
Dynamics of Continuous, Discrete and Impulsive Systems, Series B, 12 (2005),

no. 5-6, 649-687
http:monotone.uwaterloo.ca/∼journal

Towards a Geometric Theory of Hybrid Systems
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Abstract. We propose a framework for a geometric theory of hybrid systems. Given a

deterministic, non-blocking hybrid system, we introduce the notion of its hybrifold with

the associated hybrid flow on it. This enables us to study hybrid systems from a global

geometric perspective as (generally non-smooth) dynamical systems. This point of view is

adopted in studying the Zeno phenomenon. We show that it is due to nonsmoothness of

the hybrid flow. We introduce the notion of topological equivalence of hybrid systems and

locally classify isolated Zeno states in dimension two.
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1 Introduction

Any system which changes in time and involves interactions between contin-
uous processes and discrete automata can be viewed as a hybrid system. The
name comes from the hybrid nature of its evolution: intervals of continuous-
time change are interleaved with instantaneous, discrete jumps. Hybrid sys-
tems are a topic of great interest, primarily in the control and computer
science communities. Emerging applications in areas such as air traffic man-
agement [37], automotive control [5, 1], real-time software verification [2],
transportation systems [39, 25], manufacturing [32], mobile robotics [6], and
process industry [13], motivate work on hybrid systems modeling [11, 28, 4,
38, 10, 20], analysis [3, 40, 9, 22, 17, 23], and controller design [29, 8, 10, 27, 7].
Although extensive research efforts have been made in the area of hybrid sys-
tems, the understanding of the fundamental dynamical properties of systems
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with interacting continuous-time and discrete-event dynamics [11, 20, 16, 21,
42] is not satisfactory.

In this paper we present a geometric approach for treatment of a class
of hybrid systems which resemble deterministic continuous-time piecewise
smooth dynamical systems. Early results in this direction where first reported
in [33]. We introduce the notions of the hybrifold and hybrid flow, which
enable us to study the hybrid system “in one piece”, that is, as a single,
piecewise smooth dynamical system. It is well known that even simple smooth
dynamical systems can exhibit very complicated behavior which makes their
global study using analytical methods very difficult. This is why developing
qualitative (i.e., geometric and topological) techniques has been at the center
of modern dynamics, ever since Poincaré’s seminal work at the end of the
19th and beginning of the 20th century. For a beautiful introduction to this
field, the reader is referred to [31]. In this article, we make a first step towards
developing such techniques for hybrid systems.

Having established a suitable framework, we focus particularly on the
Zeno phenomenon, which does not occur in smooth dynamical systems. We
study its underlying geometric causes and classify it in dimension two. This
classification is with respect to the notion of topological equivalence borrowed
from dynamical systems: two systems are equivalent if they are qualitatively
the same.

The advantages of the hybrifold method are the following.

• It enables one to use the standard techniques of the theory of dynamical
systems to study hybrid systems (which have a hybrifold).

• It provides a convenient framework for global analysis of hybrid sys-
tems, giving insight into global behavior of hybrid executions, which is
not possible to obtain by local, domain-by-domain, analysis.

• It introduces a convenient setting for qualitative analysis of hybrid sys-
tems; for instance, it simplifies the definitions of topological equivalence
and structural stability of hybrid systems.

Furthermore, we distill the key properties of a class of examples into a list
of assumptions, and study all hybrid systems which share these properties.

The organization of the paper is the following. In Section 2 we define the
model, present some basic examples, and formulate the standing assumptions.
In Section 3 we introduce and discuss the basic properties of the hybrifold
and hybrid flow. Section 4 is concerned with the geometry of the Zeno phe-
nomenon and Section 5 introduces topological equivalence of hybrid systems
and classifies isolated Zeno states in dimension two. Finally, we make a few
concluding remarks in Section 6.
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2 Preliminaries

Definitions and examples

Let us first define our model and give some basic examples which will be
useful later in the paper. The following definitions are motivated by [20, 26].

Definition 2.1. An n-dimensional hybrid system is a 6-tuple

H = (Q, E,D,X ,G,R),

where:

• Q = {1, . . . , k} is the finite set of (discrete) states of H, where k ≥ 1
is an integer;

• E ⊂ Q × Q is the collection of edges;

• D = {Di : i ∈ Q} is the collection of domains of H, where Di ⊂
{i} × R

n, for all i ∈ Q;

• X = {Xi : i ∈ Q} is the collection of vector fields such that Xi is
Lipschitz on Di for all i ∈ Q; we denote the local flow of Xi by {φi

t}.

• G = {G(e) : e ∈ E} is the collection of guards, where for each e =
(i, j) ∈ E, G(e) ⊂ Di;

• R = {Re : e ∈ E} is the collection of resets, where for each e = (i, j) ∈
E, Re is a relation between elements of G(e) and elements of Dj, i.e.,
Re ⊂ G(e) × Dj.

Di
Dj

ẋ = Xi(x) ẏ = Xj(y)

x ∈ G(i, j)

y :∈ R(i,j)(x)

Figure 1: A hybrid system.

Remark 1. (a) Our terminology differs slightly from the usual terminol-
ogy for hybrid systems, where the domains are called the invariants.
Since there is nothing dynamically invariant about these sets, we prefer
to reserve the term invariant set for later, more appropriate use.
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(b) We do not consider the set of initial states as a separate item in the
definition of a hybrid system. This is because we restrict ourselves to
studying only so called non-blocking systems in which all points can be
initial conditions. The only assumption we will make subsequently is
that the initial state is in one of the domains.

(c) The above definition clearly allows a hybrid system to be a wild object.
An important question is: what properties should the domains, guards,
resets and vector fields of H satisfy to get a large enough class of hybrid
systems about which something useful can be said? Soon we will deal
with this question in detail and focus our attention on one such class
of hybrid systems (which we will call regular).

(d) If a reset relation Re is a map G(e) → Dj , with e = (i, j) ∈ E, we write
y = Re(x) instead of (x, y) ∈ Re.

(e) We also set

D =
⋃

i∈Q

Di,

and call this set the total domain of H. If the resets are maps, we write

G =
⋃

e∈E

G(e), R =
⋃

e∈E

Re(G(e)),

G = {G(e) : e ∈ E}, R = {Re(G(e)) : e ∈ E}.
Therefore, G is the union of all guards, G is the collection of closures
of all guards, etc.

(f) Observe that domains Di lie in distinct copies of R
n, namely {i} ×

R
n, i ∈ Q. However, to simplify things, we will sometimes abuse the

notation and drop the i. More precisely, we identify {i}×R
n with R

n via
the diffeomorphism Fi : (i, x) 7→ x, and write Di, G(e), Re, Xi, . . . for
Fi(Di), Fi(G(e)), Fi ◦Re ◦F−1

j , TFi ◦Xi ◦F−1
i , . . ., where e = (i, j) ∈ E

and TFi is the derivative or tangent map of Fi.

Given H, the basic idea is that starting from a point in some domain Di,
we flow according to Xi until (and if) we reach some guard G(i, j). At that
point it is possible for the state to switch via the reset R(i,j) and continue
flowing in Dj according to Xj, and so on.

Example 2.2 (Water Tank WT ). Consider the water tank system dis-
cussed in [4, 18, 20] (Fig. 2). For i ∈ Q = {1, 2}, xi denotes the volume of
water in tank i, vi is the constant rate of flow of water out of tank i, and
li is the desired volume of water in tank i. The constant rate of water flow
into the system, dedicated exclusively to one tank at a time, is denoted by w.
The control task is to keep the water volume above l1 and l2 (assuming the
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initial volumes are above l1 and l2 respectively) by a strategy that switches
the inflow to the first tank whenever x1 = l1 and to the second tank whenever
x2 = l2.

Here n = 2, k = 2, E = {(1, 2), (2, 1)},

D1 = {1} × C, D2 = {2} × C,

where C = [l1,∞) × [l2,∞),

X1 = (w − v1,−v2)
T , X2 = (−v1, w − v2)

T ,

G(1, 2) = {(1, x1, x2) ∈ D1 : x2 = l2}, G(2, 1) = {(2, x1, x2) ∈ D2 : x1 = l1},
and

R(1,2)(1, x1, l2) = (2, x1, l2), R(2,1)(2, l1, x2) = (1, l1, x2).

D1
D2

R(1,2)

R(2,1)

G(1, 2)

G(2, 1)

Figure 2: The water tank example.

We will assume that max(v1, v2) < w < v1 + v2. This means that more
water is flowing out of than into the tanks.

Example 2.3 (Bouncing Ball BB). This is a simplified model of an elastic
ball that is bouncing and losing a fraction of its energy with each bounce,
discussed in [20]. We denote by x1 the altitude of the ball and by x2 its
vertical speed. Here n = 2, k = 1, E = {(1, 1)},

D1 = {(1, x1, x2) : x1 ≥ 0}, X1(1, x1, x2) = (x2,−g)T ,

G(1, 1) = {(1, 0, x2) : x2 ≤ 0}, R(1,1)(1, 0, x2) = (1, 0,−cx2),

where g is the acceleration due to gravity and 0 < c < 1 (Fig. 3).

Example 2.4 (Bouncing m-Ball BB(m)). The only difference between
this and the previous example is that we have m different domains in which
the ball can bounce. After each bounce, the ball switches to the next domain
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D1

R(1,1)

G(1, 1)

Figure 3: Bouncing ball.

in a cyclical order. That is, n = 2, k = m > 1, E = {(1, 2), (2, 3), . . . , (m −
1, m), (m, 1)}, and for all i ∈ Q,

Di = {i} × {(x1, x2) : x1 ≥ 0}, G(i, i + 1) = {i} × {(0, x2) : x2 ≤ 0},

R(i,i+1)(i, 0, x2) = (i + 1, 0,−cx2),

where we conveniently identify m + 1 := 1. Note that here the domains are
just different copies of the closed right half-plane in R

2.

Example 2.5 (Ball Bouncing on an N-step Staircase BBS(N)). Here
we have a staircase with steps i = 1, . . . , N of width wi > 0 and height hi > 0
on which a ball is bouncing. Define ŵm =

∑m
i=1 wi and ĥm =

∑N
i=m hi.

Assume also that with each bounce the ball loses a proportional amount
of its vertical velocity (x2) and that it has constant horizontal speed (x3).
Denote by x1 its vertical position. Then we have: Q = {1, . . . , N + 1},
E = {(i, i) : 1 ≤ i ≤ N + 1} ∪ {(1, 2), . . . , (N, N + 1)}, and for 1 ≤ i ≤ N ,

Di = {i} × [ĥi,∞) × (−∞,∞) × (ŵi−1, ŵi],

G(i, i) = {(i, x1, x2, x3) ∈ Di : x1 = ĥi, x2 ≤ 0, x3 < ŵi},

G(i, i + 1) = {(i, x1, x2, x3) ∈ Di : x3 = ŵi}, R(i,i+1)(i,x) = (i + 1,x).

For 1 ≤ i ≤ N + 1,

Xi(i, x1, x2, x3) = (x2,−g, v)T , R(i,i)(i, x1, x2, x3) = (i, x1,−cx2, x3).

Finally,

G(N + 1, N + 1) = {(N + 1, x1, x2, x3) ∈ DN+1 : x1 = 0, x2 ≤ 0},

DN+1 = {N + 1} × [0,∞) × (−∞,∞) × (ŵN ,∞).
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Example 2.6 (Two Saddles S2(λ)). Here (see Fig. 4) n = 2, k = 2,
0 < λ < 1, E = {(1, 2), (2, 1)}, the domains are two copies of the square
S = [−1, 1]× [−1, 1], i.e. for i ∈ Q,

Di = {i} × S, X1(1, x1, x2) = (λx1,−x2)
T , X2(x1, x2) = (2,−x1, λx2)

T ,

G(1, 2) = union of the vertical sides of D1,

G(2, 1) = union of the horizontal sides of D2,

R(i,j)(i, x) = (j, x), for all (i, j) ∈ E.

D1 D2

R(1,2)

R(2,1)

Figure 4: S2(λ)

Example 2.7 (Flow on the 2-torus T 2(α)). We have α > 0, n = 2, k = 2,
E = {(1, 2), (2, 1)}, Di = {i}×K, where K = [0, 1]× [0, 1] is the unit square,
X1 = X2 = (1, α)T are constant vector fields,

G(i, i) = {i} × Supper, G(i, j) = {i} × Sright,

R(i,i)(i, x, 1) = (i, x, 0) and R(i,j)(i, 1, y) = (j, 0, y),

where i, j = 1, 2, i 6= j, Supper = [0, 1]× {1} and Sright = {1} × [0, 1) denote
the (closed) upper and (half-closed) right side of K. Note that R(i,i)({i} ×
Supper) = {i}×Slower and R(i,j)({i}×Sright) = {j}×Sleft, with the obvious
meaning of Slower and Sleft (see Fig. 5).

If we proceed in the usual way and identify {i}×Supper with {i}×Slower
via R(i,i) and {i}×Sright with {j}×Sleft via R(i,j) (where i, j = 1, 2, i 6= j),
we obtain the standard 2-torus with a smooth straight-line flow with slope α
on it. This is a “baby-version” of a construction we will later apply to more
general hybrid systems.

Keeping in mind the examples above, we now define the notions of a
hybrid time trajectory and an execution of a hybrid system.
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Definition 2.8. A (forward) hybrid time trajectory is a sequence (finite or
infinite) τ = {Ij}N

j=0 of intervals such that Ij = [τj , τ
′

j ] for all j ≥ 0 if the
sequence is infinite; if N is finite, then Ij = [τj , τ

′

j ] for all 0 ≤ j ≤ N −1 and
IN is either of the form [τN , τ ′

N ] or [τN , τ ′

N ). Furthermore, τj ≤ τ ′

j = τj+1,
for all j.

D1 D2

R(1, 1) R(1, 2) R(2, 2)

R(2, 1)
α

Figure 5: T 2(α).

One thinks of τj ’s as time instants when discrete transitions (or switches)
from one domain to another take place. If τ = {Ij}N

j=0 is a hybrid time
trajectory, we will call N its size and denote it by N(τ). Also, we use 〈τ〉
to denote the set {0, . . . , N(τ)} if N(τ) is finite, and {0, 1, 2, . . .} if N(τ) is
infinite.

We will say that τ is a prefix of a hybrid time trajectory τ ′ if N(τ) ≤
N(τ ′) (where the inequality is taken in the extended real number system),
and for 0 ≤ j < N(τ), we have Ij = I ′j ; furthermore, if N(τ) < ∞, then we
must also have IN(τ) ⊂ I ′

N(τ ′).

Definition 2.9. An execution (or forward execution) of a hybrid system H
is a triple χ = (τ, q, x), where τ is a hybrid time trajectory, q : 〈τ〉 → Q
is a map, and x = {xj : j ∈ 〈τ〉} is a collection of C1 maps such that
xj : Ij → Dq(j) and for all t ∈ Ij,

ẋj(t) = Xq(j)(xj(t)). (1)

Furthermore, for all j ∈ 〈τ〉 such that j < N(τ), we have

(q(j), q(j + 1)) ∈ E,

and
(xj(τ

′

j), xj+1(τj+1)) ∈ R(q(j),q(j+1)).

Observe the abuse of notation in (1): the curve xj(t) is in Dq(j) ⊂ {q(j)}×
R

n, but we identify its tangent with a vector in R
n, dropping the discrete

part q(j). See also Remark (f) above.
We say that an execution χ = (τ, q, x) starts at a point p ∈ D if p = x0(τ0)

and τ0 = 0. It passes through p if p = xj(t) for some j ∈ 〈τ〉, t ∈ Ij . A hybrid
system is usually said to accept an execution. Given p ∈ D, it is not difficult
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to see that there are many ways in which a hybrid system can accept several
executions starting from or passing through p. For instance, this happens if
at least one of the resets is a relation which is not a function.

For an execution χ = (τ, q, x), denote by τ∞(χ) its (forward) execution
time:

τ∞(χ) =

N(τ)
∑

j=0

(τ ′

j − τj) = lim
j→N(τ)

τ ′

j − τ0.

Definition 2.10. An execution χ is called:

• infinite, if N(τ) = ∞ or τ∞(χ) = ∞;

• a Zeno execution if N(τ) = ∞ and τ∞(χ) < ∞;

• maximal if it is not a strict prefix of any other execution of H.

In other words, an execution is Zeno if it takes an infinite number of
discrete transitions in a finite amount of time. An execution is maximal if
there exists no other execution χ′ = (τ ′, q′, x′) such that τ is a strict prefix
of τ ′ and xj = x′

j on Ij for all j ∈ 〈τ〉.
We will call a Zeno execution static if there exists l ≥ 0 such that τ ′

j = τj ,
for all j ≥ l. Otherwise, it will be called dynamic.

In Examples 2.2 (WT ), 2.3 (BB), and 2.4 (BB(m)) for every p 6= (0, 0),
the maximal execution starting from p is dynamic Zeno. The same can
be shown for Examples 2.5 (BBS(N)) if 0 < c < 1 and 2.6 (S2(λ)) if
0 < λ < 1 and p belongs to neither axis. On the other hand, every maximal
execution in Example 2.7 (T 2(α)) is infinite with infinite execution time. For
more examples and a connection with Filippov solutions in the context of
differential equations with discontinuous right-hand sides, see [14].

Definition 2.11. A hybrid system is called deterministic if for every p ∈ D
there exists at most one maximal execution starting from p. It is called non-
blocking if for every p ∈ D there is at least one infinite execution starting
from p.

Necessary and sufficient conditions for a hybrid system to be deterministic
and non-blocking can be found in [26, 24, 21] and for special classes of systems
in [38, 19, 15]. Roughly speaking, resets have to be functions, guards have
to be mutually disjoint and whenever a continuous trajectory of one of the
vector fields in X is about to exit the domain in which it lies, it has to hit a
guard. It is easy to show (using the conditions in [26, 21] for example) that
all the examples introduced above are non-blocking and deterministic.

Standing assumptions

To obtain a class of hybrid systems sufficiently tame for our study yet suffi-
ciently broad to include a fair number of important examples, we impose the
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following standing assumptions on the hybrid system H = (Q, E,D,X ,G,R)
under consideration. They will hold in the rest of the paper. Observe that
our assumptions on the continuous dynamics are very moderate when com-
pared to, for instance, timed hybrid automata; in each domain, we allow
general nonlinear vector fields with a reasonable degree of regularity.

The first assumption deals with uniqueness of executions.

(A1) H is deterministic and non-blocking.

This means that every point in D is the starting point of a unique infinite
(and therefore maximal) execution of H.

The second assumption deals with the geometry of domains.

(A2) There exists a d such that each domain Di is a connected n-dimensional
smooth submanifold of R

d, with piecewise smooth boundary. The angle be-
tween any two intersecting smooth components of the boundary is nonzero.

Recall that a manifold is called piecewise smooth if, intuitively speaking,
it is the union of finitely many smooth pieces. By smooth we will mean of
class C∞, unless specified otherwise. Since each domain is embedded into
R

d, it inherits from it the standard Riemann structure so the notion of angle
is defined. The non-zero angle requirement eliminates, for instance, “cusps”
in dimension two, but does not eliminate “corners”. Thus for domains of a
hybrid system we allow disks, half-spaces, rectangles, cubes, etc. The non-
zero angle assumption can be easily relaxed for most of the results, in fact it
is only necessary in Section 4.

The next assumption deals with the geometry of guards.

(A3) Each guard is a smooth (n−1)-dimensional submanifold of the bound-
ary of the corresponding domain. The boundary of each guard is piecewise
smooth (or possibly empty).

There is an intuitive reasoning behind this assumption which explains why
we don’t allow guards to be n-dimensional and why we require them to be
part of the boundary of domains. If G(i, j) is a guard of dimension n, e.g.,
a closed set with nonempty interior in Di, and x(t) is a trajectory in the
domain Di which meets G(i, j), the corresponding execution χ jumps to Dj

as soon as x(t) hits the boundary of G(i, j). Therefore, the interior of G(i, j)
will be irrelevant for the evolution of χ. If we ignore the hybrid dynamics
starting in the interior of G(i, j), then we can in effect remove that interior
from the system as superfluous. This way we create (n − 1)-dimensional
guards which lie on the boundary of the new domains.

The following is an assumption on the resets.

(A4) Each reset is a diffeomorphism from its domain G(e) onto its image.
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The image of every reset lies on the boundary of the corresponding domain.
Moreover, if e = (i, j) ∈ E and Re(p) = q, then Xi(p) = 0 if and only if
Xj(q) = 0.

Thus resets take equilibria to equilibria.
The next assumption deals with the relation between guards and images

of resets.

(A5) Elements of G∪R (i.e., sets which are closures of guards and images of
resets) can intersect only along their boundaries. Furthermore, if p ∈ G∪R,
then p can be of only one of the following four types (Fig. 6):

Type I p ∈ int G ∪ int R;

Type II p ∈ ∂G ∪ ∂R and there exists exactly one set S ∈ G ∪ R which
contains p;

Type III p ∈ ∂G ∪ ∂R and there exist exactly two sets S1, S2 ∈ G ∪ R,
such that p ∈ ∂S1 ∩ ∂S2 and some neighborhood of p in S1 ∪ S2 is
homeomorphic to R

n−1;

Type IV p ∈ ∂G ∪ ∂R and there exist exactly two sets S1, S2 ∈ G ∪ R,
such that p ∈ ∂S1 ∩ ∂S2 and some neighborhood of p in S1 ∪ S2 is
homeomorphic to R

n−1
+ .

Furthermore, resets preserve the type.

The last sentence means that if p is a point of type T ∈ {I, II, III, IV }
and f is a reset map, then f(p) is also of type T , provided that f(p) is de-
fined. Further, int and ∂ of G and R are the interior and boundary of G and
R, taken in the relative topology of these sets as subsets of the boundary
of D. Assumption (A5) ensures that intersections of guards and images of
resets (in fact, their closures) are sufficiently nice. The shaded regions in
Figure 6 represent sets in G ∪ R. They are 2-dimensional manifolds with
boundary which lie on the boundary of the 3-dimensional domain Di. Note
the following: a point p of Type III lies on the boundary of two sets in G ∪R
and is surrounded by them from all sides; that is, there exists a neighbor-
hood of p in the union of these sets which is homeomorphic to the Euclidean
space of the same dimension (n− 1). A point p is of Type IV if it lies on the
boundary of two sets in G ∪R, but is not surrounded by them; instead, there
is a neighborhood of p in the union of these sets which is homeomorphic to
the Euclidean half-space of the same dimension (n − 1). Note that three or
more objects in G ∪ R are not allowed to meet. We also refer the reader to
the proof of Theorem 3.7 where utility of (A5) will become apparent in the
construction of the hybrifold.

The following assumption deals with the vector fields along guards and
images of resets.
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Di

Type I

Type II

Type III Type IV

not allowed

not allowed

Figure 6: Types of points in (A5).

(A6) For all e = (i, j) ∈ E, the following holds: on int G(e), Xi points
outside int Di; on int(im Re), Xj points inside Dj.

Here the bar denotes closure and im the image (or range) of a map. As above,
int G(e) and int(im Re) denote the interior of G(e) and im Re in ∂Di and
∂Dj , respectively. That a vector field X with flow φt points inside a set A at
p ∈ ∂A means that there exists ε > 0 such that φt(p) ∈ A, for all 0 < t < ε.
It points outside the same set if −X points inside.

The next assumption states that resets and vector fields are smoothly
extendable objects.

(A7) Each vector field Xi is the restriction to Di of some smooth vector field,
which we also denote by Xi, defined on a neighborhood of Di in {i} × R

n.
Each reset map Re extends to a map R̃e defined on a neighborhood of G(e) in
Di such that R̃e is a diffeomorphism onto its image, which is a neighborhood
of im Re in Dj.

Furthermore, suppose f1, . . . , fm, fm+1 := f1 is a collection of maps such
that for each j there exists ej ∈ E with the property that either fj = R̃ej

or

fj = R̃−1
ej

, and the image of fj meets the domain of fj+1. Then we have the
consistency condition

fm ◦ · · · ◦ f2 ◦ f1 = identity, (2)
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wherever the left-hand side is defined.

The importance of this assumption is that it enables us to “glue” domains
via the extended reset maps and obtain a reasonable geometric object. The
condition fm ◦ · · · ◦ f2 ◦ f1 = identity simply means that a point of Type
III or IV, which lies on the common boundary C = ∂S1 ∩ ∂S2 of some sets
S1, S2 ∈ G ∪R will not be identified with any other point in C in the gluing
process. In the language of Section 3, for every p ∈ C, C ∩ p/∼= {p}.

The last assumption makes sure that all the above ones remain satisfied
when time is reversed.

(A8) If p ∈ Di is on the boundary of Di and Xi(p) points inside Di then p
is in the image of some reset.

Observe that all our examples satisfy all the assumptions above.

Definition 2.12. A hybrid system which satisfies assumptions (A1)–(A8)
will be called regular.

Given H, define a map ΦH on a subset of R×D as follows. Let p ∈ D be
arbitrary. By (A1), there exists a unique infinite execution (τ, q, x) starting at
p. We will denote it by χ(p). Set ΦH(0, p) = p. Assume that τ∞(χ(p)) > 0.
For any 0 < t < τ∞(χ(p)) there exist a unique j ∈ 〈τ〉 such that t ∈ [τj , τ

′

j)
(even though there may be multiple j ∈ 〈τ〉 for which t ∈ [τj , τ

′

j ]). Then
define

ΦH(t, p) = xj(t).

To define ΦH(t, p) for negative t, set

ΦH(t, p) = ΦH
′

(−t, p),

where H′ is the reverse hybrid system (Q′, E′,D′,X ′,G′,R′) defined by:

• Q′ = Q, D′ = D, X ′

i = −Xi for all i ∈ Q;

• (i, j) ∈ E′ if and only if (j, i) ∈ E;

• for all e = (i, j) ∈ E′, G′(e) = R(j,i)(G(j, i)) and R′

(i,j) = R−1
(j,i).

It can be checked without difficulty that H′ satisfies (A1)–(A8) if H does.
Denote by Ω0 the largest subset of R × D on which ΦH is defined.

In Example 2.3, for instance, for any p 6= 0, ΦBB(t, p) → 0, as t →
τ∞(χ(p)). Note, however, that χ(0) makes no time progress, i.e., τj = 0 for
all j ≥ 0, but it involves infinitely many switches at the same (i.e., initial)
point, which happens to be a fixed point of the reset map.

Theorem 2.13. (a) Ω0 contains a neighborhood of {0} × int D in R ×D,
where int D = D − ∂D.
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(b) For all p ∈ D, ΦH(0, p) = p. Furthermore,

ΦH(t, ΦH(s, p)) = ΦH(t + s, p),

whenever both sides are defined.

Proof. (a) If p ∈ intDi, then since Xi is Lipschitz on Di, t 7→ φi
t(p) is defined

on a neighborhood of 0. Furthermore, there exists a neighborhood U of p in
int Di and ε > 0 such that for each p′ ∈ U , t 7→ φi

t(p
′) is defined on (−ε, ε).

Thus (−ε, ε) × U is a neighborhood of (0, p) in R × int Di. This proves (a).

(b) The first statement is true by definition. The second statement follows
from uniqueness of executions, guaranteed by (A1).

3 The hybrifold and hybrid flow

The basic idea behind the construction of the hybrifold of a hybrid system is
simple: “glue” each guard to the image of the corresponding reset map. We
make this more precise below and then show basic properties of the newly
constructed object.

The hybrifold

Let H be a regular hybrid system. On D, let ∼ be the equivalence relation
generated by

p ∼ R̃e(p),

for all e ∈ E and p ∈ G(e). Collapse each equivalence class to a point to
obtain the quotient space

MH = D/∼ .

Definition 3.1. We call MH the hybrifold1 of H.

Note that MH does not depend on the choice of the extensions for the
reset maps. This is because by continuity any two extensions of a fixed reset
Re necessarily agree on G(e). Denote by π the natural projection D → MH

which assigns to each p its equivalence class p/∼. Note also that π can easily
be extended to D. Put the quotient topology on MH. Recall that this is the
smallest topology that makes π continuous, i.e., a set V ⊂ MH is open if and
only if π−1(V ) is open in D.

Let us apply this construction to some of the examples above.

Example 3.2 (WT continued). Without loss we assume that l1 = l2 = 0.
To obtain MWT we have to identify the x1-axis from D1 with the same axis
from D2 via R(1,2) and similarly with the x2-axis (see Fig. 2). It is not

1The authors thank Renaud Dreyer for suggesting the term hybrifold.
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difficult to see that MWT is homeomorphic to R
2 (see Fig. 7). However,

MWT has a singularity (or “corner”) at 0 = π(1, 0, 0) in the following sense.
The space D is equipped with a differentiable structure – the one it inherits
from individual domains Di. The space MWT inherits its own differentiable
structure from the ambient space R

3. With respect to these two differentiable
structures, π is not a smooth map. When this is the case, we will say that π
does not define a smooth structure on MWT . As an alternative possibility,
consider the standard construction of the 2-torus by identifying the opposite
sides of a square (cf., Example 3.6); there, π is a smooth map in the above
sense.

0

Figure 7: Hybrifold and two orbits of the hybrid flow for WT .

Example 3.3 (BB continued). Here we have to identify the negative part
with the positive part of the x2-axis (see Fig. 3). The resulting space MBB

is again homeomorphic to R
2 (see Fig. 8), but π again does not define a

smooth structure on it in the same sense as above.

Example 3.4 (BB(m) continued). For simplicity assume m = 2. Then
we see from Fig. 9 that MBB(2) is smooth (in the sense that π is a smooth
map, as above) and diffeomorphic to R

2.

Example 3.5 (S2(λ) continued). MS2(λ) is homeomorphic to the 2-sphere,
but is not equipped with a smooth structure by π in the sense explained
above.

0

Figure 8: Hybrifold and an orbit of the hybrid flow for BB.
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Example 3.6 (T 2(α) continued). We already observed that MT 2(α) is the
standard 2-torus.

D1

D2

y 7→ −cyy 7→ −cy

Figure 9: Hybrifold and several orbits of the hybrid flow for BB(2).

The following theorem establishes some basic properties of the hybrifold.
Recall that M is called a topological n-manifold with boundary if it is Haus-
dorff and every point in M has a neighborhood homeomorphic to either R

n

or the closed upper half-space R
n
+ = {(x1, . . . , xn) : xn ≥ 0}. Points having

the latter property are said to be on the boundary ∂M , which in itself is a
topological (n − 1)-manifold.

Theorem 3.7. (a) MH is a topological n-manifold with boundary.

(b) Both MH and its boundary are piecewise smooth.

(c) The restriction π|int D
: int D → π(int D) is a diffeomorphism.

Proof. (a) Recall [30] that the quotient of a manifold M by an equivalence
relation ρ is Hausdorff if and only if the graph of ρ, given by {(p, q) ∈ M×M :
(p, q) ∈ ρ}, is closed in M × M . In our case, the relation ρ =∼ is the
symmetric and transitive closure of the relation ρ0 given by

∆D ∪
⋃

e∈E

{(p, R̃e(p)) : p ∈ G(e)},

where ∆D = {(p, p) : p ∈ D} is the diagonal of D × D. Observe that the
graph of ρ0 is a closed set. Taking the symmetric and transitive closure of ρ0

amounts to adding to ρ0 the graphs of all maps fk◦· · ·◦f1, where f1, . . . , fk is
a collection of maps such that for some ej ∈ E, either fj = R̃ej

or fj = R̃−1
ej
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(1 ≤ j ≤ k), and the image of fj meets the domain of fj+1 (1 ≤ j ≤ k − 1).

Since the sets G(e) (the domain of R̃e) and im Re (the image of R̃e) are closed
for all e ∈ E, and E is finite, the consistency condition from (A7) guarantees
that we are adding a finite number of closed sets to ρ0. Therefore, the graph
of ∼ is closed and MH = D/∼ is a Hausdorff space.

Assume x ∈ MH. We need to show that there exists a neighborhood of
x in MH which is homeomorphic to R

n or R
n
+, where n = dimH. These

neighborhoods will be the charts of the topological manifold MH.
Let x = π(p), for some p ∈ D. If p is not identified with any other points,

i.e., if it is not in G ∪ R, then either p ∈ int D or p ∈ ∂D − (G ∪ R). In
the former case, p has a neighborhood V contained in the interior of a single
domain, homeomorphic to R

n; since π is one-to-one on V , π(V ) is homeomor-
phic to R

n. In the latter case, p has a neighborhood W contained in a single
domain, disjoint from G∪R and homeomorphic to R

n
+. Since π is one-to-one

on W (nothing in W gets glued to anything else), π(W ) is homeomorphic to
R

n
+. This completes the case when p is identified with no other points.

Before we go ahead with the proof, we state the following lemma (see
Fig. 10).

Lemma 3.8 (Gluing homeomorphisms). Suppose h+ : A+ → R
n
+ and

h− : A− → R
n
−

are homeomorphisms, where A+ and A− are disjoint topo-
logical spaces. Let Hs = h−1

s (Rn−1 × {0}), for s ∈ {−, +}, and assume that
there exists a homeomorphism g : H+ → H− such that h+|H+

= h− ◦ g. Let
A = (A+ ∪ A−)/ ∼ be the quotient space, where ∼ is the smallest equiva-
lence relation generated by x ∼ g(x), for all x ∈ H+. Denote by x/ ∼ the
equivalence class of x ∈ A+ ∪ A−. Then the map h : A → R

n defined by

h(x/∼) =

{

h+(x) if x ∈ A+

h−(x) if x ∈ A−

is a homeomorphism.

Proof. Surjectivity, injectivity, and continuity of h can be checked without
difficulty. To show that h−1 is continuous, let U ⊂ A be an open set. Denote
by p : A+ ∪A− → A the quotient map. We will show that V = h(U) is open
in R

n. To see that, observe first that p−1(U) = U+ ∪ U− (disjoint union),
where Us is open in As, s ∈ {−, +} (Fig. 10). Therefore, Vs = hs(Us) is open
in R

n
s . Consider an arbitrary x ∈ V+ ∩ R

n−1 × {0}. Then h−1
+ (x) ∈ H+.

Therefore, x = h− ◦ g ◦ h−1
+ (x). Since g ◦ h−1

+ (x) ∈ H−, we have that
x ∈ V− ∩ R

n−1 × {0}. Conversely, take an arbitrary x ∈ V− ∩ R
n−1 × {0}.

Then there exists y ∈ H− such that x = h−(y). Hence, there exists w ∈ H+

such that y = g(w). Then x = h− ◦ g(w) = h+(w) ∈ V+ ∩ R
n−1 × {0}. In

summary, V+ ∩ R
n−1 × {0} = V− ∩ R

n−1 × {0} and hence V = V− ∪ V+ is
open.
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A+

A−

U+

U−

h+

h−

H+

H−

V+

V−

R
n
+

R
n
−

R
n−1 × {0}g

Figure 10: Gluing homeomorphisms in Lemma 3.8.

We now continue with the proof of the theorem.
If p ∈ G ∪R, then according to (A5) we must consider the following four

cases. See Figure 11 for an illustration of Cases 1 and 2 and Figure 12 for
Cases 3 and 4.

Case 1: p is of Type I Then there exists e = (i, j) ∈ E such that either
p ∈ int G(e) or p ∈ int(im Re). Without loss we can assume the
former. Since interiors of sets in G ∪ R are not allowed to meet, this e
is unique. The point p is identified with p′ = Re(p); note that p/∼=
{p, p′}. There exist neighborhoods V (in Di) and V ′ (in Dj) of p and p′

respectively, homeomorphic to R
n
+ and R

n
−

(the closed upper and lower
half plane) via some homeomorphisms h and h′, respectively. Since
Re is a diffeomorphism, without loss we can assume that h|V ∩G(e) =
h′ ◦Re|V ∩G(e).

2 Then, by Lemma 3.8, U = π(V ∪V ′) is homeomorphic
to R

n via a homeomorphism hU . Note that hU is, in fact, piecewise
smooth. Thus x ∈ int MH and (U, hU ) is a chart of MH at x.

Case 2: p is of Type II Then p is on the boundary of exactly one set S ∈
G ∪ R. Without loss we may assume S = G(e), for a unique e =
(i, j) ∈ E. Hence p gets identified with (a unique point) p′ = R̃e(p) ∈
∂(im Re); observe that p/ ∼= {p, p′}. There exist neighborhoods V
(in Di) and V ′ (in Dj) of p and p′, homeomorphic to R

n
+ and R

n
−

via some homeomorphisms h and h′, respectively. Note that only a
proper subset of the boundary of V (namely, V ∩ G(e)) is identified
with a proper subset of the boundary of V ′ (namely, V ′∩ im Re). Since
R̃e is a diffeomorphism, without loss we can assume that h|

V ∩G(e) =

2If not, instead of h consider the homeomorphism ĥ : V → R
n
+ defined by ĥ = F ◦ h,

where F : R
n
+ → R

n
+ is any homeomorphism which extends h′ ◦ Re ◦ (h|V ∩G(e))

−1 :

R
n−1 × {0} → R

n−1 × {0}. Then it is easy to check that ĥ|V ∩G(e) = h′ ◦ Re|V ∩G(e).
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h′ ◦ R̃e|V ∩G(e). By a construction analogous to the one in Lemma 3.8,

it follows that U = π(V ∪ V ′) is homeomorphic to R
n
+ via some hU .

Thus x ∈ ∂MH and (U, hU ) is a chart of MH at x. Observe that
the restriction of hU is a piecewise smooth homeomorphism between
U ∩ ∂MH and R

n−1. Therefore, (U ∩ ∂MH, hU |U∩∂MH
) is a chart for

the boundary of MH.

DiDi

DjDj

pp

p′
p′

R(i,j)
R(i,j)

Case 1 Case 2

V
V

V ′V ′

G(i, j)G(i, j)

Figure 11: Proof of Theorem 3.7(a), Cases 1 and 2.

Case 3: p is of Type III Assume p/∼= {p1, . . . , pm}, where p1 = p and
pj ∈ Dij

. For each j, there exist sets Sj
1, S

j
2 ∈ G ∪ R such that pj ∈

∂Sj
1 ∩ ∂Sj

2. Further, there exist maps f1, . . . , fm such that for each j,

fj is either R̃ej
or R̃−1

ej
, for some ej ∈ E, and fj maps Sj

2 onto one of

the sets S1
1 , S1

2 , . . . , Sm
1 , Sm

2 other than Sj
2. Without loss of generality,

we can assume that
fj : Sj

2 → Sj+1
1 ,

where Sm+1
1 = S1

1 , Sm+1
2 = S1

2 . See Fig. 12 (where n = 3, m = 3). Since

pj is of Type III, there exists a neighborhood Vj of pj in Sj
1 ∪ Sj

2 , such

that Vj is homeomorphic to R
n−1. We require that Vj ∩ ∂Sj

i (i = 1, 2,

1 ≤ j ≤ m) be a neighborhood of pj in ∂Sj
i (with respect to the

relative topology ∂Sj
i inherits from Sj

i ). By the consistency condition
(2) of (A7), it is possible to choose V1, . . . , Vm so that for all j,

fj(S
j
2 ∩ Vj) = Sj+1

1 ∩ Vj+1.

This means that π(V1) = · · · = π(Vm).
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Furthermore, for each j, there exists a set Uj open in Dij
, such that Uj

is homeomorphic to R
n
+ and Vj = Uj ∩∂Dij

. Let U = π(U1∪· · ·∪Um);
this set is obtained by gluing U1, . . . , Um along V1, . . . , Vm via the maps
f1, . . . , fm. It follows by construction that U is a neighborhood of
x = π(p1) in MH and that U is homeomorphic to R

n. This in particular
means that p is in the interior of MH and U is a chart of MH as a
topological manifold. This completes Case 3.

Di1

Di2

Di3

S1
1 S1

2

S2
1

S2
2S3

1

S3
2

f1

f2

f3

π

p is of Type III

q is of Type IV

π(p)

π(q)

Figure 12: Proof of Theorem 3.7(a), Cases 3 and 4.

Case 4: p is of Type IV This proof is similar to the previous one. Con-
sider the point q of Type IV in Fig. 12. Analogously as in the proof
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of Case 3, we obtain sets S1
1 , S1

2 , . . . , Sm
1 , Sm

2 ∈ G ∪ R, U1, . . . , Um,
and V1, . . . , Vm such that: (i) Uj is open in Dij

and homeomorphic

to R
n
+; (ii) Vj is a neighborhood of pj in Sj

1 ∪ Sj
2 homeomorphic to

R
n−1
+ ; (iii) Vj = Uj ∩ ∂Dij

; and (iv) π(V1) = · · · = π(Vm). Then
U = π(U1 ∪ · · · ∪ Um) is homeomorphic to R

n
+ via a piecewise smooth

homeomorphism. Furthermore, y = π(q) lies on the boundary of MH

and U is a chart of MH at y; also, U ∩ ∂MH is a neighborhood of y
in ∂MH, homeomorphic (via a piecewise smooth homeomorphism) to
R

n−1
+ , hence a chart of ∂MH at y.

(b) Piecewise smoothness of MH and its boundary follow from piecewise
smoothness of their charts introduced in (a).

(c) A direct consequence of the above construction.

Remark 2. It is clear that the hybrifold can be a very complicated object,
especially in dimensions greater than two (consider, for instance, MBBS(N)).
The complexity of the hybrifold is simply the reflection of the complexity of
the original hybrid system; it is a measure of how complicated the interplay
is between the discrete-time and continuous-time dynamics in the original
hybrid system.

Remark on metrizability

We point out that every hybrifold MH is metrizable, that is, it admits a
metric dH : MH×MH → R+ which generates the already existing (quotient)
topology on MH. This follows from Urysohn’s metrization theorem (every
regular space with a countable basis is metrizable) and from the just proven
fact that MH is a manifold. See for example, [30]. Observe, however, that
if D is given a metric space structure, in general it may not be possible to
define dH so that the projection π is an isometry – a quotient of a metric
space may not even be metrizable. Also note that the usual definition of
distance between points as on a Riemannian manifold may not work either.
Since metrizability is not used in the rest of the paper, we will not discuss
this point any further.

The hybrid flow

Define the hybrid flow ΨH by

ΨH(t, π(p)) = πΦH(t, p).

This possibly set-valued map is defined on

Ω = {(t, π(p)) : (t, p) ∈ Ω0}.
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Orbits of ΨH are obtained by projecting orbits of ΦH by π. By the ΦH-orbit
of p we mean the collection of points ΦH(t, p) for all t such that (t, p) ∈ Ω0.

Example 3.9. Consider the examples from the previous subsection. Observe
that if H = WT, BB or BB(m), then for all x ∈ MH, we have ΨH(t, x) →
π(0), as t → τ∞(χ(x)). In other words, all executions “spiral” towards zero.
If H = S2(λ), then the hybrid flow has two equilibria corresponding to the
saddles in the original system and four “Zeno states”, that is, points at which
trajectories accumulate in a finite amount of time. The hybrid flow of ΨT 2(α)

is just the linear flow on the 2-torus. If α is rational, every orbit is closed; if
it is irrational, every orbit is dense in the torus.

Fix H and set Ψ := ΨH. For each t ∈ R and x ∈ MH, let

M(t) = {y ∈ MH : Ψ(t, y) is defined},
and

J(x) = {s ∈ R : Ψ(s, x) is defined}.
Observe that if x = π(p), then J(x)∩ [0,∞) = [0, τ∞(χ(p))). Also, for t > 0,
M(t) contains all points x = π(p) such that τ∞(χ(p)) > t. As usual, χ(p)
denotes the unique execution of H starting at p.

If M(t) is not empty, denote by Ψt the time t map of Ψ, defined by

Ψt(x) = Ψ(t, x).

Note again that the time t map of the hybrid flow of a regular hybrid
system may be multi-valued. This occurs when, due to gluing, the projections
of two disjoint executions of H overlap in the hybrifold. This can happen at
x = π(p) ∈ MH, where p is a point of type III or IV (cf. (A5)); since p is
glued to two or more other points, the orbit through x could branch. We will
deal with this situation shortly.

Definition 3.10. Let X be a smooth vector field on a smooth manifold M ,
with flow φt. We say that q ∈ M is X-reachable from a point q ∈ M , if
q = φt(p), for some t > 0. A set S is X-reachable from a point p if there
exists a point q ∈ S such that q is X-reachable from p.

To avoid the “branching scenario” described above we now introduce the
following property of hybrid systems.

Definition 3.11. A regular hybrid system H is said to be without branching
if for every point p ∈ ∂D of type III or IV with p/∼= {p1, . . . , pm}, where
pj ∈ Dij

, there exists at most one k and at most one `, 1 ≤ k 6= ` ≤ m, such
that pk is Xik

-reachable from Dik
and Di`

is Xi`
-reachable from p`.

From this point on, all hybrid systems in this paper will be as-
sumed to be regular and without branching. Note that all our ex-
amples have these properties. Observe also that H is without branching if
and only if the reverse hybrid system H′ is. We can now state the following
theorem.
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Theorem 3.12. Suppose that H is regular and without branching. Then:

(a) For each (t, x) ∈ Ω, Ψt(x) is a single point.

(b) For each x ∈ MH, the map t 7→ Ψt(x) is continuous. Moreover, if J(x)
is not a single point, the map is smooth except at (at most) countably
many points in J(x).

(c) Each map Ψt is one-to-one.

(d) Whenever both sides are defined,

ΨtΨs(x) = Ψt+s(x).

(e) For each t ∈ R, there exists an open and dense subset of M(t) on which
Ψt is continuous.

Proof. (a) Nonuniqueness of executions in MH can occur only at points
x = π(p) ∈ MH such that p is of Type III or IV, and more than one trajec-
tory of Ψ enters or leaves x. This situation is eliminated by the no branching
condition.

(b) Let x = π(p) for some p ∈ D. Let χ(p) = (τ, q, x) be the unique execution
of H starting at p (i.e., τ0 = 0 and x0(0) = p). Recall that for positive t,
Ψt(x) = πΦH(t, p) = πxj(t), if t ∈ [τj , τ

′

j). Thus it is enough to check

continuity of t 7→ Ψt(x) at τ ′

j = τj+1, for j ≥ 0. But recall that t 7→ ΦH(t, p)
is continuous from the right, with discontinuities of the first kind only at τj ,
j ≥ 0. Since xj(τj) ∈ G and

π(xj(τ
′

j)) = π(xj+1(τj+1)),

for all j ≥ 0, it follows that

lim
t→τ ′

j
−

Ψt(x) = lim
t→τ ′

j
−

πxj(t) = πxj+1(τj+1) = Ψτ ′

j
(x),

which shows that t 7→ Ψt(x) is continuous on J(x) ∩ [0,∞).
Continuity of t 7→ Ψt(x) for negative t follows by observing that ΨH

−t(x) =

ΨH
′

t (x) (t > 0), where H′ is the reverse hybrid system to H.
The extreme case when J(x) = {0} happens when x = π(p) for some

p ∈ D such that:

p ∈ G(e0), p1 = R̃e0
(p) ∈ G(e1), p2 = R̃e1

(p1) ∈ G(e2), etc.,

for a sequence e0, e1, e2, . . . in E. Then t 7→ Ψt(x) is trivially continuous.
Assume now that J(x) is not a single point. With the notation as above,

we have that for τj < t < τ ′

j ,

d

dt
Ψt(x) = Tπ(Xq(j)(xj(t))),
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which proves that t 7→ Ψt(x) is piecewise smooth. Here Tπ denotes the tan-
gent (or derivative) map of π. It is defined at xj(t) because xj(t) ∈ int D,
for τj < t < τ ′

j , and π is smooth on int D.

(c) Injectivity of Ψt follows directly from uniqueness of executions through
any point.

(d) Follows from (a) and the analogous property of ΦH.

(e) It is enough to show this for t > 0 with M(t) 6= ∅. For x ∈ M(t), denote
by O[0,t](x) the set of points Ψs(x), for all 0 ≤ s ≤ t. Let

Md(t) = {x ∈ M(t) : O[0,t](x) intersects π(∂G)},

and Mc(t) = M(t) − Md(t). So Md(t) is the set of all points in M(t) such
that on the time interval [0, t] their Ψ-orbits pass through the projection of
the boundary of some guard (and thus the boundary of the image of some
reset). On the other hand, the [0, t]-segment of the orbit of any point in
Mc(t) passes only through the projection of interiors of guards or is possibly
trapped in some domain.

It is not difficult to see that Mc(t) is open and dense in M(t). Further-
more, we claim that Ψt is continuous on Mc(t). To see this, let x0 ∈ Mc(t)
be arbitrary and let y0 = Ψt(x0). Let N be the number of guards which
O[0,t](x0) intersects. We prove that Ψt is continuous at x0 by induction on
N . If N = 0, we are dealing with a flow of a single vector field on an invariant
set, so the result follows from standard theory of differential equations. If
N > 0, since continuity is preserved under composition, it suffices to treat
the case N = 1. So let N = 1 and let V be a neighborhood of y0 in MH.
Assume x0 ∈ π(Di) and y0 ∈ π(Dj). Let w0 be the intersection of O[0,t](x0)
with the only guard (more precisely, its projection by π) it intersects, namely,
Γ = π(G(i, j)). Then w0 ∈ int Γ, and w0 = Ψs(x0), for some 0 ≤ s ≤ t (see
Fig. 13). We assume that 0 < s < t; other cases are treated analogously.
Then, there exists a neighborhood W ⊂ Γ of w0 such that for every w ∈ W ,
there exist r with 0 < r < t such that Ψr(w) ∈ V . This follows from conti-
nuity of the flow of Xj. Since the flow of Xi is also continuous, there exists
a neighborhood U of x0 such that for all x ∈ U , O[0,t](x) passes through W .
By taking a smaller U if necessary, we get that for every x ∈ U , Ψt(x) ∈ V .
Therefore, Ψt is continuous at x0. Observe that Ψ may well be continuous
also on Md(t) (e.g., Example 2.7). Compare also [36].

Remark 3. For x ∈ MH with x = π(p), we set χ(x) = π(χ(p)) and refer to
it as the execution (in MH) starting from x. Furthermore, properties of χ(p)
transfer to properties of χ(x), e.g., we say that χ(x) is a Zeno execution if
χ(p) is, and so on.
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Figure 13: Proof of Theorem 3.12(e).

4 ω-limit sets and the Zeno phenomenon

Zeno executions do not arise in physical systems, but are a consequence of
modeling over-abstraction. However, as we have seen, it is easy to construct
seemingly realistic systems which admit Zeno behavior. Therefore, one would
like to be able to identify and eliminate it. In this section we deal with the
first problem. From a mathematical viewpoint, the Zeno phenomenon poses
several interesting questions: for instance, what is its topological cause? Is
there a checkable criterion which guarantees the non-occurence of Zeno? How
should the original system be modified to remove Zeno executions? In this
section we show that, in short, the topological cause of Zenoness is lack of
smoothness in the hybrid flow.

Since we would like to study the long term behavior of executions of
hybrid systems, we define the following notion.

Definition 4.1. A point y ∈ MH is called an ω-limit point of x ∈ MH if

y = lim
m→∞

ΨH

tm
(x),

for some increasing sequence (tm) in J(x) such that tm → τ∞(x), as m → ∞.
The set of all ω-limit points of x is called the ω-limit set of x and is denoted
by ω(x).

In other words, ω-limit points for x are accumulation points of the orbit
of x. By τ∞(x) we denote the execution time of the unique infinite execution
of H starting from some p, where x = π(p); that is, τ∞(x) = τ∞(χ(p)). It is
easy to check that this is a well defined element of [0,∞].

Suppose x ∈ MH and denote by E∞(x) ⊂ E the set of discrete transitions
which occur infinitely many times in the execution starting from x. If E∞(x)
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is empty, then the orbit of x eventually ends up in a single domain Di (that
is, its image under π in the hybrifold) in which case

ω(x) ⊂ π(Di).

This means that every point y ∈ ω(x) is an accumulation point of the orbit
of a single vector field, namely Xi. If E∞(x) is non-empty, but τi = τ∞(x)
for some i ∈ 〈τ〉, then every point y ∈ ω(x) is an accumulation point of the
orbit of a discrete-time system generated by the resets Re, e ∈ E∞(x). We
will call points y ∈ ω(x) that involve only the continuous or only the discrete
dynamics pure ω-limit points.

If E∞(x) is nonempty and τi < τ∞(x) for all i ∈ 〈τ〉, then every ω-
limit point for x is a result of both the continuous and discrete (i.e., hybrid)
dynamics of H and will accordingly be called a hybrid ω-limit point of x.

A special case of a hybrid ω-limit point is a Zeno state:

Definition 4.2. A point z ∈ MH is called a Zeno state for x if z ∈ ω(x) and
χ(x) is a dynamic Zeno execution.

In other words, a Zeno state is an accumulation point of a dynamic Zeno
execution. (Recall that a Zeno execution is called dynamic if τj 6= τ ′

j for

infinitely many j’s.) We will also refer to points in π−1(z) as Zeno states in
H. For example, the “origin” 0 of MWT (as well as MBB and MBB(2)) is a
Zeno state for every point different from 0. Moreover, for each x 6= 0, ω(x)
contains only one Zeno state. We now show this is always the case.

Proposition 4.3. If the execution starting from x ∈ MH is Zeno and
bounded, then ω(x) consists of exactly one Zeno state for x. Moreover,

ω(x) ⊂
⋂

e∈E∞(x)

π(G(e)) =
⋂

e∈E∞(x)

π(∂G(e)). (3)

Proof. Let p ∈ π−1(x) be arbitrary and, as before, let χ(p) = (τ, q, x) be the
unique execution starting from p. For j ≥ 0, let Aj = π(xj(Ij)). Then Aj

is an arc in π(Dq(j)) of the ΨH-orbit of x. Since the set A =
⋃

Aj is by
assumption bounded, it must have an accumulation point, say z. Clearly,
z ∈ ω(x) and z is a Zeno state for x. Furthermore, all vector fields Xi are
bounded on A =

⋃

Aj . (This is true, for example, if the reset maps are
non-expanding; see [41, 42].) Therefore,

∞
∑

j=0

|Aj | < ∞,

where |Aj | is the length of xj(Ij) as a curve in R
d.

Suppose there exists another accumulation point of A or equivalently,
another Zeno state z′ for x. Then we have:

z = lim
m→∞

ΨH

tm
(x), z′ = lim

m→∞
ΨH

t′m
(x),
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for some increasing sequences (tm) and (t′m) in J(x) such that tm, t′m →
τ∞(x), as m → ∞. If

xm = ΨH

tm
(x) ∈ Ajm

and x′

m = ΨH

t′m
(x) ∈ Aj′m

,

for some jm, j′m → ∞, we obtain

|xmx′

m| ≤
∞
∑

l=min(jm,j′m)

|Al| → 0

as m → ∞, where |xmx′

m| denotes the length of the segment of A between
xm and x′

m. Thus z = z′. This completes the first part of the proof.
To show (3), let ω(x) = {z}, and let e = (i, j) ∈ E∞(x). Then there

exists a sequence (xm) of points in Di such that: xm is on the forward orbit
of x and xm → z as m → ∞. Thus: z ∈ π(Di). Similarly, z ∈ π(Dj). But

π(Di)∩π(Dj) ⊂ π(G(e)), so z ∈ π(G(e)). Since this holds for all e ∈ E∞(x),
the proof of (3) is complete.

Remark 4. Accumulation points of static Zeno executions are called chat-
tering states. So a Zeno state is a hybrid ω-limit point whereas a chattering
state is a pure discrete ω-limit point. Note that a chattering state for one
execution may be a Zeno state for another. For instance, in MWT and MBB,
0 is a chattering state for χ(0), but a Zeno state for χ(x), for every x 6= 0.

Note that in all the Zeno examples above none of the flows involved in
creating the Zeno state has an equilibrium at the Zeno state. (This is not
necessarily the case for purely chattering states.) The following lemma shows
that this is not a coincidence.

Proposition 4.4. A Zeno state is not an equilibrium of any of the vector
fields that participate in creating it. More precisely, if z ∈ MH is a Zeno
state for x, then for every p ∈ π−1(z), if p ∈ Di and Di is visited infinitely
often by the lift by π of the orbit of x, then Xi(p) 6= 0.

Proof. Let z be a Zeno state for x. Consider the lift of the orbit of x by π
to D and let us concentrate on its “trace” in a particular domain which it
visits infinitely often.

More precisely, there exist j ∈ Q, e = (i, j), e′ = (j, i′) ∈ E and p∗ ∈ Dj

such that π(p∗) = z and

p∗ ∈ im Re ∩ G(e′).

Furthermore, there exists a sequence (pm) in im Re converging to p∗, and a
sequence (tm) of positive numbers such that (see Fig. 14)

qm = φj
tm

(pm) ∈ G(e′) and T∞ :=
∞
∑

m=0

tm < ∞.
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Recall that {φj
t} is the (local) flow of the vector field X := Xj on Dj .

Let Am be the arc tangent to X and connecting pm and qm (i.e., Am is
the X-orbit of pm), and denote by |Am| its length. Finally, let K ⊂ Dj be a
compact set containing p∗ and Am for all m ≥ 0. It exists, because pm → p∗,
as m → ∞.

The intuition is as follows: we start from p0, flow for time t0 to q0 when
we reach the guard G(e′) and are taken outside of Dj by a reset. We enter
Dj again at p1, flow for time t1 until we reach q1, etc.

Now assume that p∗ is an equilibrium for X . Then φj
t (p∗) = p∗ for all

t ∈ R. If p ∈ Am, then p = φj
t (pm) for some 0 ≤ t ≤ tm, so we have:

||X(p)|| = ||X(p) − X(p∗)||
≤ L||p − p∗||
= L||φj

t (pm) − φj
t (p∗)||

≤ C||pm − p∗||,

where L is the Lipschitz constant of X and C = L max{||Tqφ
j
t || : 0 ≤ t ≤

T∞, q ∈ K} < ∞. From this inequality we get that

||X ||Am
:= max

p∈Am

||X(p)|| ≤ C||pm − p∗||,

for all m ≥ 0.
Next observe that

|Am| ≤ tm ||X ||Am
,

so |Am|/||X ||Am
→ 0, as m → ∞. However, by the non-zero angle require-

ment in (A2), there exists a constant a > 0 such that |Am| ≥ a ||pm − p∗||, for
all m ≥ 0. Thus:

|Am|
||X ||Am

≥ a

C
> 0,

a contradiction. Therefore, X(p∗) 6= 0.

pm

qm = φj
tm

(pm)

p∗

Am

Dj

G(e′)

Figure 14: Proof of Proposition 4.4.
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The following example indicates that the non-zero angle assumption in
(A2) was necessary in Proposition 4.4.

Example 4.5 (equilibrium + cusp = Zeno). Consider the following
one-domain hybrid system (see Fig. 15):

D = {(x, y) ∈ R
2 : y ≥ 0, −f(y) ≤ x ≤ f(y)}

G = {(−f(y), y) : y ≥ 0}, R(−f(y), y) = (f(cy), cy),

X(x, y) = (−x − y, x − y)T .

Here 0 < c < 1 and f(y) = y2 (in fact, any smooth f such that 0 ≤ f(y) ≤ y2

would do). Since f ′(0) = 0, D has a cusp at 0.
The vector field X has a spiral sink at the origin, and the time t map of

its flow is the composition of the counterclockwise rotation by t (in radians)
and contraction by e−t. Let p0 be an arbitrary nonzero point on the right
part S of the boundary of D and let χ the execution starting from p0. Let
(pm) be the sequence of intersections of χ with S; let pm = (f(ym), ym). Let
tm be the time it takes for the positive X-orbit of pm to reach G. Then
||pm+1|| = c e−tm ||pm||, so

||pm|| = cm exp

(

−
m−1
∑

i=0

ti

)

||p0||, and ym ≤ cm y0.

Let θm be the angle between the line 0pm and the positive y-axis and ηm

the angle between the positive y-axis and the line 0p′m, where p′m is the
intersection of the positive X-orbit of pm and G. Then

tm = θm + ηm ≤ 2θm = 2 arctan
f(ym)

ym

≤ 2ym ≤ 2cm y0.

Therefore,
∑

tm converges and 0 is a Zeno state despite the fact that it is an
equilibrium for X . This shows the importance of geometry of domains and
assumption (A2).

Before we proceed, we need to remind the reader of the following flow box
theorem for smooth flows [31]. Namely, assume that X is a smooth vector
field on an open set U ⊂ R

n, p ∈ U and X(p) 6= 0. Then there exists
a neighborhood V of p in U (called a flow box for X at p) and a smooth
coordinate system on V relative to which X equals the vector field ∂/∂x1,
i.e., the flow of X looks like

φt(x1, . . . , xn) = (x1 + t, x2, . . . , xn).

This means that in a neighborhood of any of its nonsingular points, the flow
of a smooth vector field has a particularly simple form.
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x = f(y)

pm

p′m

pm+1

G

R

0
x

y

Figure 15: Zeno state at a cusp which is an equilibrium.

Theorem 4.6. Suppose that MH has a smooth structure which makes the
projection π smooth and assume the hybrid flow ΨH is smooth with respect
to that structure. Then H admits no Zeno executions or equivalently, there
are no Zeno states in MH.

Proof. Fix a smooth structure on MH which turns π into a smooth map, and
assume that there exists a Zeno state z ∈ MH for some point x0 ∈ MH. Since
the hybrid flow ΨH is assumed to be smooth, it is generated by a smooth
vector field Y on MH. The projection π is smooth, so Y (x) = Tπ(Xi(p)),
for any point p such that π(p) = x, where Xi is the vector field on the
domain containing x. By Proposition 4.4, Xi(p) 6= 0, for all p ∈ π−1(z)
with p ∈ Di. Observe that on G ∪ R, π is not one-to-one. However, π does
have the property that Tπ(v) 6= 0, for every vector nonzero v tangent to D.
Therefore, Y (z) 6= 0. By the Flow Box Theorem applied to a neighborhood
of z, ΨH is the trivial horizontal flow (equivalent to the flow of the vector
field ∂/∂x1 on R

n), which implies that z = ΨH

τ∞(x)(x). But then t 7→ ΨH

t (x)

is clearly defined beyond the Zeno time τ∞(x), which is contrary to our
assumption.

In general it may not be easy to check whether, given H, the hybrifold
MH is smooth. Even if it were, non-smoothness of the hybrid flow itself may
cause Zeno to occur (cf., BB(2)). However, assuming that smoothness of
the hybrifold can be verified, the following result provides an easily verifiable
criterion for smoothness of ΨH.

Theorem 4.7. Suppose that MH is smooth in the same sense as in the pre-
vious theorem, and for every e = (i, j) ∈ E, there exists a smooth extension
R̃e of Re such that Xi and Xj are R̃e-related on G(e). That is, for every

p ∈ G(e),
T R̃e(Xi(p)) = Xj(R̃e(p)). (4)
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Then the hybrid flow is smooth.

Proof. Define a vector field Y on MH as follows. If x ∈ MH, then x = π(p)
for some p ∈ Di. Set

Y (x) = Tπ(Xi(p)).

We will show that Y is well defined.
If p is not in G∪R (i.e., p/∼ is a single point), then there is no ambiguity

in the definition of Y (x).
If p ∈ G ∪ R, then the ambiguity arises because p is identified with some

p′ via an extended reset map. Assume that p ∈ G(e) for some e ∈ E and let
p′ = R̃e(p). Since π ◦ R̃e = π, (4) and the chain rule yield

Tπ(Xj(p
′)) = Tπ T R̃e(Xi(p))

= T (π ◦ R̃e)(Xi(p))

= Tπ(Xi(p)).

Therefore, Y is well defined.
Next we show that Y is smooth. Let X be the vector field on the total

domain D which coincides with Xi on Di, for all i ∈ Q. That is, X is
the union of Xi’s. Since Di’s are mutually disjoint and each Xi is smooth,
X is smooth. By definition of Y , the vector fields X and Y are π-related.
Therefore, since X and π are smooth, so is Y .

Smoothness of ΨH now follows directly from the fact that Y generates it,
i.e.,

d

dt

∣

∣

∣

∣

0

ΨH

t (x) = Y (x),

for all x ∈ MH.

Example 4.8. Consider BB(2). Here we have

X1(1, x1, x2) = (x2,−g)T = X2(2, x1, x2), R̃(i,j)(i, x1, x2) = (j, x1,−cx2),

where (i, j) = (1, 2) or (2, 1). Therefore,

T R̃(1,2)(X1) = (x2, cg)T 6= X2,

so the hybrid flow for BB(2) is not smooth, as expected, since BB(2) is Zeno.

Example 4.9. It is not difficult to check that in the case of T 2(α), (4) is
satisfied for every α. Thus T 2(α) does not accept Zeno executions, as was
already shown above.

Corollary 4.10. If MH is smooth in the sense of Theorem 4.6 and H sat-
isfies condition (4), then H accepts no Zeno executions.

A Zeno state is an equilibrium of a sort. So we can define its stable and
unstable sets in a standard way.
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Definition 4.11. Let z be an isolated Zeno state and let U ⊂ MH be its
neighborhood. The set

Zs
U (z) = {x ∈ U : ω(x) = {z} and the forward execution of x stays in U}

is called the local stable set of z.

The local unstable set Zu
U (z) of z is defined as the stable set of z relative

to the reverse hybrid system. We also define the global stable set of z by

Zs(z) = {ΨH

t (x) : x ∈ Zs
U (z), t ≤ 0, t ∈ J(x)},

where U is any neighborhood of z in MH. Thus Zs(z) is the union of all
backward iterates of the local stable set of z. The global unstable set of z
is defined as the union of all forward iterates of the local unstable set of z.
For instance, if H = WT, BB or BB(m), then Zs(0) is a neighborhood of
0 (in fact, equals MH). We will see in the next section that this is not a
coincidence. Namely, in dimension two, the global stable set of an isolated
Zeno state is a neighborhood of the Zeno state. In higher dimensions, this is
not the case, as the following simple example illustrates.

Example 4.12. The idea is to take the water tank example and add another
direction along which the system is unstable. The system decouples into its
(x1, x2)- and x3-part. More precisely, we have (cf., Example 2.2) n = 3,
k = 2, E = {(1, 2), (2, 1)}, Di = {i} × C × R, where C = [0,∞) × [0,∞),

X1(1, x1, x2, x3) = (w − v1,−v2, 0)T , X2(2, x1, x2, x3) = (−v1, w − v2, 0)T ,

where max(v1, v2) < w < v1 + v2,

G(1, 2) = {(1, x1, x2, x3) ∈ D1 : x2 = 0},

G(2, 1) = {(2, x1, x2, x3) ∈ D2 : x1 = 0},
and

R(1,2)(1, x1, 0, x3) = (2, x1, 0, 2x3), R(2,1)(2, 0, x2, x3) = (1, 0, x2, 2x3).

The hybrifold of the described system is homeomorphic to R
3. The only Zeno

state is 0 and its stable and unstable set are the x1x2-plane and the x3-axis
respectively. Executions starting from points with x3 = 0 spiral around the
x3-axis and converge to 0 in finite time. Executions starting from points
with x3 6= 0 spiral around the x3-axis, but escape to infinity in finite time.

Open question: When is a Zeno state hyperbolic? That is, under which
conditions are the global stable and unstable set of a Zeno state smooth,
transversely intersecting manifolds of complementary dimension? Note that
this means there is no “center manifold” passing through the Zeno state.
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5 Equivalence of hybrid systems

In this section we discuss the following question: when are two hybrid systems
qualitatively the same? For that purpose we borrow the notion of equiva-
lence from the classical theory of dynamical systems [31]. Roughly speaking,
two dynamical systems are (topologically) equivalent if their phase portraits
look qualitatively (or topologically) the same. Similarly, two hybrid systems
are equivalent if their hybrid flows are equivalent. We now make this more
precise.

Definition 5.1. Two hybrid systems H1 and H2 are said to be topolog-
ically equivalent, denoted by H1 ≈ H2, if there exists a homeomorphism
h : MH1

→ MH2
which sends orbits of ΨH1 to orbits of ΨH2 , preserving

their orientation.
If MH1

and MH2
happen to be smooth manifolds of class Cr (r ≥ 1) and

h is a Cr diffeomorphism, then H1 and H2 are said to be Cr-equivalent.

As usual, by the orbit of a point x under a (local) flow {φt} we mean the
set of points φt(x) for all t for which φt(x) is defined. We usually think of h as
a change of coordinates; so two hybrid systems are topologically equivalent if
their hybrid flows are the same up to a continuous coordinate change. Note
that equivalence does not necessarily preserve the time parameter t. If it
does, it is called conjugacy.

Example 5.2. WT is topologically equivalent to BB. This can be seen in
the following way. Assume MWT is embedded in R

3 in such a way that its
“origin” coincides with the point (0, 0, 0) and MWT lies entirely in the upper
half space R

3
+ and each vertical line intersects it exactly once. Let P be the

plane x3 = 0 and let h : MWT → P be the orthogonal projection. Then h is
a homeomorphism which sends orbits of ΨWT to the orbits of the flow Φ in
Fig. 16.

By smoothing Φ along the y-axis, we obtain that it is topologically equiv-
alent to a (smooth) spiral sink at the origin, e.g., the flow of the linear vector
field X(x, y) = (−x − y, x − y)T .

Similarly, we can show that also ΨBB is topologically equivalent to the
flow of the same X . Since topological equivalence is transitive, we obtain
that WT ≈ BB, as claimed. We will see later that in dimension two this
picture is typical.

Example 5.3. T 2(1) is not equivalent to T 2(
√

2). Even though the hybrifold
for both hybrid systems is the same (the 2-torus), every orbit of T 2(1) is
closed, while every orbit of T 2(

√
2) is dense in T 2. Since equivalence always

sends closed orbits to closed orbits, the statement above follows immediately.

Ideally, one would like to be able to classify all hybrid systems up to
topological equivalence. Unfortunately, this attempt fails even for smooth
dynamical systems on compact boundaryless manifolds of dimension greater
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0

Figure 16: Flow in R
2 topologically equivalent to ΨWT .

than two, as can be seen in the standard dynamics literature (for instance,
[31]). However, it turns out that it is possible to obtain a complete picture of
the local behavior of 2-dimensional hybrid flows near an isolated Zeno state.
For completeness, we include an easy observation for 1-dimensional hybrid
flows.

Theorem 5.4. Assume H is a regular hybrid system.

(a) If dimH = 1, then H has no Zeno states.

(b) Suppose dimH = 2, H is without branching, and z ∈ MH is an isolated
Zeno state. Then there is a neighborhood U of z in MH and a neigh-
borhood V of 0 in MWT such that ΨH|U is topologically equivalent to
ΨWT |V .

Proof. (a) Topologically, MH must be either the circle or an interval (bounded
or unbounded, open, closed or half-closed). Suppose MH contains a Zeno
state for some x ∈ MH. Then χ(x) must visit at least one domain infinitely
often, so by construction, MH must be a circle. Therefore, χ(x) must go
around this circle and hence must be the whole MH. This implies that its
execution time must be infinite, which is a contradiction.

(b) Let z be the Zeno state for some x0 ∈ MH. Then τ∞(x0) > 0. Denote
by χ0 the execution starting from x0. Assume

π−1(z) = {z1, . . . , zm},

and zj ∈ Dj (if this is not the case, reorder the domains). Let χ̃0 = π−1(χ0)
and assume χ̃0 visits the domains D1, . . . , Dl infinitely often, for some 1 ≤
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l ≤ m (if necessary, reorder the domains). Then χ̃0 must accumulate at
z1, . . . , zl. Suppose that starting from D1, it goes through D2, . . . , Dl in that
order. This means that ej = (j, j + 1), for j = 1, . . . , l − 1, are all allowed
transitions, i.e., ej ∈ E. Denote

Aj = im Rej−1
, Bj = G(ej).

It is easy to see that zj ∈ Aj ∩ Bj (1 ≤ j ≤ l − 1). At this point, after
passing through D1, . . . , Dl−1, and completing its evolution through Dl, χ̃0

has to switch to one of the domains D1, . . . , Dl. We show that it must switch
to D1. To see this, observe that at zj (as at any other boundary point of
any guard or image of a reset), Aj , Bj , ∂Aj , and ∂Bj all have to look like
manifolds of appropriate dimensions. Therefore, since dimDj = 2, there is
no guard in Dj, other than Bj , containing zj in its boundary, and there
is no reset, other than R(j−1,j) whose image contains zj in its boundary.
Assume now that from Dl−1, χ̃0 switches to Dr, for some r 6= 1. Then, again
since χ̃0 accumulates at z1, . . . , zl, and by the previous observation about the
structure of Aj ’s and Bj , after completing its evolution through Dr, it will
be forced to switch to Dr+1, etc., therefore avoiding D1 altogether in the
future, which is a contradiction.

Therefore, we can, without loss, assume that χ̃0 visits D1, D2, . . . , Dl, D1, D2, . . .,
respectively.

Next, the basic observation is: since Xj(zj) 6= 0, for every j, no trajec-
tory of Xj can reach zj in finite time. Otherwise, it would prevent χ0 from
making infinitely many turns around z. Details follow.

1. We claim that for each j there exists Vj , a neighborhood of zj in Dj , such
that every execution starting in Aj ∩ Vj − {zj} reaches Bj ∩ Vj − {zj}.

Aj

Bj

zj

Vj

p

χ̃0

?

Figure 17: The execution starting at p cannot reach zj.

To prove this, let Vj be the region in Dj bounded by Aj , Bj and a single
arc of χ̃0, and let p ∈ Aj ∩ Vj − {zj} be an arbitrary point; see Fig. 17. The
execution χ(p) cannot intersect χ̃0, so it must reach Bj ∩ Vj . If it passes
through zj before it reaches Bj ∩ Vj − {zj}, then every execution starting
from a point in Aj between p and zj must pass through zj . This is impossible
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since, according to Proposition 4.4, zj is not an equilibrium of Xj (here we
also used the fact that Xj points inside Dj along Aj). Therefore, χ(p) reaches
Bj ∩ Vj − {zj}.

Let V =
⋃

Vj and U = π(V ).

2. We now investigate the only two possibilities:

Case 1 : ∂Dj is smooth at zj . Then it follows immediately from (A6) and
Proposition 4.4 that Xj is tangent to ∂Dj at zj. Therefore, by 1., in a
smooth flow box around zj , the local picture is as in part (A) of Fig.
18. (Recall that Xj extends smoothly to a neighborhood of Dj .)

zjzj

AjAj BjBj

(A) (B)

Figure 18: Local picture around zj.

Case 2 : ∂Dj is not smooth at zj . Because of 1., it is not difficult to see that
the local picture around zj looks like part (B) of Fig. 18.

3. In fact, in both cases, up to a continuous change of coordinates, the
local picture around zj looks like part (B) of Fig. 18, but with Aj and Bj

being straight line segments. To construct a topological equivalence between
ΨH near zj and ΨWT near 0, subdivide D1 of WT into l − 1 subdomains
D′

1, . . . , D
′

l−1 by l − 2 rays from the origin. Let D′

l = D2. Define a hybrid
system WTl by: the domains are D′

1, . . . , D
′

l, the vector fields X ′

j are the
restrictions of the vector fields of WT to the corresponding new domains,
and the resets are identity maps.

It is easily seen that Xj on Vj is topologically equivalent to X ′

j on D′

j.
Call the conjugating homeomorphism hj . Glue the hj ’s together to obtain
a homeomorphism h between ΨH on U and ΨWTl on a neighborhood of
0. Since ΨWTl is clearly equivalent to ΨWT , the proof of the theorem is
complete.

6 Concluding remarks

We study a class of hybrid systems which can be identified with piecewise
smooth continuous-time dynamical systems on piecewise smooth manifolds.
This is the class of “regular hybrid systems with no branching”. In our frame-
work, which includes many known examples and makes the hybrid systems
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under consideration manageable for analysis, we investigate the Zeno phe-
nomenon, show that it is due to the lack of smoothness, and classify it locally
in dimension two.

This article is an initial step towards a global geometric theory of hybrid
systems. Some work in the same direction can be found in [12, 21, 34, 35],
where we studied structural stability, stability of equilibria, and stability
of closed orbits of hybrid systems. We are interested in global geometric
and topological properties of a larger class of hybrid systems, including non-
deterministic ones, examples of “chaotic” behavior in dimension two (which
would further distinguish hybrid systems from smooth 2-dimensional flows)
and different ways of studying stability of invariant sets, including Zeno ones.
We postpone the discussion of these and other question to our forthcoming
articles.
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