. Section 4 de-
scribes the controllers and how they implement the
search strategy. In section 5 some system properties
are enunciated. Section 6 presents the implementation
of an optimization-based multi-vehicle search strategy
together with some simulation results. In section 7,
conclusions are drawn.

2. PROBLEM

The multi-vehicle systemΣ is a set of vehiclesV =
{v1, . . . , vn} together with their control structures.
The system specificationS for the class of search
algorithms under consideration is given by the hybrid
automaton depicted in figure 1.
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Fig. 1. System specification

The initial state iscoord. In this state the vehicles
in V exchange measurements to evaluateg and to de-
termine waypoints. In themotion state the vehicles
move to their designated waypoints. When they reach
these points, a transition to thecoord takes place
and a new step begins. In themotion state it may
happen that the transition tocoord is not taken due
to a communication time-out. In this case, a transition
tobacktrack is taken. Inbacktrack the vehicles
move to their waypoints at the end of the previous
coord and attempt to re-start the algorithm. If this
is not possible, then a transition toind is taken. At
each step, the backtrack action may be attempted at
mostmax retries times. After that, a timeout in
motion will trigger a transition toind. In ind, each
vehicle executes the search algorithm independently if
coordination is no longer possible.

This paper addresses the following problem: given a
multi-vehicle systemΣ and a specificationS prove
thatΣ implements the specificationS.

3. COMPONENTS AND INTERACTIONS

3.1 Execution concepts

The concept of maneuver, a prototype of an action
description for a single vehicle, is used as the atomic
component of execution control. Thus each vehicle is
abstracted as a provider of maneuvers, which allows
for modular design and verification.

The design is structured in a three level control hier-
archy. Proceeding bottom-up, there are the maneuver
controllers (one per type of maneuver), the vehicle
supervisors (one per AUV), and the team controllers
(one per AUV). The next sections explain how this
control hierarchy is implemented in Shift in the frame-
work of dynamic networks of hybrid automata.

Shift users define types (classes) with continuous and
discrete behavior. A simulation starts with an initial set
of components that are instantiations of these types.
The world-evolution is derived from the behavior of
these components. The inputs and outputs of differ-
ent components can be interconnected. Each discrete
state has a set of differential equations and algebraic
definitions (flow equations) that govern the continu-
ous evolution of numeric variables. When transitions
are taken, as determined by guards and/or by event
synchronization, components can be created, intercon-
nected, and destroyed.

Vehicle SupervisorVehicle Supervisor

Team Controller Team Controller

Maneuver ControllerManeuver Controller

Fig. 2. Control hierarchies and links

3.2 AUV model

The Shift type definition for the AUV model is

type AUV {
input /* what we feed to it */
array(number) tau; // control settings

output /* what we see on the outside */
supervisor s; // link to supervisor
TeamController t; // link to team controller
number x,y,z; // motion state
array(number) eta; // body fixed velocities
...

flow
x’ = f1(eta,tau,x,y,z,phi,theta,psi);
...

}



The equations of motion follow the notation from the
Society of Naval Architects and Marine Engineers
(SNAME) (Lewis, 1989).

In Shift an instance of a type is called a component,
and a component is created with acreate statement.
The first line of following example creates an instance
of type AUV, with the output link variabless and
t bound to componentssup1 andtc1 respectively
(link variables refer to other components), and assigns
it to the link variablev1. The second line creates
another instancev2. The third line creates a setV with
v1 andv2.

v1:= create(AUV, s:=sup1, t:=tc1);
v2:= create(AUV, s:=sup2,t:=tc2);
V := {v1, v2}; // set composed of v1 and v2

The output variables of v1 is accessed with the
Shift constructs(v1). Shift allows the user to assign
components to link variables. This feature is used
to create and maintain dynamic networks of hybrid
automata. For example, the value of the link variable
t of v1 can be changed with the following construct
t(v1):= tc2.

3.3 Controllers

3.3.1. Maneuver controller The object-oriented fea-
tures of Shift are used to define a hierarchy of ma-
neuver controllers. At its root there is the elemental
maneuver typeMController. The other maneuver
controllers inherit from this one. The Shift data model
is

type MController {
input
number x,y,z; // motion state
mspec m; // maneuver parameters
...

output
array(number) u;// control settings for actuators
...

}

The search algorithms are implemented with two ma-
neuver types: goto(x, y, z,R, T ) – reach the ball of
radiusR centered at(x, y, z) within time T ; hold(D)
– execute a holding pattern for timeD.

Thegoto maneuver used in this control hierarchy is
synthesized considering a differential games formula-
tion from (Krasovskii and Subbotin, 1988) in order to
ensure guaranteed performance.

3.3.2. Vehicle supervisor The Shift data model for
the vehicle supervisor is

type supervisor {
input /* what is fed to it */
TeamController tc;// link to team controller

state /* what is internal */
MController mc; // link to maneuver controller
mspec mt;// current maneuver specification
...

discrete /* discrete modes of behavior */
Exec, Error, Idle; // 3 discrete states

transition

Idle -> Exec {} ...
}

It interacts withtc through the exchange of the fol-
lowing input/output typed events:
In command(m) – execute maneuver specm.
In abort – abort current maneuver.
Out donev – completion of current maneuver.
Out errorv(ecode) – error of typeecode.

The typed events exchanged withmc are:
Out exec(m) – launch maneuver controller to exe-
cut maneuver specificationm.
In donev – maneuver reached completion.
In errorm(code) – error of typecode.

The transition system for this hybrid automaton is
briefly described next. In theIdle state, the supervi-
sor accepts a maneuver command,In command(m),
from the team controllertc, and takes the transition to
Exec. On this transition it creates aMController
namedc of type specified inm and sets the state
variablemc to c. The transition fromExec to Idle
is taken when an abort command is received fromtc
or when aIn donev event is received fromc. On
this transition the state variablemc is set tonil.

3.3.3. Team controller EachAUV component has
a TeamController, which encodes the search al-
gorithm for both independent and coordinated execu-
tion (respectively in stateInd) or in statesCoord,
Motion, Backtrack of the specificationS. The
Shift skeleton is

type TeamController {
input
set(AUV) V; // AUVs in the team
supervisor s; // link to its supervisor

state
number step; // last step of algorithm
number x,y,z; // (x, y, z) at last step
number T1, T2, T3; // coordination times
number c; // counts measurements

// received
array(array(number)) L;// visited locations
number t; // timer

output
TeamController m;// link to master TeamController
set(TeamController) tc;// links to TeamController
symbol role; // $master or $slave
symbol nstate; // name of discrete state

// $Init, $Error, $TMaster,
// $TSlave, $SingleN, $SingleI

mspec ms; // maneuver under execution
set(array(number)) specs; // waypoints

discrete /* discrete modes of behavior */
Init, Error, TMaster, TSlave, SingleN, SingleI;
...

}

There are six discrete states.TMaster, TSlave
andSingleN concern the coordinated execution of
the search algorithm. During coordinated execution
one vehicle plays the role of master and the remaining
vehicles play the role of slaves. In this implementation
oneTeamController is initialized in the master
state and the others in the slave state, and these roles
do not change. The constructm:=self is used in the
initialization of the masterTeamController. In



theTMaster state theTeamController receives
measurements from all vehicles inV, calculates the
next waypoints, and sends out thegoto maneuver
specifications to the vehicles inV through the linktc.
In TSlave state it sends measurements to its master
m and receivesgoto maneuver specifications from
it. In SingleN it executes a defaultgoto maneuver
specification to go back to its previous waypoint and,
upon its completion, it executes ahold maneuver. In
SingleI it executes the algorithm by itself after all
attempts to coordinate have failed.

TeamController interacts withtc through the ex-
change of the following input/output typed events:
Out measurement(m) – measurementm.
Out command(m, T1, T2, T3) – execute ma-
neuver specm with coordination times[T1, T2,
T3]. The meaning of[T1, T2, T3] is explained
in the next section.

4. EXECUTION CONTROL LOGIC

This section presents theTeamController control
logic which implements a subset of the specification
S, namely the one corresponding to coordinated ex-
ecution. For the sake of clarity we have eliminated
the transitions concerning fault-handling logic and
considered that the initial allocations do not change
over time. This leads to the partition of the transition
system as two automata, one for the slave state and
one for the master state. The automata forTMaster,
TSlave are described below. In what follows, it is
assumed that it is possible to keep the vehicles’ clocks
synchronized.

TMaster is shown in figure 3, where transitions are
labelled with guards (boldface) and actions. When
the systemΣ enters a new step of the algorithm, the
counterc is set to zero and the coordination timesT1,
T2, T3 set to define the time window for coordina-
tion. The master AUV is required to reach its waypoint
during [T1, T2]. During [T2, T3] it receives measure-
ments from the other vehicles and updates the counter
c. Whenc=n it increments thestep counter, calcu-
lates the new waypoints for all vehicles and coordina-
tion times for the next stepT1, T2, T3, and com-
mands all the vehicles to execute the corresponding
goto maneuvers under the new coordination times.
TSlave is shown in figure 4. It increments thestep
counter when it receives agoto command from the
masterm during [T2, T3]. It commands its supervisor
to execute this maneuver and waits for its completion
message from the supervisor. When it receives the
completion message it commands the supervisor to
execute ahold maneuver. Immediately after T2 it
sends the measurement taken at the designated way-
point to the master and waits for the nextgoto com-
mand to arrive during [T2, T3]. The composition of
these controllers results in an implementation which
satisfies the specification. This is discussed next.

M1 M2
t’=1;t’=1;

c:=n:
specs:=generate(L);
c:=n+1;

Out measurement(m):
c:=c+1;

c:=n+1 and t in [T2, T3]:Out command(goto, T1, T2, T3); t:=0;

Out donev and t in [T1, T2]: c:=0;

to tc

from tc

from s

Fig. 3. Master mode operation

S1 S2
t’=1;t’=1;

t>T2:Out measurement(m);

Out command(goto, T1, T2, T3) and t in [T2, T3]: t:=0;

Out donev and t in [T1, T2]:Out command(hold)

to s

from tc

from s

Fig. 4. Slave mode operation

Links among components of typeTeamController
change while the system implements the specification.
The termconfiguration is used to denote a prop-
erty satisfied by a set of interacting components. This
provides for a compact notation to describe execution
properties.

The systemΣ evolves through four configurations
to execute the specificationS: ccoord; cmotion;
cbacktrack; andcind.

In the ccoord configuration the systemΣ satisfies
the property:

∃1v ∈ V,∀v ∈ V \v : m(tc(v)) = m(tc(v)) (1)

∧ m(tc(v)) = tc(v)

∧ tc(tc(v)) = {tc(v1), . . . , tc(vn)}

∧ step(tc(v)) = step(tc(v))

∧ nstate(tc(v)) = $Tmaster

∧ nstate(tc(v)) = $TSlave

This means that there is a masterTeamController
which resides inv (it is the master of itself). In this
controller the value ofnstate is $Tmaster; in
the other controllers its value is$TSlave. The link
variablem is set to the master. The master is linked to
the other controllers, which are in the same step of the
master:step(tc(v)) = step(tc(v)).

In thecmotion configuration some of the links from
theccoord configuration may have been removed as
described next:



∃1v ∈ V,∀v ∈ V \v : m(tc(v)) = m(tc(v)) (2)

∧ m(tc(v)) = tc(v)

∧ step(tc(v)) = step(tc(v))

∧ nstate(tc(v)) = $Tmaster

∧ nstate(tc(v)) = $TSlave

In thecbacktrack configuration the systemΣ sat-
isfies the property:

∃1v ∈ V,∀v ∈ V \v : m(tc(v)) = tc(v) (3)

∧ step(tc(v)) = step(tc(v))

∧ nstate(tc(v)) = $SingleN

∧ nstate(tc(v)) = $SingleN

Configuration is a global concept. The controllers do
not manipulate configurations directly. However, the
controllers ensure that the system transitions between
theccoord and thecmotion configurations in the
absence of faults.

5. SYSTEM PROPERTIES

This section discusses how the systemΣ implements
the specificationS. For this to happen,Σ has to satisfy
the following properties (space limitations preclude
discussion of properties P2–P4).

P1 (Continuation): normal execution does not block,
i.e., the target sets generated at each step are reachable
and the vehicles are able to exchange coordination
information at the end of the step to proceed to the
next step. The target sets are specified in terms of way-
points, radius, and time window.
P2 (Termination): execution terminates in a finite
number of steps if the original search algorithm ter-
minates in a finite number of steps.
P3 (Reconfiguration): normal execution continues if
all vehicles inV are able to backtrack to the previous
step and the system is able to resume execution.
P4 (Fault-handling): execution continues if there ex-
ists at least one vehicle inV after a failed attempt to
reconfigure the system.

Consider the controlled motions of an AUV. The back-
ward reach setW [γ, tα, tβ ,M] at timeγ ≤ tα is the
set of pointsX = (x, y, z) such that there exists a con-
trol τ(t) that drives the trajectory of the systemX[t] =
X(t, γ,X) from stateX to the target setM at some
timeθ ∈ [tα, tβ ]. Let Mi,j , Xi,j , γi,j , and[T1j , T2j ],
denote respectively the target set, the initial position,
the initial time, and the time window at stepj for
vehicle vi. Mi,j is a function of the output variable
specs generated by the masterTeamController.

Theorem 1.Property P1 holds for a system imple-
mentation in which the following conditions are true:
i) configuration(γi,j) = ccoord (the function
configuration(s) returns the configuration of the

system at times).
ii) ∀i ∈ {1, . . . , n} : Xi,j ∈ W [γi,j , T1j , T2j ,Mi,j ].
iii) configuration(t) = ccoord, t ∈ [T2, Tf ] for
someT2 ≤ Tf ≤ T3.
iv) the master-slave coordination does not block.

Condition i) means that the configuration of the sys-
tem is such that communication was possible and that
TMaster andTSlave are in the samestep. Condi-
tions ii) and iii) mean that the target sets are reachable
and that the communication constraints are satisfied.

Consider the following assumptions on the way-point
generation functiong: (a) it generates reachable target
sets; and (b) for all points in the target sets the com-
munication constraints are valid.

Theorem 2.Conditions (i)-(iv) in theorem 1 are satis-
fied by the controllers described in section 4 and by
the way-point generation functiong.

Conditions i) and ii) result from the application of
g. Condition iii) results the properties of thegoto
controller. Condition iv) follows from the structure of
TMaster andTSlave.

The transitions in the specification automaton corre-
spond to the transitions inTMaster. The last theo-
rem states that the control hierarchy implements the
specification.

6. SIMPLEX ALGORITHM IMPLEMENTATION

This section describes how the team controller can
execute the Nelder-Mead simplex optimization algo-
rithm, which is a direct search method used in many
practical optimization problems. The method is suit-
able for coordinating a team of AUV’s to localize a
minimum of a scalar field in the plane. For particular
fields, such as the quadratic field, it is possible to de-
rive bounds on the distance to the minimizer when the
simplex algorithm terminate (Silvaet al., 2004). The
points generated by the simplex algorithm correspond
to the target regions of the team controller. Following
the description of the simplex implementation, numer-
ical simulations illustrating the approach in a realistic
setting are presented.

6.1 Simplex implementation

This section introduces the simplex optimization algo-
rithm (Nelder and Mead, 1965). Consider a compact
convex setΩ ⊂ R

2 containing the origin. Define a
field through a scalar-valued measurement mapm :
Ω → R and a triangular gridG ∈ Ω as depicted in
Figure 5, with apertured > 0. Introduce an arbitrary
point p0 ∈ Ω◦ and a base of vectors given byb1, b2



Fig. 5. A triangular grid with apertured over a scalar
field m depicted through its level curves. The
solid line triangle illustrates the simplex location,
which evolves on the grid.

such thatbT
1
b1 = bT

2
b2 = d2 andbT

1
b2 = d2 cos π/3.

The grid is then given by

G = {p ∈ Ω| p = p0 + kb1 + ℓb2, k, ℓ ∈ Z}.

A simplex z = (z1, z2, z3) ∈ G3 is defined by three
neighboring vertices inG. It is assumed, without loss
of generality, thatV (z3) ≥ V (zi), i = 1, 2. Given
a simplexz = (z1, z2, z3) the next simplex,z′, is
generated fromz by reflectingz3 with respect to the
other vertices, i.e., it is given by the mapping

z 7→ z′ = f(z) = (z1, z3, z1 + z2 − z3). (4)

The mapf defines the way-point generation function
g : L → R

3 of the team controller, as described in
the sequel. Consider a case with two AUV’s:v1 and
v2. (It is easy to incorporate more vehicles.) Suppose
the team controller ofv1 will control bothv1 andv2.
According to the definition ofTeamController,
the following assignments are made:

role(tc1(v1)):=$master;
role(tc2(v2)):=$slave;

Note thatL(step) denotes the visited location at the
last step of the algorithm. If that location is denoted by
z = (z1, z2, z3), as above, it simply follows that the
next location set should be given byz′ = (z1, z3, z1 +
z2 − z3). This relation definesg.

6.2 Simulations

A simulation study was done to illustrate the behav-
ior of the proposed hierarchical control structure. In
particular, the simulation addresses the simplex search
with two AUV’s in a time-varying scalar field, which
could represent salinity, temperature, etc. in a region
of interest. Figure 6 shows four snapshots of the evolu-
tion of the AUV’s. The field is quadratic with additive
white noise and a constant drift. As illustrated in the
figure, the vehicles are able to find the minimizer of
the field.

7. CONCLUSIONS

This paper shows how to map a conceptual control
architecture onto a control design while preserving the
architectural properties dictated by its specification.
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(a) Situation after 12 time steps.
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(b) Situation after 24 time steps.

Fig. 6. Simplex coordination algorithm executing a
search in a noisy quadratic field with drift.

This is done for a multi-vehicle search problem. The
architecture is modelled as a dynamic network of
hybrid automata structured in a hierarchical fashion,
specified using the Shift language. Some properties
were inferred for the architecture and were posteriorly
observed in the simulation.
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