
A Scenario-Based Distributed Stochastic MPC for Building
Temperature Regulation

Yushen Long1, Shuai Liu1, Lihua Xie1 and K. H. Johansson2

Abstract— In this paper, we focus on the temperature reg-
ulation of rooms in buildings. By using the dynamic model
of the thermal process, weather condition, occupancy and so
on, a Stochastic Model Predictive Control (SMPC) problem
is formulated to keep the temperature of rooms within a
comfortable range with a predefined probability while consum-
ing less energy. The temperature regulation problem in this
paper is an optimal control problem of a linear system with
additive uncertainty. To overcome the computational burden
caused by the large number of rooms, a subgradient-based dual
decomposition method is used to solve the SMPC problem in
a distributed manner. Simulation results show the effectiveness
of our results.

I. INTRODUCTION

From the United Nations environment programme report
[12], buildings account for 40 percent of energy consumption
and resources and one third of greenhouse gas emissions.
Thus it is attractive to reduce the energy cost of buildings.
One of the most promising directions is to optimize the
energy efficiency of heating, ventilation and air conditioning
(HVAC) system because it composes one third to half of
building energy usage [1].

Model Predictive Control (MPC) is a very popular method
to optimize the energy efficiency of an HVAC system. This
method is to formulate an optimization problem based on the
system dynamic model and current measurement at each time
step. Only the first control action will be implemented and
the optimization problem will be reformulated and solved
again when the next measurement comes. It should be noted
that though at each time step an open-loop optimal control
problem is solved, the whole system is closed loop since
the optimal solution is a function of current measurement.
It is superior to traditional control strategies due to its
optimal nature and the ability to handle input and output
constraints. A lot of scholars have proposed MPC approaches
to reduce the energy cost of HVAC systems while keeping
the temperature within a comfortable region, see, e.g. [16],
[15] and so on.
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Because of the uncertainty of weather conditions and oc-
cupancy, the future evolution of indoor temperature process
cannot be predicted precisely. To deal with this uncertainty,
some robust optimization methods are used, see, e.g. [9]
and [23]. By assuming that the uncertainty is bounded, the
optimization problem is solved for the worst case. How-
ever, this assumption and the resulted worst case solution
are rather conservative for building temperature regulation
problem because extremely bad weather conditions do not
happen very often.

To achieve less conservative solutions to the optimization
problem with uncertainty, SMPC problems are formulated
in [21], [14] and [17]. In these articles, the weather and
occupancy uncertainties are modeled by Gaussian random
variables which are unbounded. Also some violation sit-
uations of constraints are allowed with small probability
which leads to probabilistic constraints. In [21] and [14],
nonlinear SMPC problems are formulated and are solved by
a sequential quadratic programming method. Sparsity of the
subproblem is used to derive fast iteration algorithms and
disturbance feedback is introduced to improve performance.

In real applications, weather condition and human occu-
pancy are not necessarily of Gaussian distribution. However,
without the specific distribution assumption, the stochastic
problem cannot be solved explicitly [5]. Randomized Model
Predictive Control (RMPC) provides an approximate solution
to the SMPC without specific distribution assumption. This
approach is based on a scenario-based optimization technique
[3], [4]. The main idea of this approach is to use samples
of the involved random variables to substitute them so that
the probabilistic constraints are converted into deterministic
ones. The number of samples is determined by the number
of decision variables, the confidence level and the violation
probability of the constraints. Due to its ability to handle
random variables with general distributions, RMPC has been
used in building temperature and HVAC system control in
recent years, see, e.g. [22], [27] and [26].

When the number of rooms and prediction and control
horizons become large, the size of centralized MPC grows
fast and the MPC problem turns out to be computationally
intractable. Especially when RMPC is used, due to that the
large number of scenarios should be evaluated, it becomes
more challenging to attenuate the computational burden.
In [13], a nonlinear optimization problem is formulated
and solved through tailed sequential quadratic programming.
Then the subproblem is decomposed further by a subgradient
method. The system dynamics serve as equality constraints
and the decision variables include not only control sequences



but also system states. In [19], a distributed algorithm is used
to search the Nash equilibrium. However, this solution may
not be optimal.

In this paper, we propose an algorithm which combines
the RMPC technique, Lagrangian relaxation [11] and sub-
gradient decomposition together to solve the multi-room
temperature regulation problem with random disturbances.
Through this method, the probabilistic constraints which
contain random disturbances like weather condition and
occupancy are handled by a scenario-based optimization
technique while the computational burden is distributed over
multiple low cost processors so that the implementation
becomes more economic.

The paper is organized as follows. In Section II, a
simplified model for control design is introduced. Then a
centralized optimization problem is formulated in Section III.
A distributed algorithm is outlined in Section IV. Simulation
results are given in Section V and conclusions are drawn in
Section VI.

II. SYSTEM MODELING

In this section, we introduce a simplified physical model
of indoor temperature dynamics and then derive a control
oriented linear time-invariant model based on that.

Because of the complex behavior of air flow and heat
transfer process, the indoor temperature dynamics should
be described by a time-varying nonlinear partial differential
equation which is not suitable for control and optimization.
Therefore similar to those works in [8], [24] and [15], we
make the following assumptions to simplify the modeling.
• The air in each room and outdoor environment is well

mixed immediately so that the temperature distributions
are uniform.

• The heat capacity of air is assumed to be constant.
An undirected graph is used to describe the communica-

tion topology among rooms. An undirected graph is defined
as a set G = {V, E} where V is the set of all nodes and
E ⊆ V × V is the set of all edges. We treat room i as the
node i in graph G. If room i and j are adjacent, edge (i, j)
is in E . The set of all neighbors of room i is defined as
Ni = {j ∈ V|(i, j) ∈ E}.

The indoor temperature dynamics for one single room is
considered as a Resistive-Capacitive (RC) system [7] and
the temperature of the whole building is considered as a
network of RC systems. Each node in this network is a room
and its state represents its temperature. Cooling is considered
as control input to each node while weather condition and
human activity are modeled as a random disturbance to each
node.

Under the above assumptions, we have the following
equation to describe the dynamics of indoor temperature:

micpaτ̇i = Qout + cNpeople,i +
∑
j∈Ni

Qji +Qcooling,i,

i = 1, . . . , N, (1)

where mi is the air amount of room i, cpa is the heat capacity
of air, Qout is the heat coming from outdoor environment

which is random, Npeople,i is the number of people in room i,
c is the average heat generated by one person, Qji is the heat
flow from room j to room i and Qcooling,i is the heat flow
caused by the HVAC system to keep the indoor temperature
of the ith room in a comfortable region, N is the number of
all rooms. By using Rij = Rji to model the heat resistance
between room i and j, Rout,i to model the heat resistance
between room i and outdoor environment, the equation (1)
can be written as follows:

micpaτ̇i =
(τout − τi)
Rout,i

+ cNpeople,i

+
∑
j∈Ni

(τj − τi)
Rji

+ ṁvent,icpa(τsa,i − τi)(2)

where ṁvent,i is the ventilation mass flow of the i-th room
and τsa,i is the temperature of supply air in the i-th room.

It can be observed that system (2) is bilinear in the state
τi and control input ṁvent,i. A computationally intractable
problem will arise if we directly use this model. To lin-
earize it, [15] uses the sequential quadratic programming
method which linearizes the nonlinear system along its
state trajectory. However, in this scenario-based approach,
the number of possible state trajectories is equal to the
number of scenarios which is usually very large. So it is not
practical to linearize the model along every possible state
trajectory. We use ui in this case to substitute the nonlinear
term ṁvent,icpa(τsa,i − τi) and discretize the system by
trapezoidal rule with ∆T = 15 minutes. Then we get a linear
discrete-time system model as follows:

τi(k + 1) = aiiτi(k) + biui(k) +
∑
j∈Ni

ajiτj(k)

+ ciwi(k) (3)

where aii, bi, aji and ci are constants related to mi, cpa,
Rout,i, c, Rji; wi(k) is a random variable which models
disturbance to room i from weather condition and human
activity.

III. RANDOMIZED MPC FORMULATION

In this section, we formulate the SMPC problem based on
LTI model (3). To formulate this problem, it is necessary to
estimate the distribution of random disturbances like weather
condition and occupancy. Copula is one of the most popular
tools which can be used to give such an estimation. Therefore
first of all, a brief introduction to copula is given.

A copula C(y1, . . . , yn) is a multivariate distribution
whose marginal distributions of y1, . . . , yn are all uniform.
Since the marginal distributions are fixed in a copula, it
is used to describe the multivariate dependence structure.
Given a random variable X with cumulative distribution FX
which is continuous, the random variable under a probability
integral transform defined as Y = FX(X) has a uniform
distribution on [0, 1]. Combined this fact and the concept
of copula, we can estimate the marginal distributions and
dependence structure of a group of random variables sep-
arately. Suppose that we want to estimate the multivariate
distribution F (x1, . . . , xn). The basic procedure is that:



• Collect empirical sample data from experiment.
• Estimate the empirical marginal distributions of x1, . . . ,
xn as Fx1

, . . . , Fxn
.

• Use probability integral transforms yi = Fxi
(xi), i =

1, . . . , n to transform the collected data into points in
[0, 1]n.

• Estimate the dependence structure C(y1, . . . , yn) of yi,
i = 1, . . . , n by using some well established copula
families whose parameters describe the dependence
among those random variables.

• Generate samples (y1,j , . . . , yn,j), j = 1, . . . , Ns from
the joint distribution C(y1, . . . , yn) where Ns is the
number of scenarios.

• Use inverse probability integral transforms xi =
F−1(yi) to get scenarios (x1,j , . . . , xn,j), j =
1, . . . , Ns from generated (y1,j , . . . , yn,j).

For more details of copula, please refer to [6], [20], [25]
and references therein.

Let Nc be the prediction horizon. τi(k|t), ui(k|t) and
wi(k|t) are used to denote the predicted temperature of room
i at time t, the optimal control action to room i and the
predicted disturbance to room i at the k-th time instant from
t. Since the system is time invariant, we just use τi(k), ui(k)
and wi(k) instead of τi(k|t), ui(k|t) and wi(k|t).

Let Ti = [τi(1), . . . , τi(Nc)]
T , Ui = [ui(0), . . . , ui(Nc −

1)]T , Wi = [wi(0), . . . , wi(Nc − 1)]T and W =
[WT

1 , . . . ,W
T
N ]T . Then the future trajectory of the tempera-

ture of room i can be written as:

Ti = Aiτi(0) +BiUi + CiWi +
∑
j∈Ni

Ajiτj(0)

+
∑
j∈Ni

DjiTj , i = 1, . . . , N, (4)

where matrices Ai, Bi, Aji and Dji can be easily constructed
by using (3) recursively.

The above equations can be reorganized as:


I −D21 . . . −DN1

−D12 I . . . −DN2

...
...

. . .
...

−D1N −D2N . . . I


︸ ︷︷ ︸

D


T1
T2
...
TN

 =


A1τ1(0) +B1U1 + C1W1 +

∑
Aj1τj(0)

A2τ2(0) +B2U2 + C2W2 +
∑
Aj2τj(0)

...
ANτN (0) +BNUN + CNWN +

∑
AjNτj(0)



By taking the inverse of matrix D, the future temperature

trajectory can be solved in the following equation:
T1
T2
...
TN

 =


K11 K21 . . . KN1

K12 K22

...
...

. . .
...

K1N . . . . . . KNN


︸ ︷︷ ︸

K=D−1

×


A1τ1(0) +B1U1 + C1W1 +

∑
Aj1τj(0)

A2τ2(0) +B2U2 + C2W2 +
∑
Aj2τj(0)

...
ANτN (0) +BNUN + CNWN +

∑
AjNτj(0)


(5)

T imax and T imin ∈ RNc are used to denote comfort
region of temperature in the ith room and serve as
constraints in optimization. These constraints can be
greatly relaxed during off time. Denote F = [I;−I],
s = [−sT11, . . . ,−sT1N , sT21, . . . , sT2N ]T where s1i and
s2i ∈ RNc are used to relax the upper and lower
bounds of temperature of room i respectively, Tcon =
[(T 1

max)T , . . . , (TNmax)T ,−(T 1
min)T , . . . ,−(TNmin)T ]T and

T = [TT1 , T
T
2 , . . . , T

T
N ]T . The elements of all s1i and s1i are

nonnegative. The temperature constraints can be expressed
as

FT ≤ Tcon

By substituting (5) into the above equation, we have

FK


B1U1

B2U2

...
BNUN

 ≤ Tcon − FKQ
where

Q =


A1τ1(0) + C1W1 +

∑
Aj1τj(0)

A2τ2(0) + C2W2 +
∑
Aj2τj(0)

...
ANτN (0) + CNWN +

∑
AjNτj(0)


In the case where the problem is infeasible, slack variable

s is introduced to relax the temperature constraints further
as follows:

FK


B1U1

B2U2

...
BNUN

+ s ≤ Tcon − FKQ (6)

Considering that the energy cost for air-conditioning of a
group of rooms is the sum of the energy cost in each room,
we define the cost function as:

G(U, s) =

N∑
i=1

[cTUi + pT (s1i + s2i)]

where cT contains the power of AC and the electricity
charge, p is used to penalize the slack variables and U =
[UT1 , . . . , U

T
N ]T .



By denoting (6) as g(U, s) ≤ f(Q) where Q contains all
the disturbance Wi, the probabilistic constraints optimization
problem is formulated as follows:

Problem 3.1:

min
U,s

G(U, s) =

N∑
j=1

[cTUj + pT (s1j + s2j)]

s.t. P (g(U, s) ≤ f(Q))≥ 1− α,
FUj≤ Ucon, j = 1, . . . , N

0 ≤ s1j≤ smax, j = 1, . . . , N
0 ≤ s2j≤ smax, j = 1, . . . , N

where Ucon = [1T , 0T ]T .
Assume that W i = [W iT

1 , . . . ,W iT
N ]T , i = 1, . . . , Ns are

Ns scenarios generated from the estimated distribution of W
and Ns satisfies that Ns ≥ 2

α (ln 1
β + d) where β ∈ (0, 1) is

the confidence level of the solution and d is the number of
decision variables [3], [4]. Problem 3.1 can be approximated
by the following deterministic linear programming:

Problem 3.2:

min
U,s

G(U, s) =

N∑
j=1

[cTUj + pT (s1j + s2j)]

s.t. g(U, s)≤ f(Qi), i = 1, . . . , Ns
FUj≤ Ucon, j = 1, . . . , N

0 ≤ s1j≤ smax, j = 1, . . . , N
0 ≤ s2j≤ smax, j = 1, . . . , N

where Qi is constructed by using W i to substitute W in Q.
Denote Y = mini(Tcon − FKQi) =

[(Y 1
u )T , . . . , (Y Nu )T , (Y 1

l )T , . . . , (Y Nl )T ]T where min
applies element-wise to a vector. The linear programming
3.2 can be rewritten as:

Problem 3.3:

min
U,s

G(U, s) =

N∑
j=1

[cTUj + pT (s1j + s2j)]

s.t. FK


B1U1

B2U2

...
BNUN

+ s≤ Y,

FUj≤ Ucon, j = 1, . . . , N
0 ≤ s1j≤ smax, j = 1, . . . , N
0 ≤ s2j≤ smax, j = 1, . . . , N

In the centralized optimization Problem 3.3, there are
3N ∗Nc decision variables. The complexity of this problem
will grow rapidly when the number of rooms and prediction
horizons are large. Thus it is necessary to design some
distributed algorithm to reduce the computational burden.

IV. DISTRIBUTED OPTIMIZATION ALGORITHM

In this section, a distributed algorithm based on La-
grangian relaxation [11] and duel decomposition is proposed.

By Lagrangian relaxation method, Problem 3.3 can be
rewritten as:

Problem 4.1:

max
λ

min
U,s

N∑
j=1

[cTUj + pT (s1j + s2j)]

+

N∑
j=1

λTj (Hj [U
T , sT1j , s

T
2j ]

T − [Y jTu , Y jTl ]T )

s.t. FUj≤ Ucon, j = 1, . . . , N
0 ≤ s1j≤ smax, j = 1, . . . , N
0 ≤ s2j≤ smax, j = 1, . . . , N

λj≥ 0, j = 1, . . . , N
where

Hj =

[
K1jB1 . . . KNjBN −I 0
−K1jB1 . . . −KNjBN 0 I

]
and λ = [λT1 , . . . , λ

T
N ]T .

Hj [U
T , sT1j , s

T
2j ]

T − [Y jTu , Y jTl ]T is the subgradient of
λj . Note that for fixed Lagrangian variable λ, Problem 4.1
is separable. By taking advantage of this special structure,
Problem 4.1 is decomposed into N subproblems and the jth
subproblem is:

Problem 4.2:

min
Uj ,s1j ,s2j

Mj [U
T
j , s

T
1j , s

T
2j ]

T

s.t. FUj≤ Ucon,
0 ≤ s1j≤ smax,
0 ≤ s2j≤ smax,

where

Mj =[
cT +

N∑
i=1

λTi Eij pT + λTj

[
−I
0

]
pT + λTj

[
0
I

] ]

and Eij =

[
KjiBj
−KjiBj

]
.

When the original problem has a nonlinear convex ob-
jective function and constraints, then it can be solved
by subgradient decomposition method efficiently, e.g. [13].
However, in this linear programming case, even though the
optimal dual variables are found, the optimal primal variable
can not be constructed directly due to the linearity of the
objective function. The solutions of the subproblems 4.2
are just the extreme points provided bounded feasible sets.
Obviously, in most situations, those extreme points are either
infeasible or not optimal to the original problem. This lack of
coordinability in linear programming has also been reported
and discussed in [2], [11]. In [11], the author proposed an
average strategy to construct the primal optimal solution
motivated by the fact that the optimal solution to the original
problem is a nontrivial convex combination of the extreme
points of the subproblems.

By combining the algorithm proposed in Theorem 3 in
[11] and dual decomposition, the Problem 4.1 is solved as
follows:

At the beginning of this algorithm, λ1 is initialized as 1
and X0

j are set to be 0, j = 1, . . . , N . Give constants a,
c > 0 and b ≥ 0 and threshold ε2 > 0. Let p = 1:



• Step 1: The value of dual variable λ is set as λp and
each λpj is broadcast in the communication network.

• Step 2: Based on given dual variable λ, subproblem-
s 4.2 are constructed and solved by its correspond-
ing optimizer. The primal variables are constructed as
[(Upj )T , (sp1j)

T , (sp2j)
T ]T =

∑p
l=1X

l
j

p .
• Step 3: Break out and set [(Uj)

T , (s1j)
T , (s2j)

T ]T =
[(Upj )T , (sp1j)

T , (sp2j)
T ]T when ||(Upj )T − (Up−1j )T || <

ε2; else go to Step 4.
• Step 4: Each Upj is broadcast in the communication

network.
• Step 5: Each λp+1

j is updated by λp+1
j = P[λpj +

αp(Hj [U
T , sT1j , s

T
2j ]

T − [(Y ju )T , (Y jl )T ]T )]+ where
αp = a

b+cp and P[∗]+ is the projection of ∗ to the
positive orthant.

• Step 6: Set p = p+ 1 and go to Step 1.
Remark 4.1: The selection of the stpesize αp is critical

to guarantee the convergence of the algorithm. In [11], the
authors prove that if the stepsize is chosen as in Step 5, then∑p

l=1X
l
j

p will converge to the optimal solution of the original
problem as p→∞.

V. SIMULATION RESULTS

In this case study we consider a network of 10 rooms.
It is assumed that the HVAC system is working in the
cooling mode. The connection topology of rooms is G =
{{1, . . . , 10}, {(1, 2), (2, 3), . . . , (9, 10)}}. The parameters
of rooms are given by aii = 0.64, bi = −3, aji = 0.1, ci =
0.26 when i = 1 or 10, ci = 0.16 when i = 2, . . . , 9. The
comfortable region of temperature is set to be [22◦C 23◦C]
during the working time while [20◦C 25◦C] during the off
time. The temperature constraints are labeled by solid blue
lines in the simulation results.

The algorithms used in this section are coded in Matlabr

and run on a PC with Intel Core Duo i5-2400 CPU 3.10GHz.
By solving the centralized MPC problem directly, the control
sequences and temperature evolution are shown in Fig. 1 and
Fig. 2 with the cost of 264.3. The average computational
time is 39 seconds. Fig. 3 shows the temperature evolution
under the distributed algorithm with the cost of 268.7.
One can see that under closed-loop implementation, the
performance loss is negligible. The average computational
time for the distributed algorithm is 9 seconds. Fig. 4 and
Fig. 5 show the temperature controlled by PID controllers
and the corresponding control sequences. It is observed that
the upper bound is violated. The cost is 298.5 which is larger
than all of the MPC results above. It can be also observed that
by using MPC controllers, the temperature variation is much
smaller and the control action is smoother. These properties
are good for indoor thermal comfort and prolonging the life
of devices.

The energy saving of the proposed MPC algorithm is
not surprising. From the simulation, we can see that under
MPC, the temperature trajectory is very close to the upper
bound of the temperature constraint. Since we assume that
the HVAC system is working in the cooling mode, being
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Fig. 1. Centralized control sequence
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Fig. 2. Indoor temperature controlled by centralized MPC

close to the upper bound of the temperature constraint means
saving energy. The ideal situation is to track the upper
bound perfectly. However, due to the uncertain disturbance,
perfectly tracking is impossible. Since we do not know the
upper bound of the disturbance, robust MPC [10] can not be
directly used. Samples may be used to estimate the bound
of the disturbance and this was discussed in [18].

VI. CONCLUSIONS

In this study, we have considered the temperature regula-
tion problem for a group of rooms. To reduce the conser-
vativeness of robust MPC, SMPC has been formulated. By
using scenario-based approach, this stochastic optimization
problem has been approximated by a deterministic one. Then
a Lagrangian relaxation based algorithm has been proposed
to solve this optimization problem in a distributed manner.
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Fig. 3. Indoor temperature controlled by distributed MPC
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Fig. 4. Indoor temperature controlled by PID
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Finally, simulation results have demonstrated the superior
performance of the algorithm we proposed.
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