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Abstract— Finite-state systems have applications in systems
biology, formal verification and synthesis problems of infinite-
state (hybrid) systems, etc. As deterministic finite-state systems,
logical control networks (LCNs) consist of a finite number of
nodes and their update states, where these nodes can be in
a finite number of states. In this paper, we investigate the
synthesis problem for controllability and observability of LCNs
by state feedback under the semitensor product framework. We
show that state feedback can never enforce controllability of an
LCN, but sometimes can enforce its observability. We prove that
for an LCN Σ and another LCN Σ′ obtained by feeding a state-
feedback controller into Σ, (1) if Σ is controllable, then Σ′ can
be either controllable or not; (2) if Σ is not controllable, then
Σ′ is not controllable either; (3) if Σ is observable, then Σ′ can
be either observable or not; (4) if Σ is not observable, Σ′ can
also be observable or not.

I. INTRODUCTION

Finite-state systems have applications in many areas such
as formal verification and synthesis problems of infinite-state
(hybrid) systems [17], [5], systems biology [1], etc.

As special deterministic finite-state systems such that all
nodes can be only in one of two states, Boolean control
networks (BCNs) were proposed to describe genetic regu-
latory networks [13], [12]. In a BCN, nodes can be in one
of two discrete states “1” and “0”, which represent a gene
state “on” and “off”, respectively. Every node updates its
state according to a Boolean function of the network node
states. Although a BCN is a simplified model of a genetic
regulatory network, they can be used to characterize many
important phenomena of biological systems, e.g., cell cycles
[10], cell apoptosis [16]. Hence the study on BCNs has been
paid wide attention [14], [3], [4], [23].

A logical control network (LCN) is also a deterministic
finite-state system that naturally extends a BCN in the sense
that its nodes can be in one of a finite number (but not
necessarily 2) of states [24]. From the practical point of view,
LCNs can be used to describe more systems than BCNs.
However, under the semitensor product (STP) framework,
they have the same algebraic form [24], and hence they can
be dealt with by using the same method. In this paper, we
focus on LCNs.

In 2007, Akutsu et al. [2] proved that it is NP-hard to
verify whether a BCN is controllable in the number of nodes
(hence there exists no polynomial-time algorithm for deter-
mining controllability of BCNs unless P=NP), and pointed
out that “One of the major goals of systems biology is to
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develop a control theory for complex biological systems”.
Since then, especially since a control-theoretic framework
for BCNs based on the STP of matrices (proposed by Cheng
[6] in 2001) was established by Cheng et al. [7] in 2009, the
study on control problems in the area of BCNs has drawn
vast attention, e.g., controllability [7], [25], observability [7],
[11], [22], [15], just to name a few.

Among many control properties, controllability and ob-
servability are the most fundamental ones. The former im-
plies that an arbitrary given state of a system can be steered
to an arbitrary given state by some input sequence. The
latter implies that the initial state can be determined by a
sufficiently long input sequence and the corresponding output
sequence. The importance of controllability of BCNs can be
found in [2] and observability in [16], etc. Lack of these
properties makes a system lose many good behaviors. So, it
is important to investigate how to enforce controllability and
observability.

Since the verification problem for controllability or ob-
servability of (infinite-state) hybrid systems is rather difficult
and it is possible that both properties are undecidable, if one
can construct an LCN as a finite abstraction that (bi)simulates
a given hybrid system in the sense of preserving control-
lability or observability, then one can verify controllability
or observability for the hybrid system by verifying them
over the LCN. An attempt of using a similar scheme to
verify opacity of (infinite-state) transition systems can be
found in [21]. Related results on using finite abstractions to
do verification or synthesis for infinite-state systems can be
found in [19], [9], etc.

As for the synthesis problem, it is known that for linear
control systems, controllability is not affected by state feed-
back, but observability may be affected by state feedback.
However, both properties may be affected by state feedback
for nonlinear control systems and hybrid systems. Again by
using a simulation-based method, if one can construct an
LCN as a finite abstraction that (bi)simulates a given unob-
servable hybrid system in the sense of preserving observabil-
ity, then one can first try to find a state-feedback controller to
make the obtained unobservable LCN observable, and then
refine the obtained controller into the original hybrid system
so as to make the original hybrid system observable. Here
we do not mention controllability because in the sequel we
will prove that state feedback will not enforce controllability
for LCNs. That is, if an LCN is not controllable, then no
state-feedback controller can make it controllable.

The main contributions of this paper are as follows: Let
Σ be an LCN and Σ′ an LCN obtained by feeding a state-
feedback controller into Σ.
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1) We prove that state feedback will not enforce control-
lability of LCNs. In detail, if Σ is controllable, then
Σ′ can be either controllable or uncontrollable; if Σ is
uncontrollable, then Σ′ can only be uncontrollable.

2) We prove that state feedback sometimes can enforce ob-
servability of LCNs. If Σ is observable, then Σ′ can be
either observable or unobservable; if Σ is unobservable,
then Σ′ can also be either observable or unobservable.

The remainder of this paper is organized as follows.
Section II introduces preliminaries of the paper, i.e., LCNs
with their algebraic form under the STP framework, basic
verification methods for controllability and observability of
LCNs. Section III presents the main results of the paper: state
feedback cannot enforce controllability of LCNs, but can
enforce their observability. Section IV is a short conclusion.

II. PRELIMINARIES

A. The semitensor product of matrices

The following notations are necessary in this paper.

• 2A: power set of set A
• Z+: set of positive integers
• N: set of natural numbers
• R≥0: set of nonnegative real numbers
• Rn: set of n-length real column vectors
• Rm×n: set of real m× n real matrices
• Dk: set {0, 1

k−1 , ..., 1}
• δin: i-th column of the identity matrix In
• 1k:

∑k
i=1 δ

i
k

• ∆n: set {δ1n, . . . , δnn} (∆ := ∆2)
• [m,n]: {m,m+ 1, ..., n}, where m,n ∈ N and m ≤ n
• δn[i1, . . . , is]: logical matrix [δi1n , . . . , δisn ], where

i1, . . . , is ∈ [1, n]
• Ln×s: set of n× s logical matrices
• Col(A): set of columns of matrix A
• AT : transpose of matrix A
• im(A): image space of matrix A

• A1 ⊕A2 ⊕ · · · ⊕An:


A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · An


Definition 2.1 ([8]): Let A ∈ Rm×n, B ∈ Rp×q , and α =

lcm(n, p) be the least common multiple of n and p. The STP
of A and B is defined as

A⋉B =
(
A⊗ Iα

n

) (
B ⊗ Iα

p

)
,

where ⊗ denotes the Kronecker product.
From this definition, it is easy to see that the conventional

product of matrices is a particular case of the STP, since
if n = p then A ⋉ B = AB. Since the STP keeps
most properties of the conventional product [8], e.g., the
associative law, the distributive law, etc., we usually omit
the symbol “⋉” hereinafter.

Next we introduce some concepts and properties related
to the STP of matrices that will be used later.

Definition 2.2: The swap matrix, W[m,n], is an mn×mn
matrix defined by

W[m,n] :=
[
In ⊗ δ1m, In ⊗ δ2m, . . . , In ⊗ δmm

]
.

Proposition 2.3 ([8]): Let W[m,n] be a swap matrix, P ∈
Rm, and Q ∈ Rn. Then

WT
[m,n] = W−1

[m,n] = W[n,m], (1)

W[m,n]PQ = QP, (2)

PTQTW[m,n] = QTPT . (3)
Definition 2.4: The matrix Mkr = δ1k ⊕ · · · ⊕ δkk is called

the power-reducing matrix. Particularly, we denote M2r :=
Mr.

By definition, the following propositions hold.
Proposition 2.5 ([8]): For power-reducing matrix Mkr ,

we have
P 2 = MkrP

for each P ∈ ∆k.
Proposition 2.6 ([8]): Let A ∈ Rm×n and z ∈ Rt. Then

A⋉ zT = zT ⋉ (It ⊗A),

z ⋉A = (It ⊗A)⋉ z.

B. Logical control networks and their algebraic form

In this paper, we investigate the following LCN with n
state nodes, m input nodes, and q output nodes:

x1(t+ 1) = f1(x1(t), . . . , xn(t), u1(t), . . . , um(t)),

x2(t+ 1) = f2(x1(t), . . . , xn(t), u1(t), . . . , um(t)),

...
xn(t+ 1) = fn(x1(t), . . . , xn(t), u1(t), . . . , um(t)),

y1(t) = h1(x1(t), . . . , xn(t)),

y2(t) = h2(x1(t), . . . , xn(t)),

...
yq(t) = hq(x1(t), . . . , xn(t)),

(4)

where t ∈ N denote discrete time steps; xi(t) ∈ Dni , uj(t) ∈
Dmj , and yk(t) ∈ Dqk denote values of state node xi, input
node uj , and output node yk at time step t, respectively, i ∈
[1, n], j ∈ [1,m], k ∈ [1, q];

∏n
i=1 ni =: N ;

∏m
j=1 mi =: M ;∏q

k=1 qi =: Q; fi : DMN → Dni and hk : DN → Dqk are
mappings, i ∈ [1, n], k ∈ [1, q].

When n1 = · · · = nn = m1 = · · · = mm = q1 = · · · =
qq = 2, Eqn. (4) reduces to a BCN.

Eqn. (4) can be represented in the compact form

x(t+ 1) = f(x(t), u(t)),

y(t) = h(x(t)),
(5)

where t ∈ N; x(t) ∈ DN , u(t) ∈ DM , and y(t) ∈ DQ stand
for the state, input, and output of the LCN at time step t;
f : DNM → DN and h : DN → DQ are mappings.

Next we give the algebraic form of (5) under the STP
framework, the detailed transformation can be found in [8].
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For each n ∈ Z+ greater than 1, we identify δin ∼ n−i
n−1 ,

i ∈ [1, n]. Then Eqn. (5) can be represented as

x̃(t+ 1) = Lx̃(t)ũ(t) = [L1, . . . , LN ]x̃(t)ũ(t),

ỹ(t) = Hx̃(t),
(6)

where t ∈ N; x̃(t) ∈ ∆N , ũ(t) ∈ ∆M , ỹ(t) ∈ ∆Q; L ∈
LN×NM and H ∈ LQ×N are called the structure matrices,
Li ∈ LN×M , i ∈ [1, N ].

C. Preliminaries for controllability

In this subsection we briefly introduce a controllability
test criterion. Consider the state transition graph (V, E) of
LCN (6), where V = ∆N is the vertex set, the edge set
E ⊂ V × V is defined as follows: for all states δiN and δjN ,
where i, j ∈ [1, N ], (δiN , δjN ) ∈ E (i.e., there exists an edge
from δiN to δjN ) if and only if there exists an input δlM with
l ∈ [1,M ] such that δjN = LδiNδlM .

By Proposition 2.3, the adjacent matrix of the state
transition graph of LCN (6) is LW[M,N ]1M =: A =
(aij)i,j∈[1,N ] ∈ RN×N , where aij > 0 if and only if
(δjN , δiN ) ∈ E . The matrix A can be obtained by Eqn. (6) as

Lx̃(t)ũ(t) = LW[M,N ]ũ(t)x̃(t) (7)

when ũ runs all over ∆M .
Definition 2.7 ([25]): An LCN (6) is called controllable if

for all states x0, xd ∈ ∆N , if x(0) = x0, then x(l) = xd for
some l ∈ Z+ and some input sequence u(0)u(1) . . . u(l−1),
where u(j) ∈ ∆M , j = 0, 1, . . . , l − 1. An LCN is called
uncontrollable if it is not controllable.

By an observation to the state transition graph, we see the
following result.

Proposition 2.8: An LCN (6) is controllable if and only
if the its state transition graph is strongly connected, i.e., for
all vertices v1 and v2, there exists a path from v1 to v2.

Example 1: Consider the following BCN

x(t+ 1) = Lx(t)u(t), (8)

where L = δ4[1, 1, 1, 1, 1, 2, 1, 2, 3, 3, 1, 1, 3, 4, 1, 2], t ∈ N,
x(t), u(t) ∈ ∆4.

The adjacent matrix of its state transition graph is

A =


4 2 2 1
0 2 0 1
0 0 2 1
0 0 0 1

 .

One sees that in the state transition graph of (8), there
exists no path from δ34 to δ24 , hence (8) is not controllable.

D. Preliminaries for observability

In [22], four types of observability were characterized for
BCNs. In this paper, we are particularly interested in the
linear type (first characterized in [11]), as if an LCN satisfies
this observability property, it is very easy to recover the
initial state by using an input sequence and the corresponding
output sequence. Note that all results in [22] can be trivially
extended to LCNs.

00, 01 ⋄ 10, 110
0

0, 1

Fig. 1. Observability graph of BCN (9).

Definition 2.9: An LCN (5) is called observable if for
all different initial states x(0), x′(0) ∈ DN , for each input
sequence u(0)u(1) . . . , the corresponding output sequences
y(0)y(1) . . . and y′(0)y′(1) . . . are different. An LCN is
called unobservable if it is not observable.

We use a graph-theoretic method proposed in [22] to verify
observability in what follows.

Definition 2.10: Consider an LCN (5). A triple Go =
(V, E ,W) is called its observability graph if V (ele-
ments of V are called vertices) equals {{x, x′} ∈ DN ×
DN |h(x) = h(x′)}1, E (elements of E are called edges)
equals {({x1, x

′
1}, {x2, x

′
2}) ∈ V × V|there exists u ∈

DM such that f(x1, u) = x2 and f(x′
1, u) = x′

2, or, f(x1,
u) = x′

2 and f(x′
1, u) = x2}, and the weight function

W : E → 2DM assigns to each edge ({x1, x
′
1}, {x2, x

′
2}) ∈

E a set {u ∈ DM |f(x1, u) = x2 and f(x′
1, u) =

x′
2, or, f(x1, u) = x′

2 and f(x′
1, u) = x2} of inputs. A

vertex {x, x′} is called diagonal if x = x′, and called non-
diagonal otherwise.

Proposition 2.11 ([22]): An LCN (5) is not observable if
and only if its observability graph has a non-diagonal vertex
v and a cycle C such that there is a path from v to a vertex
of C.

The diagonal subgraph of an observability graph is defined
by all diagonal vertices of the observability graph and all
edges between them. Similarly, the non-diagonal subgraph
is defined by all non-diagonal vertices and all edges between
them. Since in the diagonal subgraph, there must exist a cycle
and each vertex will go to a cycle, we will denote the sub-
graph briefly by a symbol ⋄ when drawing an observability
graph. Hence if there exists an edge from a non-diagonal
vertex to a diagonal vertex, then the LCN is not observable.

Example 2 ([20]): Consider the following BCN

x1(t+ 1) = x2(t) ∧ u(t),

x2(t+ 1) = ¬x1(t) ∨ u(t),

y(t) = x1(t),

(9)

where t = 0, 1, . . . ; x1(t), x2(t), u(t), y(t) are Boolean
variables (1 or 0); ∧,∨, and ¬ denote AND, OR, and NOT,
respectively. The LCN is not observable (see Fig. 1) by
Proposition 2.11.

III. MAIN RESULTS

In this section, we show our main results, i.e., the synthesis
problem for controllability and observability of LCN (5) (or
its algebraic form (6)) based on state feedback. Next we show
the form of state-feedback LCNs.

1vertices are unordered state pairs, i.e., {x, x′} = {x′, x}.
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A. State-feedback logical control networks

Consider an LCN (5). Let a state-feedback controller be

u(t) = g(x(t), v(t)), (10)

where v(t) ∈ DP , P =
∏p

l=1 pl with each pl ∈ N greater
than 1 (corresponding to l new input nodes); or P = 1, which
means that there is only one constant input; g : DNP → DM

is a mapping. Equivalently, for an LCN (6), we can set a
state-feedback controller to be

ũ(t) = Gx̃(t)ṽ(t) = [G1, . . . , GN ]x̃(t)ṽ(t), (11)

where ṽ(t) ∈ ∆P , G ∈ LM×NP is called the structure
matrix, Gi ∈ LM×P , i ∈ [1, N ].

When P = 1 and g is the identity mapping, a state-
feedback controller will not change the original LCN, and
hence will not change controllability or observability of the
LCN.

Substituting (10) into (5), we obtain a state-feedback LCN
as

x(t+ 1) = f(x(t), g(x(t), v(t))),

y(t) = h(x(t)).
(12)

Putting (11) into (6), we obtain the algebraic form of the
state-feedback LCN (12) as

x̃(t+ 1) = Lx̃(t)Gx̃(t)ṽ(t),

ỹ(t) = Hx̃(t).
(13)

Proposition 3.1: Eqn (13) is equivalent to

x̃(t+ 1) = [L1G1, ..., LNGN ]x̃(t)ṽ(t),

ỹ(t) = Hx̃(t).
(14)

Proof By Propositions 2.5 and 2.6, (13) can be rewritten
as

x̃(t+ 1) = Lx̃(t)Gx̃(t)ṽ(t)

=L(IN ⊗G)MNr x̃(t)v(t)

=L

G . . .
G



δ

1
N

. . .
δNN

⊗ IP


x̃(t)ṽ(t)

=L

G . . .
G


δ

1
N ⊗ IP

. . .
δNN ⊗ IP


x̃(t)ṽ(t)

=L

G(δ1N ⊗ IP )
. . .

G(δNN ⊗ IP )

 x̃(t)ṽ(t)

=[L1, . . . , LN ]

G1

. . .
GN

 x̃(t)ṽ(t)

=[L1G1, ..., LNGN ]x̃(t)ṽ(t).

Consider a newly obtained LCN (14), if P = 1, then
the corresponding structure matrix [L1G1, . . . , LNGN ] is
square. However, generally the structure matrix is not neces-
sarily square, hence the updating of states generally depends
on the input ṽ(t).

B. Synthesis for controllability

In this subsection we characterize whether state feedback
can enforce controllability of an LCN. Unfortunately, we will
show that a state-feedback controller may make a control-
lable LCN uncontrollable, but never makes an uncontrollable
LCN controllable.

Proposition 3.2: Consider an LCN (6) and a state-
feedback controller (11). The adjacent matrices of the state
transition graphs of (6) and the corresponding state-feedback
LCN (14) are

A = [L11M , . . . , LN1M ] and
A′ = [L1G11P , . . . , LNGN1P ],

respectively.
Proof Consider (6). Denote Li = [li1, . . . , l

i
M ], i ∈ [1, N ].

The adjacent matrix A of its state transition graph is

A = LW[M,N ]1M

= [L1, . . . , LN ]W[M,N ]1M

=
[
l11, . . . , l

1
M , l21, . . . , l

2
M , . . . , lN1 , . . . , lNM

]
W[M,N ]1M

=
[
l11, . . . , l

N
1 , l12, . . . , l

N
2 . . . , l1M , . . . , lNM

]
1M

=

[
M∑
i=1

l1i , . . . ,
M∑
i=1

lNi

]
= [L11M , . . . , LN1M ]. (15)

Similarly we have the adjacent matrix A′ of the state
transition graph of (14) is

A′ = [L1G11P , . . . , LNGN1P ]. (16)

Theorem 3.3: Consider an LCN (6) and a state-feedback
controller (11). If (6) is not controllable, then the correspond-
ing state-feedback LCN (14) is not controllable either.

Proof Observe that in the adjacent matrices (15) and
(16) of the state transition graphs of LCN (6) and the
corresponding state-feedback LCN (14), for each i ∈ [1, N ],
LiGi is obtained by rearranging several of columns of
Li (repeated use of columns of Li is permitted), then
Col(LiGi) ⊂ Col(Li). Hence for all i, j ∈ [1, N ], if the
j-th entry of LiGi1P is greater than 0, then the j-th entry
of Li1M is also greater than 0. Hence although the two state
transition graphs share the same vertex set, the edge set of
the state transition graph for (14) is a subset of that of the
state transition graph for (6).

Assume that an LCN (6) is not controllable. Then in its
state transition graph, there exist states δkN and δlN such that
there exists no path from δkN to δlN by Proposition 2.8. Hence
in the state transition graph of (14), one also has that there
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exists no path from δkN to δlN . That is, (14) is not controllable
by Proposition 2.8.

Example 3: We give an example to show that a state-
feedback controller can make a controllable LCN uncontrol-
lable. Consider the following BCN

x(t+ 1) = Lx(t)u(t), (17)

where L = δ4[2, 2, 1, 3, 4, 4, 2, 2], t ∈ N, x(t) ∈ ∆4, u(t) ∈
∆.

By Proposition 3.2, the adjacent matrix of its state transi-
tion graph is 

0 1 0 0
2 0 0 2
0 1 0 0
0 0 2 0

 .

It is easy to see that the graph is strongly connected, then
(17) is controllable.

Substituting the state-feedback controller

u(t) = Gx(t)v(t), (18)

where G = δ2[1, 2, 2, 2, 1, 2, 1, 2], v(t) ∈ ∆, into (17), by
Proposition 3.1, we obtain the state-feedback BCN

x(t+ 1) = L̃x(t)u(t), (19)

where L̃ = δ4[2, 2, 3, 3, 4, 4, 2, 2].
Then by Proposition 3.2, the adjacent matrix of the state

transition graph of (19) is
0 0 0 0
2 0 0 2
0 2 0 0
0 0 2 0

 .

The graph is not strongly connected, then by Proposition
2.8, (19) is not controllable.

Remark 1: Let us compare LCNs with linear control
systems. It is known that state feedback will not affect
controllability of linear control systems [18]. Consider a
linear control system

ẋ(t) = Ax(t) +Bu(t), (20)

where A ∈ Rn×n, B ∈ Rn×m, t ∈ R≥0, x(t) ∈ Rn, u(t) ∈
Rm. Consider state-feedback controller

u(t) = Fx(t) + v(t), (21)

where F ∈ Rm×n, t ∈ R≥0, v(t) ∈ Rm. It is well known
that [18]

⟨A| im(B)⟩ = ⟨A+BF | im(B)⟩,

where ⟨A| im(B)⟩ = im(B)+A im(B)+ · · ·+An−1 im(B)
is the controllable subspace of (20), and ⟨A+BF | im(B)⟩ is
the controllable subspace of the state-feedback linear control
system ẋ(t) = (A+BF )x(t) +Bv(t).

Hence Example 3 shows an essential difference between
LCNs and linear control systems from the perspective of
controllability.

12 13

23 ⋄

1

2

1, 2

Fig. 2. Observability graph of BCN (17) with output function (22), where
number ij in a circle denotes state pair {δi4, δ

j
4}, weight i denotes input

δi2.

12 13

23 ⋄

1, 2

1, 2

Fig. 3. Observability graph of BCN (19) with output function (22).

C. Synthesis for observability
Unlike controllability, we next give an example to show

that state feedback can enforce observability of an LCN.
Example 4: Consider BCN (17) with the output function

y(t) = δ2[1, 1, 1, 2]x(t). (22)

Its observability graph is shown in Fig. 2. This graph shows
that the BCN is not observable by Proposition 2.11.

Putting state-feedback controller (18) into (17), and con-
sider the state-feedback BCN (19) with output function (22).
Its observability graph is shown in Fig. 3. This graph shows
that the BCN is observable also by Proposition 2.11.

Remark 2: Different from controllability, it is known that
observability of linear control systems can be affected by
state feedback. Consider system ẋ1(t) = x2(t) + u(t),
ẋ2(t) = x2(t), y(t) = x1(t). This system is observable,
because its observability matrix I2 has rank 2. However,
if we put state-feedback controller u(t) = v(t) − x2(t)
into the system, we obtain an unobservable system, where
its observability matrix [ 1 0

0 0 ] has rank 1. By these two
systems, one sees that state feedback can make an observable
linear control system unobservable, and also can make an
unobservable system observable.

Next we show that a state-feedback controller can make
an observable LCN unobservable.

Example 5: Consider the LCN

x(t+ 1) = δ3[1, 3, 3, 2, 1, 1]x(t)u(t),

y(t) = δ2[1, 1, 2]x(t),
(23)

where t ∈ N, x(t) ∈ ∆3, u(t), y(t) ∈ ∆.
The observability graph of (23) consists of vertex {δ13 , δ23}

and the diagonal subgraph. Then by Proposition 2.11, the
BCN is observable.

Putting state-feedback controller

u(t) = δ2[1, 2, 1]x(t)

into (23), by Proposition 3.1, we obtain a state-feedback LCN

x(t+ 1) = δ3[1, 2, 1]x(t),

y(t) = δ2[1, 1, 2]x(t).
(24)
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There is a self-loop on vertex {δ13 , δ23} in the observability
graph of (24), then by Proposition 2.11, (24) is not observ-
able.

Next we show that there exists an unobservable LCN such
that no state-feedback controller can make it observable.

Example 6: Consider the BCN

x(t+ 1) = Lx(t)u(t), (25)

where L = δ4[1, 1, 1, 1, 1, 1, 2, 3], t ∈ N, x(t) ∈ ∆4, u(t) ∈
∆.

By Proposition 2.11, the BCN with output function (22)

is not observable, since there exists a path {δ14 , δ24}
δ12−→

{δ14 , δ14}
δ12−→ {δ14 , δ14} in its observability graph.

Putting an arbitrary state-feedback controller u(t) =
Gx(t)v(t), where G ∈ L2×4P , v(t) ∈ ∆P , P is an arbitrary
positive integer, into (25), by Proposition 3.1, we obtain
state-feedback LCN

x(t+ 1) =
[
δ14 ⊗ 1T

P , δ
1
4 ⊗ 1T

P , δ
1
4 ⊗ 1T

P , L4G4

]
x(t)u(t),

(26)
where L4G4 = δ4[i1, . . . , iP ], i1, . . . , iP ∈ [2, 3].

The observability graph of (26) with output function (22)

contains a path {δ14 , δ24}
δ1P−−→ {δ14 , δ14}

δ1P−−→ {δ14 , δ14}, then the
LCN is not observable by Proposition 2.11.

Based on the above discussion, we know that state feed-
back sometimes can enforce observability of an LCN, some-
times cannot.

IV. CONCLUSION

In this paper, we showed that state feedback cannot
enforce controllability of a logical control network (LCN),
but sometimes can enforce observability of an LCN, by using
the semitensor product. Future works are to study how to
verify whether observability of an LCN can be enforced by
state feedback, how to design fast algorithms for synthesizing
observability of an unobservable LCN when the LCN can be
synthesized to be observable.

In order to make the obtained results be applied to the
simulation-based method for synthesizing hybrid systems
over their finite abstractions introduced in the Introduction,
the further work is to generalize the obtained results to
nondeterministic finite-transition systems, since usually non-
deterministic finite-transition systems better simulate hybrid
systems.
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