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Abstract—This paper proposes a new semi-supervised machine
learning for localization. It improves localization efficiency by
reducing efforts needed to calibrate labeled training data by using
unlabeled data, where training data come from received signal
strengths of a wireless communication link. The main idea is
to treat training data as spatio-temporal data. We compare the
proposed algorithm with the state-of-art semi-supervised learning
methods. The algorithms are evaluated for estimating the un-
known location of a smartphone mobile robot. The experimental
results show that the developed learning algorithm is the most
accurate and robust to the varying amount of training data,
without sacrificing the computation speed.

I. INTRODUCTION

Indoor localization is important due to the need for lo-
cation information where GPS is not available. Fortunately,
prevalence of wireless access points located in commercial
buildings, homes, and public places helps in developing wifi-
based localization, without installation of positioning devices.
However, the wifi received signal strength (RSS) as a function
of distance between a receiver and a transmitter is non-linear
and varying due to interference of other radio signals and
obstacles. In order to overcome this problem, the learning-
based localization methods have been proposed by training
the non-linear RSS data [1]-[4].

In order to implement the learning-based localization, it
is typically required to calibrate training points manually.
Recently much effort has been concentrated on reducing the
calibration cost [5]-[7]. Semi-supervised learning is one of the
the efficient-learning localization in that it uses both labeled
and unlabeled data for learning. Benefit of semi-supervised
learning is that unlabeled data, when used in conjunction with
a small amount of labeled data, can produce considerable
improvement in learning accuracy. This method can bring big
advancement to learning-based indoor localization because we
can reduce manual operation to collect labeled training data,
while unlabled data can be easily collected by recording wifi
signal strength without position information. By using a large
amount of unlabeled data and a small amount of labeled data,
the semi-supervised learning algorithm improves efficiency.
The challenge is to maintain accuracy despite using a small
set of labeled training data.
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Many existing semi-supervised learning algorithms [8]—[11]
utilize unlabeled data only for manifold regularization, which
captures the intrinsic geometric structure of training data.
More sophisticated usage of unlabeled data is pseudolabelling
where unlabeled data are artificially labeled and then used
for learning the model as if the data are labeled. In [12]-
[17], pseudolabels are iteratively updated, and then the model
is learned by the final pseudolabels. Most pseudolabelling
methods [13]-[17] have focused on classification problems,
while only few regression problems such as localization have
been reported [12].

This paper proposes a new semi-supervised learning al-
gorithm. We separate the pseudolabelling process and the
learning process. First, in the pseudolabelling process, we
employ the Laplacian Embedded Regression Least Square
(LapERLS) [12] framework, which propagates the labeled data
to the whole data set (both unlabeled and labeled data). Based
on this framework, we add time-series regularization [18]
where training data become time-stamped by sorting the data
set in chronological order. This is reasonable for a smoothly
moving robot because training data are collected as a time
series. Therefore, pseudolabels from the time-series learning
become more sophisticated by considering both spatial and
temporal relationships than the conventional pseudolabels that
implies the spatial aspect only.

Because pseudolabels are artificial, we cannot trust the
pseudolabeled data as much as the labeled data. Therefore, it is
desirable to limit the reliance on pseudolabeled data. Altough
the existing semi-supervised methods [8], [12] have addressed
this issue, many parameters in [8], [12] that are coupled to
both labeled and unlabeled (or pseudolabeled) terms cause
algorithm complexity. Furthermore, the balancing becomes
unfeasible when amount of training data vary because the
parameters are optimized with respect to a fixed number of
labeled and unlabeled data. In worst case, the unlabeled data
may not be helpful at all. We solve this imbalance problem
by using the optimization framework Laplacian Least Square
(LapLS) that combines manifold regularization and transduc-
tive support vector machine (TSVM) [13]. In this learning
process, two decoupled balancing parameters are individually
weighted to labeled and pseudolabeled terms. Therefore, it is
easy to handle the varying amount of labeled and unlabeled
data.

We evaluate the proposed algorithm on a problem to esti-
mate the unknown location of a smartphone robot, by com-
paring with recently-developed semi-supervised algorithms,
LapERLS, semi-supervised least square support vector regres-
sion (SSL) [19], and semi-supervised colocalization (SSC)



(b) Wifi signal strength distribution of each of 9 access points

Fig. 1: (a) Experimental setup with 9 wifi access points and
one smartphone-based mobile robot; (b) Wifi signal strength
distributions of 9 APs. The APs are placed near the peeks of
each distribution.

[8]. We empirically show that our algorithm estimates the
location more accurately with fewer labeled data, by efficiently
exploiting unlabeled data. Also, when we test the localization
with respect to varying number of unlabeled data, our algo-
rithm gives the best localization performance and the lowest
variability about randomly picked training data. For varying
number of training data from 10 to 100, computation time of
the proposed algorithm is slightly longer than LapERLS and
SSL (at most 0.2 sec difference), while it is 2—6 times faster
than SSC.

This paper is organized as follows. Section II defines wifi-
based localization using a mobile robot. Section III presents
existing semi-supervised learning algorithms. Section IV de-
scribes the proposed algorithm. Section V reports empirical
results. Finally, concluding remarks are given in Section VI.

II. WIFI-BASED INDOOR LOCALIZATION

Fig. 1(a) shows the localization setup where 9 wifi access
points are deployed in the workspace. Although it seems the

dense AP deployment in area, the signal strength propagation
of all APs is adjusted to cover the room complementarily,
as shown in Fig. 1(b). Fig. 1(b) shows wifi RSSs of each
of the 9 APs which are located at the mark ’x’ in the
figures. It is shown that the highest peek is located at AP’s
true location and RSS decreases according to distance (say
rough Gaussian distribution). A mobile robot (Wheelphone
produced by GCtronic) is controlled by a smartphone (Galaxy
S3 produced by Samsung Electronics) in order to track a
designated path. The smartphone receives wifi received signal
strength (RSS) from the access points (APs). For accuracy
analysis, the true location of the mobile robot is measured by
Vicon motion capture system.

Labeled RSS training data are obtained by placing the
smartphone at different locations. Let us define the wifi
observation set as x; = {z;1,...,2in} € R™ from n APs
(n = 9 in this paper), where z;; (1 < j < n) is a scalar
decibel measurement of the j-th access point corresponding
to the robot’s location of (yx;, yyi) € R2. Total of I labeled
training data are given by {z;}!_, with z; € X C R", and
{yxi} =1, {yvi}'—,. The unlabeled data set {z;}'T", , consists
of only the RSS measurements, without position information.
Labeled and unlabeled data are obtained as we let the mobile
robot move autonomously over the area.

The training phase builds separate mappings fx : X — R
and fy : X — R which denote relationships between wifi
signal strength and location of the smartphone robot, using
the labeled training data {(z;,yx:)}_, and {(x;, yv:)}_,,
respectively, and the unlabeled data {z;}!!" . Because the
models fx and fy are learned independently, we omit the
subscripts of fx, fy, and yx, yy, for simplification.

III. SEMI-SUPERVISED LEARNING

In this section, we first describe the framework of laplacian
semi-supervised learning in III-A. Then, we briefly review
the extended semi-supervised algorithms, namely Laplacian
least square SVR (LapLS) in III-B and Laplacian embedded
regression least square (LapERLS) in III-C. Key ideas from
these algorithms will be used for our proposed algorithm in
the next Section IV.

A. Basic Semi-Supervised Learning

Given a set of [ labeled samples {(z;,;)}!_, and a set
of u unlabeled samples {xi}iiﬁl, Laplacian semi-supervised
learning aims to establish a mapping f by the following
regularized minimization functional:
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where V is a loss function, ||f||% is the norm of the function
in the Reproducing Kernel Hilbert Space (RKHS) Hy, ||f]|?
is the norm of the function in the low dimensional manifold,
and C, 4, 71 are the regularization weight parameters.



The solution of (1) is defined as an expansion of kernel
function over the labeled and the unlabeled data, given by

I+

Z a;K(xi,x) +b (2)

with the bias term b and the kernel function K(z;,z;) =
(¢(zi), #(x;)), where ¢(-) is a nonlinear mapping to RKHS.

The regularization term || f||% associated to RKHS is defined
as

1% = (@) (®a) = o Ka, (3)
where ® = [p(71),...,¢(z144)], @ = [a1,...,11,)7, and
K is the (I+wu) x ({4+u) kernel matrix whose element is K;;.
We adopt Gaussian kernel given by

Kij = K(;,2;) = exp (— ||z — ;11 /o7) , )

where o7 is the kernel width parameter.

According to the manifold regularization, datapoints are
samples obtained from a low-dimensional manifold embedded
in a high-dimensional space. This is represented by the graph
Laplacian [20]:
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where L is the normalized graph Laplacian given by L =
D=Y2(D - W)D7 2, £ = [f(x1),..., fx134)]T, W is the
adjacency matrix of the data graph, and D is the diagonal
matrix given by D;; = Zé?{ W;j. In general, the edge
weights W;; are defined as Gaussian function of Euclidean
distance, given by

2/ 2
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where o2 is the kernel width parameter.
Minimizing ||f||? is equivalent to penalizing the rapid
changes of the regression function evaluated between two data

points. Therefore, ;|| f||? in (1) controls the smoothness of
the data geometric structure.

B. Laplacian Least Square (LapLS)

We produce LapLS by combining manifold regularization
(5) and transductive SVM (TSVM) [13]. In LapLS, the loss
function V in (1) is defined by
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LapLS finds optimal parameters «, b, and the labels 7, ..., v
of the unlabeled data when regularization parameters C' and
C* are given:
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Optimizing the problem of (8) with respect to all y7,...,y.
is combinatorial problem [13]. In order to find the solution,
we have to search over all possible 2% labels of the unlabeled
data. Therefore, this method is not useful when a large amount
of the unlabeled data is applied.

C. Laplacian Embedded Regularized Least Square (LapERLS)
[12]

LapERLS introduces an intermediate decision variable g €
RU+%) and additional regularization parameter ¢ into the
laplacian semi-supervised framework (1), as follows:

I+u
fe?-lkg;lg?la(um ¢ ; V@i, 91, f) + e Z N yl
+yallflI% +llgl? ©)

The optimization problem of (9) enforces the intermediate
decision variable g to be close to the labeled data and also
to be smooth with respect to the graph manifold.

Loss function is given by:
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After reorganizing the terms in (9) with respect to manifold
regularization and decision function and corresponding param-
eter, the primal optimization problem is as follows:

V(i gi, f) = (10)
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JA+wu, (11
where A is a diagonal matrix of trade-off parameters with
A;; = M if x; is a labeled data point, and A;; = 0 if z; is
unlabeled, y = [y1,...,,0,...,0]7 € R+ and C, A, p
are tuning parameters.

Also, dual formulation of (11) is given by:
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Fig. 2: Accuracy of pseudolabels obtained by (a) time-series LapERLS (19); (b) standard LapERLS (13); (¢) RMSE of each

pseudolabel according to the amount of labeled data.
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The main characteristics of this method lies in using ¥ as the
input to learning, unlike standard semi-supervised learning that
uses ¥ = [y1,...,41,0,...,0]T. In other words, zero values
in y are modified to some values denoting pseudolabels of
unlabeled data.

Accuracy of LapERLS is often low because the original
labeled set y is replaced with the intermediate decision variable
g. Moreover, when available number of labeled data is small,
accuracy of the pseudolabels, which is difference between
true labels of unlabeled datapoints and pseudolabels of the
unlabeled datapoints, is significantly low.

IV. PROPOSED SEMI-SUPERVISED LEARNING

This section describes a new algorithm by extracting key
ideas from LapLS and LapERLS reviewed in the previous
section. In section IV-A, we add a time-series representation
to unlabeled data in order to obtain accurate pseudolabels. In
section I'V-B, pseudolabels are used in LapLS structure, which
gives optimal solution by balanced pseudolabels and labeled
data. Notations are equivalent to the previous section.

A. Time-series LapERLS

We first review the time-series learning algorithm [18].
n [18], optimization problem is built by applying Hodric-
Prescott (H-P) filter [21] that obtains smoothed-curve repre-
sentation of a time-series from training data, given by

(i) + f(xi-2) = 2f (2i-1))°
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where {(x;,y;)}i_, is time-series labeled training data.
The second term is to make the sequential points

fx;), f(zi—1), f(zi—2) on a line. The solution of (14) in the
matrix form is,

f=(I+~rDD") "y,

where
[0 0 0]
0 0 0 0
1 -2 1 0 0
D=19 1 -2 1 o0 0 (15)
0 0 1 -2 1_txt'

Our idea is to assign a temporal meaning to unlabeled data,
while in standard LapERLS unlabeled data are represented for
only spatial meaning by graph Laplacian. Representation of
spatio-temporal unlabeled data is reasonable because training
datapoints for a smoothly-moving object are collected in a
chronological order.

Now, we add H-P filter term into LapERLS formulation (9):
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After rearranging (16) using the process similar to (9) through
(12), we can obtain the optimization form of time-series
LapERLS as the following:

(z;) + g(xi—2) — 2g(x;— 1))2. (16)
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where
Q = K+ (A+mL+pDDT)™! (18)
§g = (A mL+peDDT)" Ay, (19)
5 = —a.
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(b) Pseudolabel distribution using standard LapERLS

Fig. 3: Wifi signal strength distribution of 9 access points using
pseudolabels obtained from 25% of the labeled data among
221 training datapoints.

In comparison with (13) of LapERLS, poDD” is added. We
perform an example for showing difference of pseudolabels
using LapERLS and time-series LapERLS.

Example 1: We collect time-series training data as the
robot moves over time and space smoothly as shown in
Fig. 2(a). In this example, we use 25% labeled training
data and 75% unlabeled data among 221 training data. Fig.
2 illustrates estimations of pseudolabels between time-series
LapERLS and standard LapERLS. As shown in Figs. 2(a)
and 2(b), pseudolabels produced by the time-series LapERLS
are accurate while the standard LapERLS cannot generate
meaningful pseudolabels. Furthermore, pseudolabels of the
standard LapERLS are incorrect even if we use 80% of the
labeled data as shown in Fig. 2(c), while pseudolabels of
the time-series LapERLS are accurate even when using only
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B T e I BT
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Fig. 4: Sine function estimation using LapLS in III-B with
different values of balancing parameters C' and C™*.

20% of the labeled data. We note that if a large number of
unlabeled data are incorrectly pseudolabeled such as Fig. 2(b),
that model results in bad localization performance. Another
physical interpretation about pseudolabels can be seen from
Fig. 3. We obtain pseudolabels from 25% labeled data, and
plot pseudolabel distribution of each access point. In case of
the standard LapERLS, data distributions of nodes 6, 7, 8, and
9 are severely distorted due to incorrect pseudolabels. On the
other hand, the time-series LapERLS gives data distribution
very similar to the original distribution using 100% labeled
data in Fig. 1.

Unfortunately, it is difficult to obtain good @ and § simul-
taneously because tuning parameters A, p1, and po are used
for both transformed kernel matrix Q (18) and pseudolabel
set ¢ (19). Our strategy is to pick up only y (19) and use
as a new input of other semi-supervised learning structure
so that it becomes easy to balance the labeled data and the
pseudolabeled data, as to be discussed in the following section.

B. Balancing Labeled and Pseudolabeled data

It is difficult to regard pseudolabels as labeled data, because
true labels of unlabeled data are not known. A desirable way
is to properly balance labeled and pseudolabeled data. This
is feasible by applying the LapLS structure in section III-B,
which can control the balance of training data with decoupled
parameters C' and C* in (8).

Example 2: Fig. 4 illustrates estimation of sine function
using LapLsS in section III-B where we divide labeled training
set in half and use different values of parameters, i.e. C' = 0.5
and C* = 0.1. In the latter part with C* = 0.1, estimation is
not accurate. In (8), as the parameter C™) becomes smaller,
the related term C'*) Zi(eg* )? becomes also smaller. In other
words, optimization less focuses on the training datapoints
with the smaller parameter value of C'(*),

Our idea is to use pseudolabels y (19) as the labels of
unlabeled data for LapLS (8), which forms the following



Algorithm 1 Proposed semi-supervised learning for local-
ization

Step 1 : Collect the training data set in time-series, i.e.
[ labeled samples {(z;,v;)}._; and u unlabeled samples
{z; }?:1-

Step 2 : Build the kernel matrix K (4), normalized Laplacian
matrix L in (5), and A in (11).

Step 3 : Choose values of 141 and po in (19), and then obtain
pseudolabels using (19).

Step 4 : Choose values of C' and C *, and then solve linear
equation (21).

optimization:
. 2
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where g7 are pseudolabels of unlabeled data from g (19).
Therefore, the non-convex problem of LapLS (8) is modified
to a convex problem due to insertion of pseudolabels. After
KKT conditions, we obtain the following linear system:

AX =Y, 21
where
A = [ K+T  Lgtyx ]
11y (14 0 ’
o Y
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where K is the kernel matrix in (4), @ = [aq,..., Q1] €
REFW, b e Rin (2), Lgrwyxi = [1,...,1]T € RUF and T
is diagonal matrix with I';; = 1/C fori=1,...,land I';; =

1/C* fori =1+1,...,1+u. Pseudolabel vector Y € R(+%)
is a time-series set of labeled datapoints and pseudolabels of
unlabeled data.

The proposed algorithm of (21) improves LapLS and
LapERLS. First, pseudolabels are accurately estimated by
assigning temporal-spatio representation into unlabeled data.
Second, it is easy to balance pseudolabels and labeled data.
Moreover, by incorporating pseudolabels into the LapLS struc-
ture, the non-convex problem is transformed to a convex one,
which corresponds to a linear system that can be computed
quite fast. The proposed algorithm is summarized in Algo-
rithm 1.

V. EXPERIMENTS

This section describes parameter setting in V-A and local-
ization result of the proposed learning algorithm using wifi

signal strength data in V-B. Section V-C shows localization
results according to the different number of unlabeled data
and values of tuning parameters, and Section V-D describes
the computation time of the compared algorithms.

A. Parameter Setting

Usually, parameters in machine learning have been selected
by cross validation that obtains optimal parameters to min-
imize the total training error of split training data, e.g. 10-
fold cross validation [22]. However, most semi-supervised
learning applications use a small number of labeled data,
so it is not suitable to employ the cross validation. Instead
of empirical selection of parameters using training data, this
section guidelines selections of parameters by describing the
physical meaning of each parameter in our algorithm.

First, A in A in Step 2 of Algorithm 1 can be interpreted as
importance of labeled data relative to unlabeled data by (13)
or (19). If X is relatively small, resultant pseudolabels of the
labeled data are different from the true labels. Therefore, we
select the value of A larger than the value that makes difference
between pseudolabels of labeled data and true labels. Second,
w1 and po in Step 3 of Algorithm 1 have trade-off relationship
between spatial and temporal correlation. If it is desirable
to weight temporal meaning more than spatial meaning, o
is selected larger than p. Finally, C' and C* in Step 4 of
Algorithm 1 have trade-off relationship about importance
between labeled data and pseudolabels of unlabeled data, as
described in IV-B. Thus in general, the value of C* is selected
to be smaller than the value of C.

B. Localization using Wifi Signal Strength

This section shows the localization test using only wifi
measurement in comparison with LapERLR, SSL, and SSC.
The mobile robot moves along the circular trajectory in
Fig 5(a). Fig 5(b) shows RMSE (root mean squared error)
according to percentage of the used labeled data among 221
labeled data. As a result, the proposed algorithm yields the
best localization among the compared algorithms over various
numbers of labeled training data. In particular, although only
20 labeled datapoints are used, our algorithm yields accurate
localization in comparison with the other algorithms, which
confirms that our algorithm efficiently exploits the unlabeled
data.

C. Robustness to Variations of Unlabeled Data and Tuning
Parameters

Although utilization of unlabeled data is a key advantage
of semi-supervised learning, if unlabeled data are incorrectly
pseudolabeled, they may deteriorate the accuracy as mentioned
in Example 1 of the section IV-A. Also, unlabeled data may
not be helpful when tuning parameters are not well selected.
In this section, we examine effects of amount of unlabeled
data for the fixed labeled datapoints and the change of values
of tuning parameters. We test the learning performance for
localization whose setup is the same as section V-B.

First, in the test for variation of unlabeled data, we fix values
of tuning parameters for all the compared algorithms. They are
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set to the values that provide the lowest error for the case when
the ratio between the number of unlabeled data and 50 labeled
data is 1. Moreover, the variability about randomly selected
unlabeled data is analyzed through 10 repeated simulations,
whose mean and deviation are shown in Fig. 6. The proposed
algorithm shows gradually decreasing error according to the
increasing number of the unlabeled data, and shows the lowest
deviation of error. LapERLS shows the increasing error with
respect to the increasing amount of the unlabeled data, which

Fig. 7: Localization performance according to variation of
tuning parameters of the proposed algorithm.
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demonstrates the disadvantage of the incorrectly obtained
pseudolabels. The unlabeled data are not helpful for SSC and
SSL because they cannot use unlabeled data efficiently when
only a few labeled data are available.

Second, we test our algorithm by varying the parameters
C and C* in (20) using the same set of labeled data. In
Fig. 7, except very small value of C, the RMSE does not
show the large difference. Also, when C'is fixed, the variation
of the value of C* does not much affect the RMSE. This is
advantageous in that our algorithm is robust to variation of
values of the tuning parameters.

D. Speed Test

The combined computation time of the SSL algorithm and
pseudolabelling (19) is considered as the computational cost
of the proposed algorithm. Therefore, it needs slightly more
time than each SSL and LapERLS. Fig. 8 shows computational
time of the compared algorithms using 50 unlabeled datapoints
and the varying amount of labeled data, where the same
localization setup as described in section V-C is used. The
computation time of SSC increases significantly according
to the increasing number of labeled data while the others
remain bounded regardless of the amount of labeled data. The
proposed algorithm needs little more time than LapERLS and
SSL, but this difference is negligible in applications such as
indoor localization.



VI. CONCLUSION

This paper proposes a new semi-supervised learning al-
gorithm by combining core concepts of pseudolabelling of
LapERLS, time-series learning, and LapLS with balanced
training data. From the experiment, our algorithm achieves
good accuracy using only a small number of the labeled
training data. In comparison with state-of-art semi-supervised
algorithms, the proposed algorithm yields the most precise
performance, robustness to the varying amount of training
data, and fast computation.
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