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Abstract
Distributional reinforcement learning (DRL) enhances the understanding of the effects of the ran-
domness in the environment by letting agents learn the distribution of a random return, rather than
its expected value as in standard RL. At the same time, a main challenge in DRL is that policy
evaluation in DRL typically relies on the representation of the return distribution, which needs to
be carefully designed. In this paper, we address this challenge for a special class of DRL problems
that rely on discounted linear quadratic regulator (LQR) for control, advocating for a new distribu-
tional approach to LQR, which we call distributional LQR. Specifically, we provide a closed-form
expression of the distribution of the random return which, remarkably, is applicable to all exoge-
nous disturbances on the dynamics, as long as they are independent and identically distributed
(i.i.d.). While the proposed exact return distribution consists of infinitely many random variables,
we show that this distribution can be approximated by a finite number of random variables, and the
associated approximation error can be analytically bounded under mild assumptions. Using the ap-
proximate return distribution, we propose a zeroth-order policy gradient algorithm for risk-averse
LQR using the Conditional Value at Risk (CVaR) as a measure of risk. Numerical experiments are
provided to illustrate our theoretical results.
Keywords: Distributional LQR, distributional RL, policy evaluation, risk-averse control

1. Introduction

In reinforcement learning, the value of implementing a policy at a given state is captured by a value
function, which models the expected sum of returns following this prescribed policy. Recently,
Bellemare et al. (2017) proposed the notion of distributional reinforcement learning (DRL), which
learns the return distribution of a policy from a given state, instead of only its expected return.
Compared to the scalar expected value function, the return distribution is infinite-dimensional and
contains far more information. It is, therefore, not surprising that a few DRL algorithms, including
C51 (Bellemare et al., 2017), D4PG (Barth-Maron et al., 2018), QR-DQN (Dabney et al., 2018b)
and SDPG (Singh et al., 2022), dramatically improve the empirical performance in practical appli-
cations over their non-distributional counterpart.
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In DRL, the practical effectiveness of algorithms builds on the theory by Bellemare et al. (2017),
where the distributional Bellman operator is shown to be a contraction in the (maximum form of) the
Wasserstein metric between probability distributions. However, it is usually difficult to characterise
the exact return distribution in DRL with finite data. Approximations of the return distribution
are thus necessary to make it computable in practice. To address this challenge, Bellemare et al.
(2017) propose a categorical method that partitions the return distribution into a finite number of
uniformly spaced atoms in a fixed region. One drawback of this method is that it relies on prior
knowledge of the range of the returned values. To address this limitation, a quantile function method
(Dabney et al., 2018b) and a sample-based method (Singh et al., 2022) have been recently proposed.
However, these works cannot provide an analytical expression for the approximation error, and
computational cost needs to be decided manually to guarantee approximation accuracy.

In this paper, we characterise the return distribution of the random cost for the classical dis-
counted linear quadratic regulator (LQR) problem, which we term distributional LQR. To the best
of our knowledge, the return distribution in LQR has not been explored in the literature. Our con-
tributions are summarised as follows:

1. We provide an analytical expression of the random return for distributional LQR problems and
prove that this return function is a fixed-point solution of the distributional Bellman equation.
Specifically, we show that the proposed analytical expression consists of infinitely many ran-
dom variables and holds for arbitrary i.i.d. exogenous disturbances, e.g., non-Gaussian noise
or noise with non-zero mean.

2. We develop an approximation of the distribution of the random return using a finite number
of random variables. Under mild assumptions, we theoretically show that the sup of the
difference between the exact and approximated return distributions deceases linearly with the
numbers of random variables: this is also validated by numerical experiments.

3. The proposed analytical return distribution provides a theoretical foundation for distributional
LQR, allowing for general optimality criteria for policy improvement. In this work, we em-
ploy the return distribution to analyse risk-averse LQR problems using the Conditional Value
at Risk (CVaR) as the risk measure. Since the gradient of CVaR is generally difficult to
compute analytically, we propose a risk-averse policy gradient algorithm that relies on the
zeroth-order optimisation to seek an optimal risk-averse policy. Numerical experiments are
provided to showcase this application.

Related Work: Most closely related to the problem considered in this paper is work on reinforce-
ment learning for LQR, which focuses on learning the expected return through interaction with the
environment; see, e.g., Dean et al. (2020); Tu and Recht (2018); Fazel et al. (2018); Malik et al.
(2019); Li et al. (2021); Yaghmaie et al. (2022); Zheng et al. (2021). For example, Fazel et al.
(2018) propose a model-free policy gradient algorithm for LQR and showed its global convergence
with finite polynomial computational and sample complexity. Moreover, Zheng et al. (2021) study
model-based reinforcement learning for the Linear Quadratic Gaussian problems, in which a model
is first learnt from data and then used to design the policy. However, all these works rely on the
expected return instead of the return distribution, hence these methods cannot be applied here.

Since the return distribution captures the intrinsic randomness of the long-term cost, it provides
a natural framework to consider more general optimality criteria, e.g., optimal risk-averse poli-
cies. There exist recent works on risk-averse policy design for DRL, including Singh et al. (2020);
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Dabney et al. (2018a); Tang et al. (2019). For example, the work in Dabney et al. (2018a) use
the quantile function to approximate the return distribution, which is then applied to design risk-
sensitive policies for Atari games. On the other hand, Singh et al. (2020) show that risk-averse DRL
achieves robustness against system disturbances in continuous control tasks. All these works focus
on empirical improvements in specific tasks, however, without theoretical analysis. Related to this
paper is also work on risk-sensitive LQR, which has been studied in Van Parys et al. (2015); Tsiamis
et al. (2021); Kim and Yang (2021); Chapman and Lessard (2021); Kishida and Cetinkaya (2022).
Similarly, these methods however do not analyse the return distribution.

2. Problem Statement

Consider a discrete-time linear dynamical system:

xt+1 = Axt +But + vt, (1)

where xt ∈ Rn, ut ∈ Rp, vt ∈ Rn are the system state, control input, and the exogenous distur-
bance, respectively. We assume that the exogenous disturbances vt with bounded moments, t ∈ N,
are i.i.d. sampled from a distribution D of arbitrary form.

2.1. Classical LQR

The canonical LQR problem aims to find a control policy π : Rn → Rp to minimise the objective

J(u) = E

[ ∞∑
t=0

γt(xTt Qxt + uTt Rut)

]
, (2)

where Q,R are positive-definite constant matrices and γ ∈ (0, 1) is a discount parameter. Given a
control policy π, let V π(x) = E

[∑∞
t=0 γ

k(xTt Qxt + uTt Rut)
]

denote the expected return from an
initial state x0 = x with ut = π(xt). For the static linear policy π(xt) = Kxt, the value function
V π(x) satisfies the Bellman equation

V π(x) = xT (Q+KTRK)x+ γ E
X′=(A+BK)x+v0

[V π(X ′)], (3)

where the capital letter X ′ denotes a random variable over which we take the expectation.
When the exogenous disturbances vt are normally distributed with zero mean, the value function

is known to take the quadratic form V π(x) = xTPx + q, where P > 0 is the solution of the
Lyapunov equation P = Q+KTRK+ γAT

KPAK and q is a scalar related to the variance of vt. In
particular, the optimal control feedback gain is obtained as K∗ = −γ(R+γBTPB)−1PA and P is
the solution to the classic Riccati equation P = γATPA−γ2ATPB(R+γBTPB)−1BTPA+Q.

2.2. Distributional LQR

Motivated by the advantages of DRL in better understanding the effects of the randomness in the
environment and in considering more general optimality criteria, in this paper we propose a distri-
butional approach to the LQR problem. Unlike classical reinforcement learning, which relies on
expected returns, DRL (Bellemare et al., 2023) relies on the distribution of random returns. The
return distribution characterises the probability distribution of different returns generated by a given
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policy and, as such, it contains much richer information on the performance of a given policy com-
pared to the expected return. In the context of LQR, we denote by Gπ(x) the random return using
the static control strategy ut = π(xt) from the initial state x0 = x, which is defined as

Gπ(x) =
∞∑
t=0

γt(xTt Qxt + uTt Rut), ut = π(xt), x0 = x. (4)

It is straightforward to see that the expectation of Gπ(x) is equivalent to the value function V π(x).
The standard Bellman equation in (3) decomposes the long-term expected return into an immediate
stage cost plus the expected return of future actions starting at the next step. Similarly, we can define
the distributional Bellman equation for the random return as

Gπ(x)
D
=xTQx+ π(x)TRπ(x) + γGπ(X ′), X ′ = Ax+Bπ(x) + v0. (5)

Here we use the notation D
= to denote that two random variables Z1, Z2 are equal in distribution,

i.e., Z1
D
=Z2. Note that X ′ denotes a random variable, as in (3). Compared to the expected return in

LQR, which is a scalar, here the return distribution is infinite-dimensional and can have a complex
form. It is challenging to estimate an infinite-dimensional function exactly with finite data and thus
an approximation of the return distribution is necessary in practice.

In this paper, we first analytically characterise the random return for the LQR problem. Then
we show how to approximate the distribution of the random return using finite random variables,
so such that the approximated distribution is computationally tractable and the approximation error
is bounded. The proposed distributional LQR framework allows us to consider more general opti-
mality criteria, which we demonstrate by using the proposed return distribution to develop a policy
gradient algorithm for risk-averse LQR.

3. Main Results

3.1. Exact Form of the Return Distribution

In this section, we precisely characterise the distribution of the random return that satisfies the
distributional Bellman equation (5). Given a static linear policy π(xt) = Kxt, we denote by GK(x)
the random return Gπ(x) under the policy π(xt) from the initial state x0 = x , which is defined as

GK(x) =
∞∑
t=0

γtxTt (Q+KTRK)xt, x0 = x.

The random return GK(x) satisfies the following distributional Bellman equation

GK(x)
D
=xTQKx+ γGK(X ′), X ′ = AKx+ v0, (6)

where AK := A+BK and QK := Q+KTRK. In the following theorem, we provide an explicit
expression of the random return GK(x).

Theorem 1 Suppose that the feedback gain K is stabilizing, i.e., AK = A+BK is stable. Let

GK(x) = xTPx+
∞∑
k=0

γk+1wT
k Pwk + 2

∞∑
k=0

γk+1wT
k PAk+1

K x+ 2
∞∑
k=1

γk+1wT
k P

k−1∑
τ=0

Ak−τ
K wτ ,

(7)
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where P is obtained from the algebraic Riccati equation P = Q + KTRK + γAT
KPAK , and

the random variables wk ∼ D are independent from each other for all k ∈ N. Then, the random
variable GK(x) defined in (7) is a fixed point solution to the distributional Bellman equation (6).

Proof Recall that X ′ = AKx+ v0, where v0 is a random variable sampled from the distribution D
and is independent from wk, k ∈ N, in (7). Substituting (7) into the right hand side of the equation
(6), we have that

xT (Q+KTRK)x+ γGK(X ′)

=xTQKx+ γX ′TPX ′ +
∞∑
t=0

γt+2wT
t Pwt + 2

∞∑
t=0

γt+2wT
t PAt+1

K X ′

+ 2
∞∑
t=1

γt+2wT
t PAK

t−1∑
i=0

At−1−i
K wi

=xTQKx+ γ(AKx+ v0)
TP (AKx+ v0) + γ2

∞∑
t=0

γtwT
t Pwt + 2γ2

∞∑
t=1

γtwT
t P

t−1∑
i=0

At−i
K wi

+ 2γ2
∞∑
t=0

γtwT
t PAt+1

K (AKx+ v0)

=xT (QK + γAT
KPAK)x+ γvT0 Pv0 + γ2

∞∑
t=0

γtwT
t Pwt︸ ︷︷ ︸

:=T1

+2γvT0 PAKx+ 2γ2
∞∑
t=0

γtwT
t PAt+2

K x︸ ︷︷ ︸
:=T2

+ 2γ2
∞∑
t=1

γtwT
t P

t−1∑
i=0

At−i
K wi + 2γ2

∞∑
t=0

γtwT
t PAt+1

K v0︸ ︷︷ ︸
:=T3

.

Define ξ0 := v0, ξt = wt−1, t = 1, 2, . . .. From the definition of the term T1, we have that

T1 = γvT0 Pv0 + γ2
∞∑
t=0

γtwT
t Pwt

k=t+1
= γξT0 Pξ0 + γ

∞∑
k=1

γkξTk Pξk = γ
∞∑
k=0

γkξTk Pξk.

For the term T2, we have that

T2 = 2γvT0 PAKx+ 2γ2
∞∑
t=0

γtwT
t PAt+2

K x = 2γξT0 PAKx+ 2γ2
∞∑
t=0

γtξTt+1PAt+2
K x

k=t+1
= 2γξT0 PAKx+ 2γ

∞∑
k=1

γkξTk PAk+1
K x = 2γ

∞∑
k=0

γkξTk PAk+1
K x.

Using similar techniques for the term T3, we obtain that T3 = 2γ
∑∞

k=1 γ
kξTk PAK

∑k−1
i=0 Ak−1−i

K ξi.
Due to the fact that P = Q+KTRK + γAT

KPAK , we have

xTQKx+ γGK(X ′) = xTPx+ T1 + T2 + T3

=xTPx+ γ

∞∑
k=0

γkξTk Pξk + 2γ

∞∑
k=0

γkxTPAk+1
K ξk + 2γ

∞∑
k=1

γkξTk PAK

k−1∑
i=0

Ak−1−i
K ξi, (8)

5



POLICY EVALUATION IN DISTRIBUTIONAL LQR

which is in the same form as in (7). Since {ξk}∞k=0 and {wk}∞k=0 are i.i.d., we have that the two

random variables (7) and (8) have the same distribution, i.e., GK(x)
D
=xTQKx+ γGK(X ′).

3.2. Approximation of the Return Distribution with Finite Parameters

In this section, we show how to approximate the random return defined in (7) using a finite number
of random variables. Considering only the first N terms in the summations in the expression in (7)
and disregarding the terms for k larger than N yields the following:

GK
N (x) = xTPx+

N−1∑
k=0

γk+1wT
k Pwk + 2

N−1∑
k=0

γk+1wT
k PAk+1

K x+ 2
N−1∑
k=1

γk+1wT
k P

k−1∑
τ=0

Ak−τ
K wτ .

(9)

Let FK
x and FK

x,N denote the cumulative distribution function (CDF) of GK(x) and GK
N (x), respec-

tively. The following theorem provides an upper bound on the difference between FK
x and FK

x,N ,
and shows that the sequence {GK

N (x)}N∈N converges pointwise in distribution to GK(x), ∀x ∈ Rn.

Theorem 2 Assume that the probability density functions of wk exist and are bounded, and satisfy
E[wT

k wk] ≤ σ2
0 , E[∥wk∥2] ≤ µ0, for ∀k ∈ N. Suppose that the feedback gain K is stabilizing such

that ∥AK∥2 = ρK < 1. Then, the sup difference between the CDFs FK
x and FK

x,N is bounded by

sup
z

|FK
x (z)− FK

x,N (z)| ≤ CγN , (10)

where C is a constant that depends on the matrices A,B,Q,R,K, the initial state value x, and the
parameters γ, ρK , σ0, µ0.

Proof Define YN := GK(x)−GK
N (x), we have

sup
z

|FK
x (z)− FK

x,N (z)| = sup
z

|P(GK
N (x) ≤ z)− P(GK(x) ≤ z)|

=sup
z

|P(GK
N (x) ≤ z)− P(GK

N (x) + YN ≤ z)|

=sup
z

∣∣∣P(GK
N (x) ≤ z)

∫ ∞

−∞
P(YN = t)dt−

∫ ∞

−∞
P(GK

N (x) ≤ z − t)P(YN = t)dt
∣∣∣

=sup
z

∣∣∣ ∫ ∞

−∞
P(YN = t)

(
FK
x,N (z)− FK

x,N (z − t)
)
dt
∣∣∣. (11)

Since the random variables wt are i.i.d for all t > 0 and the probability density function of wt exists,
the function FK

x,N is continuous and differentiable. Applying the mean value theorem, when t > 0

there exists a point z′ ∈ [z − t, z] such that FK
x,N (z)− FK

x,N (z − t) = fK
x,N (z′)t, where fK

x,N is the
probability density function of GK

N (x). Since the probability density function of wt is bounded, it
further follows that fK

x,N is bounded. Then, we have that |FK
x,N (z)− FK

x,N (z − t)| = |fK
x,N (z′)t| ≤

L0|t|, where L0 is an upper bound of the probability function fK
x,N . Following a similar argument,

we can show that this inequality holds when t ≤ 0. Substituting this inequality into (11), we obtain

sup
z

|FK
x (z)− FK

x,N (z)| ≤ sup
z

∣∣∣ ∫ ∞

−∞
P(YN = t)L0|t|dt

∣∣∣ = L0E|YN |. (12)
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From the definition of YN , we obtain that

YN =
∞∑

k=N

γk+1wT
k Pwk + 2

∞∑
k=N

γk+1wT
k PAk+1

K x+ 2
∞∑

k=N

γk+1wT
k P

k−1∑
τ=0

Ak−τ
K wτ

t=k−N
= γN

( ∞∑
t=0

γt+1wT
t+NPwt+N + 2

∞∑
t=0

γt+1wT
t+NPAt+N+1

K x

+ 2
∞∑
t=0

γt+1wT
t+NP

t+N−1∑
τ=0

At+N−τ
K wτ

)
.

Taking the expectation of the absolute value of YN , we have

E|YN | ≤γN
( ∞∑

t=0

γt+1E|wT
t+NPwt+N |+ 2

∞∑
t=0

γt+1E|wT
t+NPAt+N+1

K x|

+ 2

∞∑
t=0

γt+1E|wT
t+NP

t+N−1∑
τ=0

At+N−τ
K wτ |

)
.

We handle the terms in the above inequality one by one. For the first term, we have that

∞∑
t=0

γt+1E|wT
t+NPwt+N | ≤

∞∑
t=0

γt+1E|λmax(P )wT
t+Nwt+N | ≤ λmax(P )σ2

0

γ

1− γ
. (13)

For the second term, we have that

2
∞∑
t=0

γt+1E|wT
t+NPAt+N+1

K x| ≤ 2µ
∞∑
t=0

γt+1 ∥P∥2
∥∥∥At+N+1

K

∥∥∥
2
∥x∥2

≤2µ

∞∑
t=0

γt+1 ∥P∥2 ρ
t+N−1
K ∥x∥2 ≤ 2µ ∥P∥2 |x|

γρN−1
K

1− γρK
≤ 2µ ∥P∥2 |x|

γ

1− γρK
, (14)

where the second inequality is due to the fact that
∥∥∥At+N+1

K

∥∥∥
2
≤ (∥AK∥2)t+N+1 ≤ ρt+N+1

K and
the last inequality follows from the fact that N ≥ 1. For the third term, we have that

2

∞∑
t=0

γt+1E|wT
t+NP

t+N−1∑
τ=0

At+N−τ
K wτ | ≤ 2

∞∑
t=0

γt+1E

[∥∥wT
t+N

∥∥
2
∥P∥2

∥∥∥∥∥
t+N−1∑
τ=0

At+N−τ
K wτ

∥∥∥∥∥
2

]

≤2µ ∥P∥2
∞∑
t=0

γt+1E

[∥∥∥∥∥
t+N−1∑
τ=0

At+N−τ
K wτ

∥∥∥∥∥
2

]
≤ 2µ ∥P∥2

∞∑
t=0

γt+1E

[
t+N−1∑
τ=0

∥∥∥At+N−τ
K

∥∥∥
2
∥wτ∥2

]

≤2µ2 ∥P∥2
∞∑
t=0

γt+1
t+N−1∑
τ=0

ρt+N−τ
K ≤ 2µ2 ∥P∥2

∞∑
t=0

γt+1 ρK
1− ρK

≤ 2µ2 ∥P∥2
γρK

(1− γ)(1− ρK)
,

(15)

where the second inequality is due to the fact that wτ and wt+N are independent and the second to
last inequality follows from the fact that

∑t+N−1
τ=0 ρt+N−τ

K =
∑t+N

τ=1 ρτK ≤ ρK
1−ρK

. Combining (13),
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(14) and (15), we have that

sup
z

|FK
x (z)− FK

x,N (z)| ≤ L0E|YN |

≤L0γ
N
(
λmax(P )σ2

0

γ

1− γ
+ 2µ ∥P∥2 |x|

γ

1− γρK
+ 2µ2 ∥P∥2

γρK
(1− γ)(1− ρK)

)
:= CγN .

The proof is complete and also yields the expression of the constant C.

Remark 3 The bound on the distribution approximation in (10) relies on the conditions of Theo-
rem 2, which ensure that the PDF of GK

N is continuous and bounded. Note that these conditions
are not particularly strict, and indeed hold for many noise distributions commonly used in linear
dynamical systems, including Gaussian and uniform. Future work will investigate relaxations of
these conditions.

3.3. Numerical Experiments on Quality of the Approximation of the Return Distribution

In the following experiment, we consider a scalar model with matrices A = B = 1. Similarly, the
weighting matrices in the LQR cost are chosen as Q = R = 1. The exogenous disturbances are
standard normal distributions with zero mean.

Even for this scalar system, it is impossible to simplify the expression of the exact return distri-
bution, which still depends on an infinite number of random variables. Thus, as a baseline for the
return distribution, we generate an empirical distribution that approximates the true distribution of
the random return. More specifically, we use the Monte Carlo (MC) method to obtain 10000 samples
of the random return and use the sample frequency over evenly-divided regions as an approximation
of the probability density function. According to the law of large numbers, the empirical distribution
approaches the real one as the number of trials increases. Note that, although the MC method pro-
vides an alternative way to approximate the return distribution, it relies on using sufficiently many
samples that can be time-consuming, and its (statistical) approximation error is generally difficult
to analyse. Thus, the MC method is not applicable for practical policy evaluation of distributional
LQR, and in this experiment, it is used only to verify our approximate return distribution. In com-
parison, the approximate return distribution using finite number of random variables in this paper
is analytical for policy evaluation and the corresponding approximation error can be bounded: as
such, it is further usable for policy optimisation, as shown in Section 4. We denote here by fN the
distribution of the approximated random return GK

N (x0) obtained considering N random variables.
We fix the feedback gain as K = −0.4684 and select different values of γ and x0. The results

are shown in Fig. 1. Specifically, Fig. 1 (a) and (c) show that when γ is small, the return distribution
can be well approximated using only few random variables (N = 3 works well). However, when γ
approaches 1, more random variables are needed for an accurate approximation: we employ N = 15
and N = 20 random variables in the case of γ = 0.8 and γ = 0.85, respectively, as shown in Fig. 1
(b) and (d). Moreover, the value of the initial state x0 has an influence on the shape of the return
distribution, which can be clearly observed from the scalar case. When x0 is large, the random
variable wT

k PAk+1
K x0 dominates and, therefore, its distribution is close to a Gaussian distribution,

as shown in Fig. 1 (c) and (d). If instead x0 is small, then the random variable wT
k Pwk plays a

leading role, so the overall distribution is close to the chi-square one, as shown in Fig. 1 (a) and (b).
In conclusion, when N is large, the approximate distribution is closer to the distribution obtained
from the MC method, and thus to the true distribution.
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(a) γ = 0.6, x0 = 1.
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(b) γ = 0.8, x0 = 1.
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(c) γ = 0.6, x0 = 8.
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(d) γ = 0.85, x0 = 8.

Figure 1: Return distribution and its approximation with finite number of random variables for
different γ and x0. MC denotes the distribution returned by the Monte Carlo method and
fN denotes the distribution of the approximated random return GK

N (x0).

Algorithm 1 Risk-Averse Policy Gradient
Require: initial values K0, x, step size η, smoothing parameter δ, and dimension n

1: for episode t = 1, . . . , T do
2: Sample K̂t = Kt + Ut, where Ut is drawn at random over matrices whose norm is δ;
3: Compute the distribution of the random variable GK̂t

N ;
4: Compute ĈN (K̂t);
5: Kt+1 = Kt − ηgt, where gt =

n
δ2

(
Ĉ(K̂t)− Ĉ(K̂t−1)

)
Ut.

6: end for

4. Application to Risk-Averse LQR

In this section, we consider a risk-averse LQR problem and leverage the closed-form expression
of the random return GK(x) to obtain an optimal policy. Since the distribution of the random
return GK(x) consists of an infinite number of random variables, it is computationally unwieldy.
Instead, we employ the approximate random return GK

N (x) proposed in Section 3.2. As a risk
measure for the problem at hand, we select the well-known Conditional Value at Risk (CVaR)
(Rockafellar et al., 2000). We then construct an approximate risk-averse objective function, as
ĈN (K) := CVaRα

[
GK

N (x)
]
. For a random variable Z with the CDF F and a risk level α ∈ (0, 1],

the CVaR value is defined as CVaRα[Z] = EF [Z|Z > Zα], where Zα is the 1− α quantile of the
distribution of the random variable Z. Given this objective function, the goal is to find the optimal
risk-averse controller, that is, to select the feedback gain K that minimises ĈN (K).

4.1. Risk-Averse Policy Gradient Algorithm

In what follows, we propose a policy gradient method to solve this problem. We assume that the
matrices A,B,Q,R are known. The first-order gradient descent step is hard to compute as it hinges
on the gradient of the CVaR function. Therefore, we rely on zeroth-order optimisation to derive the
policy gradient, as detailed in Algorithm 1.

Specifically, at each episode t, we sample an approximate feedback gain K̂t = Kt + Ut, where
Ut is drawn uniformly at random from the set of matrices with norm δ. Given K̂t, we compute the
approximate distribution of the random return GK̂t

N (x) in (9) and the value of ĈN (K̂t). Then, we

can perform the feedback gain update as Kt+1 = Kt − ηgt, where gt =
n
δ2

(
Ĉ(K̂t)− Ĉ(K̂t−1)

)
Ui.
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Figure 2: Risk-averse control using Algorithm 1. The solid lines are averages over 20 runs.

Here, the zeroth-order residual feedback technique proposed in Zhang et al. (2022) is used to reduce
the variance. The theoretical analysis of this algorithm is left as our future work.

4.2. Numerical Experiments

Next, we consider a risk-averse LQR problem and experimentally illustrate the performance of
Algorithm 1. We illustrate our approach for the same scalar system with the same cost function
as in Section 3.3. The other parameters are selected as γ = 0.6, δ = 0.1, η = 0.0004, N = 10,
respectively. The initial controller is set as K0 = −0.2, which is a stable one.

We first set α = 1: in this case, the risk-averse control problem is reduced to a risk-neutral
control problem. Therefore, we can use traditional LQR techniques to compute the optimal feed-
back gain K∗ = −0.4684. We run the proposed risk-averse policy gradient Algorithm 1 and the
simulation results are presented in Fig. 2 (a) and (b). Specifically, in Fig. 2 (a), the controller K
returned by Algorithm 1 converges to K∗, which verifies our proposed method for the risk-neutral
case. Fig. 2 (b) illustrates the values of CVaR achieved by Algorithm 1. Additionally, we select
α = 0.4 to find the optimal risk-averse controller. The simulation results are presented in Fig. 2
(c) and (d). We see that K converges to −0.55, which leads to a smaller A + BK compared to
K∗ = −0.4684.

5. Conclusions

We have proposed a new distributional approach to the classic discounted LQR problem. Specifi-
cally, we first provided an analytic expression for the exact random return that depends on infinitely
many random variables. Since the computation of this expression is difficult in practice, we also
proposed an approximate expression for the distribution of the random return that only depends on
a finite number of random variables, and have further characterised the error between these two
distributions. Finally, we utilised the proposed random return to obtain an optimal controller for a
risk-averse LQR problem using the CVaR as a measure of risk. To the best of our knowledge, this
is a first framework for distributional LQR: it inherits the advantages of DRL methods compared
to standard RL methods that rely on the expected return to evaluate the effect of a given policy,
but it also provides an analytic expression for the return distribution, an area where current DRL
methods significantly lack. Future research includes analyzing the theoretical convergence of risk-
averse policy gradient algorithms and exploring a model-free setup where the system matrices are
unknown.
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distributional reinforcement learning. In Proceedings of International Conference on Machine
Learning, pages 1096–1105. PMLR, 2018a.

Will Dabney, Mark Rowland, Marc Bellemare, and Rémi Munos. Distributional reinforcement
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