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Abstract: High-voltage direct current (HVDC) is a commonly used technology for long-distance
power transmission, due to its low resistive losses and low costs. In this paper, a novel distributed
controller for multi-terminal HVDC (MTDC) systems is proposed. Under certain conditions on
the controller gains, it is shown to stabilize the MTDC system. The controller is shown to
always keep the voltages close to the nominal voltage, while assuring that the injected power is
shared fairly among the converters. The theoretical results are validated by simulations, where
the affect of communication time-delays is also studied.

1. INTRODUCTION

Transmitting power over long distances is one of the
greatest challenges in today’s power transmission systems.
Increased distances between power generation and con-
sumption is a driving factor behind long-distance power
transmission. High-voltage direct current (HVDC) is a
commonly used technology for long-distance power trans-
mission, due to its low resistive losses and lower costs com-
pared to AC transmission systems. Off-shore wind farms
also typically require HVDC power transmission, as the
need for reactive current limits the maximum transmission
capacity of AC power transmission lines.

With increased HVDC line constructions, future HVDC
transmission systems are likely to consist of multiple
terminals, to be able to connect several AC systems.
Voltage source converters make it possible to build HVDC
systems with multiple terminals, referred to as multi-
terminal HVDC (MTDC) systems in the literature.

Maintaining an adequate DC voltage is one of the most
important control problem for MTDC transmission sys-
tems. If the DC voltage deviates too far from the nominal
operational voltage, equipment could be damaged [Xu and
Yao, 2011].

Different voltage control methods for MTDC systems have
been proposed in the literature. Among them, the voltage
margin method (VMM) and the voltage droop method
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(VDM) are the most well-known methods [Dierckxsens
et al., 2012]. These control methods change the injected
active power from the alternating current (AC) systems
into the DC grid to maintain active power balance in the
DC grid and as a consequence, control the DC voltage. A
decreasing DC voltage requires increased injected currents
through the converters in order to restore the voltage.

VDM is designed so that all or more than one converter
participate to control the DC voltage [Karlsson and Svens-
son, 2003]. All participant terminals change their injected
active power to control the DC voltage. A higher slope of
the voltage characteristic means that a terminal will inject
less power given a certain change in the DC voltage.

VMM on the other hand, is designed so that one terminal
is responsible to control the DC voltage, while the other
terminals keep their injected active power constant. The
terminal controlling the DC voltage is referred to as the
slack terminal. When the slack terminal is no longer able
to supply or extract the power necessary to maintain its
DC bus voltage above a certain voltage margin, a new
terminal will operate as the slack terminal [Dierckxsens
et al., 2012].

A promising alternative approach to control MTDC net-
works is to use various distributed voltage controllers in-
stead of VDM or VMM controllers. Distributed control has
been successfully applied to both primary and secondary
frequency control of AC transmission systems [Andreasson
et al., 2012b, 2013, Simpson-Porco et al., 2012]. Recently,
various distributed controllers have been applied also to
voltage control of MTDC transmission systems [Nazari
and Ghandhari, 2013], including distributed secondary
frequency control of asynchronous AC transmission sys-
tems [Dai et al., 2010]. In this paper, we propose a novel



distributed voltage controller for MTDC transmission sys-
tems, which possesses the property of power sharing.

This remainder of this paper is organized as follows. In
Section 2, the mathematical notation is defined. In Section
3, the system model and the control objectives are defined.
In Section 4, a voltage droop controller is presented and
analysed. Subsequently, a distributed averaging controller
is presented, and its stability and steady-state properties.
In Section 5, simulations of the distributed controller on
a four-terminal MTDC test system are provided, before
ending with a discussion and concluding remarks in Sec-
tion 6.

2. NOTATION

Let G be an undirected graph. Denote by V = {1, . . . , n}
the vertex set of G, and by E = {1, . . . ,m} the edge set
of G. Let Ni be the set of neighboring vertices to i ∈ V.
In this paper we will only consider static and connected
graphs. For the application of control of MTDC power
transmission systems, this is a reasonable assumption
as long as there are no power line failures. Denote by
B = B(G) the vertex-edge adjacency matrix of G, and let
LW = BWBT be the weighted Laplacian matrix of G,
with edge-weights given by the elements of the diagonal
matrix W . Let C− denote the open left half complex
plane, and C̄− its closure. We denote by cn×m a vector
or matrix of dimension n × m whose elements are all
equal to c. In denotes the identity matrix of dimension
n. For simplicity, we will often drop the notion of time
dependence of variables, i.e., x(t) will be denoted x.

3. MODEL AND PROBLEM SETUP

Consider an MTDC transmission system consisting of n
converters, denoted 1, . . . , n, see Figure 1 for an example
of an MTDC topology. The converters are assumed to be
connected by m HVDC transmission lines. The dynamics
of converter i is assumed to be given by

CiV̇i = −
∑
j∈Ni

Iij + I inji + ui

= −
∑
j∈Ni

1

Rij
(Vi − Vj) + I inji + ui,

(1)

where Vi is the voltage of converter i, Ci is its capacity,
I inji is the nominal injected current, which is assumed to be
unknown but constant over time, and ui is the controlled
injected current. The constant Rij denotes the resistance
of the transmission line connecting the converters i and j.
Equation (1) may be written in vector-form as

V̇ = −CLRV + CI inj + Cu, (2)

where V = [V1, . . . , Vn]T , C = diag([C−11 , . . . , C−1n ]),

I inj = [I inj1 , . . . , I injn ]T , u = [u1, . . . , un]T and LR is the
weighted Laplacian matrix of the graph representing the
transmission lines, denoted GR, whose edge-weights are
given by the conductances 1

Rij
. The control objectives

considered in this paper are twofold.

Objective 1. The voltages of the converters, Vi, should
converge to a value close to the nominal voltage V nom,
after a disturbance has occurred. The nominal voltage
V nom is assumed to be identical for all converters. It is
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Fig. 1. Example of a graph topology of a MTDC system.

however clear that it is not possible to have limt→∞ Vi(t) =
V nom for all i ∈ V, since this would imply that the currents
between all converters are zero.

Objective 2. The injected currents should converge to a
value which is proportional to an a priori known parame-
ter, i.e.

lim
t→∞

u(t) = Ku1n×1,

for some diagonal matrix Ku, whose elements are positive.
The second objective is often referred to as power sharing,
in the sense that the ratios between the injected currents
of the converters is always the same at stationarity. Since
P inj
i = ViI

inj
i , and since the relative voltage differences of

the converters are very small, the injected power can be
well approximated as being proportional to the injected
current.

4. MTDC CONTROL

4.1 Voltage droop control

In this section the voltage droop method (VDM) will be
studied, as well as some of its limitations. VDM is a simple
decentralized proportional controller taking the form

ui = KP
i (V nom − Vi), (3)

where V nom is the nominal DC voltage. Alternatively, the
controller (3) can be written in vector form as

u = KP (V nom1n×1 − V ), (4)

whereKP = diag([KP
1 , . . . ,K

P
n ]). The decentralized struc-

ture of the voltage droop controller is often advantageous
for control of HVDC converters, as the time constant
of the voltage dynamics is typically smaller than the
communication delays between the converters. The DC
voltage regulation is typically carried out by all converters.
However, the VDM possesses some drawbacks. Firstly, the
voltages of the converters don’t converge to a value close to
the nominal voltages in general. Secondly, the controlled
injected currents do not converge to a certain ration, i.e.,
power sharing, as shown in the following theorem.

Theorem 1. Consider an MTDC transmission system de-
scribed by (1), where the control input ui is given

by (3) and the injected currents I inji are constant.
The closed-loop system is stable for any KP > 0, in
the sense that the voltages V converge to some con-
stant value. However limt→∞ Vi(t) 6= V nom in gen-
eral. Furthermore, the controlled injected currents satisfy
limt→∞

∑n
i=1(ui + I inji ) = 0. However limt→∞ u(t) 6=

−(
∑n
i=1 I

inj
i )/(

∑n
i=1K

P
i )Ku1n×1 in general, for any diag-

onal Ku with positive elements.

Proof. The closed loop dynamics of (2) with u given by
(3) are



V̇ = −CLRV + CKP (V nom1n×1 − V ) + CI inj

= −C(LR +KP )︸ ︷︷ ︸
,A

V + CKPV nom1n×1 + CI inj. (5)

Clearly the dynamics (5) are stable if and only if A
as defined above is Hurwitz. Consider the characteristic
polynomial of A:

0 = det(sIn −A) = det
(
sIn + C(LR +KP )

)
⇔

0 = det
(
sC−1 + (LR +KP )

)
︸ ︷︷ ︸

,Q(s)

.

The equation 0 = det(Q(s)) has a solution for a given s
only if 0 = xTQ(s)x has a solution for some ‖x‖ = 1. This
gives

0 = s xTC−1x︸ ︷︷ ︸
a1

+xT (LR +KP )x︸ ︷︷ ︸
a0

.

Clearly a0, a1 > 0, which implies that the above equation
has all its solutions s ∈ C− by the Routh-Hurwitz stability
criterion. This implies that the solutions of 0 = det(Q(s))
satisfy s ∈ C−, and thus that A is Hurwitz.

Now consider the equilibrium of (5):

0 = −C(LR +KP )V + CKPV nom1n×1 + CI inj. (6)

Since KP > 0 by assumption (LR + KP ) is invertible,
which implies

V = (LR +KP )−1
(
KPV nom1n×1 + I inj

)
, (7)

which does not equal to V nom1n×1 in general. It is also
easily seen that

u 6= (

n∑
i=1

I inji )/(

n∑
i=1

KP
i )KP 1n×1

in general. Premultiplying (6) with 11×nC
−1 yields

0 = 11×nK
P (V nom1n×1 − V ) + I inj =

n∑
i=1

(ui + I inji ) 2

Generally when tuning the proportional gains KP , there
is a trade-off between having the voltages converge to the
nominal voltage, and having power sharing between the
converters. Having low gainsKP will result in better power
sharing properties, but the voltages will be far from the
reference value. On the other hand, having high gains KP

will ensure that the voltages converge close to the nominal
voltage, at the expense of the power sharing properties.
This rule of thumb is formalized in the following theorem.

Theorem 2. Consider an MTDC network described by (1),
where the control input ui is given by (3) with positive

gains KP
i , and constant injected currents I inji . The DC

voltages satisfy

lim
KP

i
→∞ ∀i=1,...,n

lim
t→∞

V (t) = V nom1n×1

lim
KP

i
→0 ∀i=1,...,n

lim
t→∞

V (t) = sgn

 n∑
i=1

I inji

∞1n×1,

while the controlled injected currents satisfy

lim
KP

i
→∞ ∀i=1,...,n

lim
t→∞

u(t) = −I inj

lim
KP

i
→0 ∀i=1,...,n

lim
t→∞

u(t) =

−

 n∑
i=1

I inji

 /

 n∑
i=1

KP
i

KP 1n×1,

Proof. Let us first consider the case when KP
I →∞ ∀i =

1, . . . , n. In the equilibrium of (5), the voltages satisfy by
(7):

lim
KP

i
→∞ ∀i=1,...,n

V

= lim
KP

i
→∞ ∀i=1,...,n

(LR +KP )−1
(
KPV nom1n×1 + I inj

)
= lim
KP

i
→∞ ∀i=1,...,n

(KP )−1
(
KPV nom1n×1 + I inj

)
= V nom1n×1.

By inserting the above expression for the voltages, the
controlled injected currents are given by

lim
KP

i
→∞ ∀i=1,...,n

u = lim
KP

i
→∞ ∀i=1,...,n

KP (V nom1n×1 − V )

= lim
KP

i
→∞ ∀i=1,...,n

KP
(
−(KP )−1I inj

)
=−I inj.

Now consider the case when limKP
i
→0 ∀i=1,...,n. Since (LR+

KP ) is real and symmetric, any vector in Rn can be
expressed as a linear combination of its eigenvectors.
Denote by (vi, λi) the eigenvector and eigenvalue pair i
of (LR +KP ). Write(

KPV nom1n×1 + I inj
)

=

n∑
i=1

aivi, (8)

where ai, i = 1, . . . , n are real constants. The equilibrium
of (5) implies that the voltages satisfy

lim
KP

i
→0 ∀i=1,...,n

V

= lim
KP

i
→0 ∀i=1,...,n

(LR +KP )−1
(
KPV nom1n×1 + I inj

)
= lim
KP

i
→0 ∀i=1,...,n

(LR +KP )−1
n∑
i=1

aivi

= lim
KP

i
→0 ∀i=1,...,n

n∑
i=1

ai
λi
vi =

a1
λ1
v1,

where λ1 is the smallest eigenvalue of (LR + KP ), which
clearly satisfies λ1 → 0+ as KP

i → 0 ∀i = 1, . . . , n. Hence
the last equality in the above equation holds. By letting
KP
i → 0 ∀i = 1, . . . , n and premultiplying (8) with vT1 =

1/n1n×1, we obtain a1 = ( 1
n

∑n
i=1 I

inj
i ) since the eigenvec-

tors of (LR +KP ) form an orthonormal basis of Rn. Thus

limKP
i
→0 ∀i=1,...,n limt→∞ V (t) = sgn

(∑n
i=1 I

inj
i

)
∞1n×1.

Finally the controlled injected currents are given by

lim
KP

i
→0 ∀i=1,...,n

u = lim
KP

i
→0 ∀i=1,...,n

KP (V nom1n×1 − V )

= lim
KP

i
→0 ∀i=1,...,n

KP
(
V nom1n×1 −

a1
λ1

1n×1
)

= −a1
λ1
KP 1n×1.



By premultiplying (6) with 11×nC
−1 we obtain

11×nK
P (V nom1n×1 − V ) = −11×nI

inj,

which implies that

a1
λ1

=
11×nI

inj

11×nKP 1n×1
= (

n∑
i=1

I inji )/(

n∑
i=1

KP
i ),

which gives the desired expression for u. 2

4.2 Distributed averaging control

In this section we propose a distributed controller for
MTDC transmission systems which allows for communi-
cation between the converters. The proposed controller
takes inspiration from the control algorithms given by An-
dreasson et al. [2013, 2012a] and by Nazari and Ghandhari
[2013], and is given by

ui = KP (V̂i − Vi)
˙̂
Vi = KV

i (V nom−Vi)− γ
∑
j∈Ni

cij

(
(V̂i − Vi)−(V̂j − Vj)

)
,

(9)

where γ > 0 is a constant, and

KV
i =

{
1 if i = 1
0 otherwise.

This controller can be understood as a fast proportional
control loop (consisting of the first line), and a slower
integral control loop (consisting of the second line). The

internal controller variables V̂i can be understood as refer-
ence values for the proportional control loops, regulated by
the integral control loop. Converter i = 1, without loss of
generality, acts as voltage regulator. The first line of (9)
ensures that the controlled injected currents are quickly
adjusted after a change in the voltage. cij = cji > 0 is a
constant, and Ni denotes the set of converters which can
communicate with converter i. The communication graph
is assumed to be undirected, i.e., j ∈ Ni implies i ∈ Nj .
The second line ensures that the voltage is restored at con-
verter 1 by integral action, and that the controlled injected
currents are proportional to the proportional gains KP

i at
stationarity. In vector-form, (9) can be written as

u = KP (V̂ − V )

˙̂
V = KV (V nom1n×1 − V )− γLc(V̂ − V ),

(10)

where KP is defined as before, KV = diag([KV
1 , 0, . . . , 0]),

and LC is the weighted Laplacian matrix of the graph
representing the communication topology, denoted Gc,
whose edge-weights are given by cij , and which is assumed
to be connected. The following theorem shows that the
proposed controller (9) has the desirable properties which
the droop controller (3) is lacking, and gives sufficient
conditions for which controller parameters result in a
stable closed loop system.

Theorem 3. Consider an MTDC network described by (1),
where the control input ui is given by (9) and the injected
currents I inj are constant. The closed loop system is stable
if

1

2
λmin

(
(KP )−1LR + LR(KP )−1

)
+ 1+

γ

2
λmin

(
LC(KP )−1C−1 + C−1(KP )−1LC

)
> 0

(11)

λmin

(
LC(KP )−1LR + LR(KP )−1LC

)
≥ 0. (12)

Furthermore

lim
t→∞

u(t) = −(

n∑
i=1

I inji )/(

n∑
i=1

KP
i )KP 1n×1,

and limt→∞ V1(t) = V nom. This implies that the con-
trolled injected currents satisfy Objective 2, with Ku =
(
∑n
i=1 I

inj
i )/(

∑n
i=1K

P
i )KP . The remaining voltages sat-

isfy limt→∞ |Vi(t)−V nom| ≤ 2Imax
∑n
i=2

1
λi

, where Imax =

maxi |Itot| and Itot = limt→∞ I inj + u(t). Here λi denotes
the i’th eigenvalue of LR.

Remark 1. There always exists a sufficiently large KP ,
and sufficiently small γ, such that the condition (11) is
fulfilled.

Remark 2. A sufficient condition for when (12) is fulfilled,
is that Lc = k2Lk, k2 ∈ R+ i.e., the topology of the
communication network is identical to the topology of the
power transmission lines, up to a positive scaling factor.

Proof. The closed loop dynamics of (2) with the con-
trolled injected currents u given by (10) are given by[

˙̂
V

V̇

]
=

[
−γLC γLC −KV

CKP −C(LR +KP )

]
︸ ︷︷ ︸

,A

[
V̂
V

]
+

[
KV V nom1n×1

CI inj

]
.

(13)

The characteristic equation of A is given by

0 = det(sI2n −A) =

∣∣∣∣∣sIn + γLC −γLC +KV

−CKP sIn + C(LR +KP )

∣∣∣∣∣
=

|CKP |
|sIn + γLc|

∣∣∣∣∣∣∣
sIn + γLC −γLC +KV

−sIn − γLc (sIn + γLc)(KP )−1C−1·
(sIn + C(LR +KP ))

∣∣∣∣∣∣∣
= |CKP ||(sIn + γLc)(KP )−1C−1(sIn + C(LR +KP ))

− γLC +KV | =
= |CKP |

(
(γLc(KP )−1LR +KV ) + s((KP )−1LR + In

+ γLC(KP )−1C−1) + s2((KP )−1C−1)
)

, |CKP |det(Q(s)).

This assumes that |sIn+γLc| 6= 0, however |sIn+γLc| = 0
implies s = 0 or s ∈ C−. However, since A is full rank,
this still implies that all solutions satisfy s ∈ C−. Now,
the above equation has a solution only if xTQ(s)x = 0
for some x : ‖x‖ = 1. This condition gives the following
equation

0 = xT (γLC(KP )−1LR +KV )x︸ ︷︷ ︸
a0

+ s xT ((KP )−1LR + In + γLC(KP )−1C−1)x︸ ︷︷ ︸
a1

+ s2 xT ((KP )−1C−1)x︸ ︷︷ ︸
a2

,



which by the Routh-Hurwitz stability criterion has all
solutions s ∈ C− if and only if ai > 0 for i = 0, 1, 2.

Clearly, a2 > 0, since ((KP )−1C−1) is diagonal with
positive elements. It is easily verified that a1 > 0 if

1

2
λmin

(
(KP )−1LR + LR(KP )−1

)
+
γ

2
λmin

(
LC(KP )−1C−1 + C−1(KP )−1LC

)
+ 1 > 0.

Finally, clearly xT (LC(KP )−1LR)x ≥ 0 for any x : ‖x‖ =
1 if and only if

1

2
λmin

(
LC(KP )−1LR + LR(KP )−1LC

)
≥ 0.

Since the graphs corresponding to LR and LC are
both assumed to be connected, the only x for which
xT (LC(KP )−1LR)x = 0 is x = 1√

n
[1, . . . , 1]T . Given this

x = 1√
n

[1, . . . , 1]T , xTKV x = 1
nK

V
1 > 0. Thus, a0 > 0

given that the above inequality holds. Thus, under as-
sumptions (11)–(12), A is Hurwitz, and thus the closed
loop system is stable.

Now consider the equilibrium of (13). Premultiplying the
first n rows with 11×n yields 0 = 11×nK

V (V nom1n×1 −
V ) = KV

1 (V nom − V1). Inserting this back to the first

n rows of (13) yields 0 = LC(V − V̂ ), implying that

(V − V̂ ) = k1n×1. Inserting this in (10) gives u = KP (V −
V̂ ) = kKP 1n×1. To obtain a bound on the remaining
voltages, we consider again the equilibrium of (13). The
last n rows of the equilibrium of (13) give

LRV = KP (V̂ − V ) + I inj = Itot. (14)

Let

V =

n∑
i=1

aiwi,

where wi is the i’th eigenvector of LR with the correspond-
ing eigenvalue λi. Since LR is symmetric, the eigenvectors
{wi}ni=1 can be chosen so that they form an orthonormal
basis of Rn. Using the eigendecomposition of V above, we
obtain the following equation from (14):

LRV = LR
n∑
i=1

aiwi =

n∑
i=1

aiλiwi = Itot. (15)

By premultiplying (15) with wk for k = 1, . . . , n, we
obtain:

akλk = wTk I
tot,

due to orthonormality of {wi}ni=1. Hence, for i = 2, . . . , n
we get

ak =
wTk I

tot

λk
.

The constant a1 is however not determined by (15), since
λ1 = 0. Denote ∆V =

∑n
i=2 aiwi. Since w1 = 1√

n
1n×1,

Vi − Vj = ∆Vi −∆Vj for any i, j ∈ V. Thus, the following
bound is easily obtained:

|Vi − Vj | = |∆Vi −∆Vj | ≤ 2 max
i
|∆Vi| = 2‖∆V ‖∞

≤ 2‖∆V ‖2 = 2

∥∥∥∥∥∥
n∑
i=2

aiwi

∥∥∥∥∥∥
2

≤ 2

n∑
i=2

|ai| = 2

n∑
i=2

∣∣∣∣∣wTi Itotλi

∣∣∣∣∣
≤ 2Imax

n∑
i=2

1

λi
,
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Fig. 2. Model and topology of the MTDC system consid-
ered in the simulations.

where we have used the fact that ‖wi‖2 = 1 for all
i = 1, . . . , n, and ‖x‖∞ ≤ ‖x‖2 for any x ∈ Rn. Since
the upper bound on |Vi − Vj | is valid for any i, j ∈ V,
it is in particular valid for j = 1. Recalling that for the
equilibrium V1 = V nom, the desired inequality is obtained.
Finally, setting V̇ = 0n×1 in (2) and premultiplying
with 11×nC

−1 gives 0 = 11×nI
inj + k11×nK

P 1n×1, which
implies k = −(

∑n
i=1 I

inj)/(
∑n
i=1K

P
i ), concluding the

proof. 2

5. SIMULATIONS

Simulations of an MTDC system were conducted using
MATLAB. The MTDC was modelled by (1), with ui
given by either the droop controller (3), or the distributed
controller (9). The nominal voltage is assumed to be given
by V nom = 100 kV. The topology of the MTDC system
is given by Figure 2. The capacities are assumed to be
Ci = 123.79 µF for i = 1, 2, 3, 4, while the resistances
are assumed to be R12 = 0.0154 Ω, R13 = 0.0015 Ω,
R24 = 0.0015 Ω and R34 = 0.0154 Ω. The gains were
set to KP

i = 10 Ω−1 for i = 1, 2, 3, 4, and for both
the VDM controller and the distributed controller. The
remaining controller parameters were set to γ = 0.005
and cij = R−1ij Ω−1 for all (i, j) ∈ E . Due to the
long geographical distances between the DC converters,
communication between neighboring nodes is assumed to
be delayed with delay τ for the distributed controller.
While the nominal system without time-delays is verified
to be stable according to Theorem 3, time-delays might
destabilize the system. It is thus of importance to study the
effects of time-delays further. The dynamics of the system
(1) with the controller (9), and with time delay τ thus
become

ui = KP (V̂i(t)− Vi(t))
˙̂
Vi = KV

i (V nom − Vi(t))
−γ

∑
j∈Ni

cij

(
(V̂i(t

′)− Vi(t′))−(V̂j(t
′)−Vj(t′))

)
,

(16)



where t′ = t − τ . The injected currents are assumed to
be initially given by I inj = [300, 200,−100,−400]T A,
and the system is allowed to converge to the stationary
solution. Since the injected currents satisfy I inji = 0, ui = 0
for i = 1, 2, 3, 4 by Theorem 3. Then, at time t = 0,
the injected currents are changed due to changed power
loads. The new injected currents are given by I inj =
[300, 200,−300,−400]T A, i.e., only the injected current of
converter 3 is changed. The step response of the voltages
Vi and the controlled injected currents ui are shown in
Figure 3 for the droop controller (3), and in Figure 4 for
the distributed controller with time-delays (16).

For the droop controller (3), the system is stable as shown
in Theorem 1. However, none of the voltages converges
to V nom, and the controlled injected currents for the
different converters do not converge to the same value,
in accordance with Theorem 1.

For the distributed controller (16) without delays, i.e.,
τ = 0 s, the voltages Vi are restored to their new stationary
values within 2 seconds. The controlled injected currents
ui converge to their stationary values within 8 seconds.
The simulations with time delays τ = 0.1, 0.22 s, show
that the controller is robust to moderate time-delays, but
eventually the closed loop system becomes unstable.

6. DISCUSSION AND CONCLUSIONS

In this paper we have studied control of MTDC systems.
We have showed that a simple droop controller cannot
satisfy the control objectives of voltage regulation and
power sharing simultaneously, i.e., the controlled injected
currents having a predefined ratio. We have proposed a dis-
tributed voltage controller for MTDC networks. We show
that under mild conditions, there always exist controller
parameters such that the closed-loop system is stable. In
contrast to a decentralized droop controller, the proposed
distributed controller is able to maintain the voltage levels
of the converters close to the nominal voltages, while the
injected current is shared proportionally amongst the con-
verters. We have validated our results through simulations,
further showing that the distributed controller is robust to
moderate time-delays. Future work will focus on finding
upper bounds for the time-delay, guaranteeing closed loop
stability under the distributed controller.
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Fig. 3. The figure shows the voltages relative to the nominal voltage (Vi − V nom), and the controlled injected currents
ui. The system model is given by (1), and ui is given by the VDM controller (3). The voltages and injected currents
converge quickly to their stationary values. However, all voltages are below the nominal voltage, and the controlled
injected currents are not equal.
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Fig. 4. The figure shows the voltages relative to the nominal voltage (Vi − V nom), and the controlled injected currents
ui of the converters for different time-delays τ on the communication links. The system model is given by (1), and
ui is given by the distributed controller (16). The convergence times of the voltages and injected currents are in
the order of a few seconds. On the other hand, we see that V1 converges to V nom, and that the controlled injected
currents all converge to the same value.


