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Abstract
The state reconstruction problem of a heterogeneous dynamic system under sporadic measure-
ments is considered. This system consists of a conversation flow together with a multi-agent net-
work modeling particles within the flow. We propose a partial-state reconstruction algorithm using
physics-informed learning based on local measurements obtained from these agents. Traffic den-
sity reconstruction is used as an example to illustrate the results and it is shown that the approach
provides an efficient noise rejection.
Keywords: state reconstruction, hyperbolic PDE, Lagrangian sensing, noise rejection, physics-
informed deep learning

1. Introduction

Traffic jams are a source of green gas and time-consumption (Ferrara et al., 2018). One solution to
lighten the effect of congestion is to control the flow of vehicles. There exist a large variety of control
strategies using variable speed limits (Delle Monache et al., 2017), ramp control (Zhang et al., 2019)
or autonomous vehicles (Piacentini et al., 2018; Wu et al., 2017). These laws require knowledge of
road density everywhere. There comes the need for an efficient state reconstruction algorithm using
measurements from fixed sensors but also capable of dealing with GPS measurements (Amin and
al., 2008) and Probe Vehicles (PVs) sensing (Herrera and Bayen, 2010).

This is challenging from a theoretical point of view since such a system is modeled by a cascaded
partial differential equation with a multi-agents network (C-PDE-MA) such as the one derived by
meBorsche et al. (2012). There exist several kinds of algorithms to estimate the density and one
can refer to the survey by Seo et al. (2017) for an overview. For fixed sensors, one can investigate
the use of backstepping observers (Smyshlyaev and Krstic, 2005). However, these cannot deal
effectively with nonlinearities and one has to approximate the system dynamic depending on its
regime (Yu et al., 2019). Using PVs, there exist some open-loop state reconstruction algorithms
proposed for instance by Delle Monache et al. (2019); Barreau et al. (2020); Čičić et al. (2020).
They are copying the system and matching the boundary conditions, consequently, they are not
robust to model mismatch or noise. Another recent field of research is to use machine learning tools
to estimate the density (Matei et al., 2019; Huang and Agarwal, 2020; Liu et al., 2021), no matter
the origin of the measurement. They are then more flexible and they lead to a good reconstruction
providing substantial computer resources.

This paper goes in that latter direction and extends the preliminary observations made in Liu
et al. (2021). One contribution of this article is to define a partial-state reconstruction (P-SR) ex-
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pressed as the solution to an optimization problem. We show that a neural network is capable
of solving the noisy state reconstruction problem asymptotically and we explain how two neural
networks with a dense architecture are well-suited to that problem. We also propose a training
procedure that is robust with a moderate computational burden.

The outline of the paper is as follows. In Section 2, we describe the model C-PDE-MA and give
some fundamental properties about the existence and regularity of solutions. We end this section by
giving a general definition of state reconstruction. Similarly to what is proposed by Ostrometzky
et al. (2019), Section 4 is dedicated to the neural network solution with a particular focus on the
numerical implementation. Finally, we consider the traffic state reconstruction problem, and sim-
ulations show a good reconstruction accuracy, even in the noisy case. The conclusion enlarges the
scope of the article by providing some perspectives.

Notation: We define !1
;>2
(S1,S2), !∞(S1,S2) and �: (S1,S2) as the spaces of locally inte-

grable functions, bounded functions and continuous functions of class : from S1 to S2, respectively.
A function in �:? is piecewise-�: . Let 5 be a function defined in a neighborhood of a point G, we
define 5 (G−) as limB→G,B<G 5 (B). For 6 a function defined in a neighborhood of G with 6(G) ≠ 0,
we write 5 = >G (6) if limB→G

5

6
(B) = 0.

2. Problem Statement

This section introduces some fundamental notions about the PDE model, the ODE model, and their
coupling. It is followed by the problem considered in this paper. Theoretical questions regarding
the existence and regularity of solutions to these models are also briefly discussed.

2.1. PDE model

To define our problem, we will use the notation introduced by Bastin and Coron (2016). We are
interested in the following scalar hyperbolic and quasi-linear PDE for (C, G) ∈ R+ × R:

md

mC
(C, G) + � (d(C, G)) md

mG
(C, G) = 0 (1)

with initial condition d(0, ·) = d0 ∈ !∞(R, [0, 1]) is piece-wise �∞. In physical systems, d :
R+ × R → [0, 1] usually refers to the normalized density. Equation (1) is then the macroscopic
expression of the conservation of mass.

We assume that

1. � : R→ R is of class �1(R,R),

2. The flux function 5 (d) =
∫ d

0 � (B)3B is concave,

3. 5 (d) = + 5 d + >0(d), where + 5 > 0 is the free flow speed.

Proposition 1 There exist weak solutions to this system with the following regularity:

∃) > 0, d ∈ �0(R+, !1
;>2 (R, [0, 1])) and piece-wise �∞. (2)

The regularity result comes from a direct application of Theorems 6.2.2 and 11.3.10 by Dafermos
(2010). The fact that d ∈ [0, 1] is a consequence of the generalized characteristic methodology
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(Protter and Weinberger, 2012, Chap. 4). Considering the Lax-E entropy condition � (d+) ≤ � (d−)
guarantees that the solution is unique (Dafermos, 2010, Theorem 14.10.2). Note that 5 is concave,
hence, the entropy condition turns out to be:

d(C, G−) ≤ d(C, G+). (3)

2.2. Agents model

Consider a network of # > 1 agents, located at H8 ∈ R, 8 ∈ {1, . . . , #} such that H1(0) < · · · <
H# (0). These agents are particles within a flow of local density d defined in (1). In other words,
d(C, ·) can be seen as a probability distribution and the agents are a subset of a given realization.

We assume first that the speed+8 of agent 8 depends only on the density at its location and that+8
is a decreasing function of the density. Since the density might be discontinuous, we consider that
the speed is the infimum in any neighborhood around its position. Because of the entropy condition
(3), the velocity function writes as:

+8 (C) = min
{
+ (d(C, H8 (C)−), + (d(C, H8 (C)+))

}
= + (d(C, H8 (C)+).

The agent’s dynamic is then modeled by the following ordinary differential equation (ODE):

¤H8 (C) = +
(
d(C, H8 (C)+)

)
for 8 ∈ {1, . . . , #}. (4)

Under the entropy condition (3), one can show that the agents stay ordered in space, meaning that
H1(C) < · · · < H# (C) for any C ∈ R+. Since the number of particles between agents 1 and #

is " (C) =
∫ H# (C)
H1 (C)

d(C, G)3G and a particle cannot overtake another one, the quantity " remains
constant and

¤" = + (d# )d# − 5 (d# ) −+ (d1)d1 + 5 (d1) = 0,

where d8 (C) = d(C, H8 (C)). The previous expression must hold for any d1, d# ∈ [0, 1] yielding:

+ (d) =
{
5 (d)d−1, if d ∈ (0, 1],
+ 5 , otherwise.

(5)

Because 5 is concave and 5 (0) = 0, we get that + is indeed a decreasing function of the density.

Proposition 2 There exists a unique absolutely continuous solution H8 of (4) defined for C ≥ 0.

Proof From the definition of 5 , we get that + ∈ �1( [0, 1],R). The proposition results from the
application of Carathéodory theorem (Coddington and Levinson, 1955, Theorem 1.1, Chap 2).

2.3. C-PDE-MA model

In this paper, the network of agents is capable of sensing the PDE state at their locations. The C-
PDE-MA model is illustrated in Figure 1. It is represented by a coupling between the PDE model (1)
and the ODE model (4) for C ∈ R+ and G ∈ R:

PDE


md

mC
(C, G) + � (d(C, G)) md

mG
(C, G) = 0,

d(0, G) = d0(G),
d̃(C) = CH̃ (C) (d(C, ·)) + =d (C),

MA

¤̃H(C) = + (d(C, H̃(C)+)),
H̃(0) = H̃0,

F̃(C) = H̃(C) + =H (C),
(6)
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Figure 1: Block diagram of system (6).

where =d, =H ∈ !∞(R+,R# ) are measurement noises, + is the element-wise function defined in (5),
H̃(C) = [H1(C) · · · H# (C)]> and F̃(C) = [F1(C) · · · F# (C)]>. The operator CH̃ : !1

;>2
(R, [0, 1]) →

[0, 1]# represents the way the agents are sensing, which ends up being:

CH̃ (C) (d(C, ·)) =
[
d(C, H1(C)+) · · · d(C, H# (C)+)

]>
.

2.4. Problem formulation

We are interested in this paper in the reconstruction of the PDE state d as expressed by the block
diagram in Figure 1. Before stating the problem, some definitions are given below.

Definition 1 LetΩ ⊆ R+, (H , ‖·‖H) be a semi-normed vector space andH2 a subset of �1(Ω,H).
The partial-reconstructed set R inH2 of d ∈ �1(Ω,H) is defined as the set:

R = argmin
d̄ ∈ H2

∫
Ω

‖d(C, ·) − d̄(C, ·)‖2H 3C. (7)

We say that a signal d̂ is a partial-state reconstruction (P-SR) if d̂ ∈ R.

Remark 2 Note that this definition encapsulates the following cases:

• If Ω = ∞ and d ∈ H2 then d̂(∞, ·) = d(∞, ·) almost everywhere and this is the definition of
an asymptotic state reconstruction.

• IfH2 is a vector space and d ∉ H2 , then the P-SR d̂ is the orthogonal projection of d onH2 .

The state reconstruction problem implies to choose three entities: the space H referring to the
spatial domain of d(C, ·); a subset H2 where we seek d̂ and the semi-norm ‖ · ‖H on H . We will
construct these three entities in the sequel.

We are working on a time windowΩ = [0, )] (we gather measurements during this time period).
For the space interval, we are interested in the reconstruction between the first and the last agents.
As noted in (2), we get H = !1

;>2
(R, [0, 1]). In the case without noise and if we assume that the

model (6) is known, we get that d ∈ H1 where:

H1 =
{
d̄ ∈ �1(Ω,H) | CH̃ (C) d̄(C, ·) = CH̃ (C) d(C, ·) for C ∈ Ω and (1) holds for (C, G) ∈ DΩ

}
with DΩ = {(C, G) ∈ Ω × R | G ∈ [H1(C), H# (C)]}. Note that H1 is generally not a vector space. As
noted by Klibanov (2006); Gosse and Zuazua (2017), even if ) →∞,H1 is usually not a singleton
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since there is no information on the initial condition. However, there always exists at least one weak
solution to (1) soH1 is not empty.

Adding bias on the measurements implies that d does not belong to H1. Consequently, it
is better to use Definition 1 with H2 =

{
d̄ ∈ �1(Ω,H) | (1) holds for (C, G) ∈ DΩ

}
and for d̄ ∈

�1(Ω,H):
‖ d̄(C, ·)‖2H =

(
CH̃ (C) d̄(C, ·)

)> (
CH̃ (C) d̄(C, ·)

)
. (8)

It is difficult to solve the optimization problem (7) since the solution to (1) is usually not smooth
(Bastin and Coron, 2016). One way to overcome this issue is to consider a slightly different partial
differential equation: md

mC
(C, G) + � (d(C, G)) md

mG
(C, G) = W2 m

2d

mG2 (C, G), (9)

where W ∈ R. This equation has many interesting properties and in particular, the solutions are
smoother than in (1). Using (Amann, 1993, Theorem 14.6) with piece-wise �∞ boundary condi-
tions, then

d̂ ∈ �1
?

(
(0, )], �2

? (R,R)
)
. (10)

Moreover, the vanishing viscosity method applied to this problem (Coclite and Garavello, 2013,
Lemma 4.2) shows that the solution to (9) converges in a weak sense to the entropic solution to (1)
as W goes to zero. The setH2 (W) becomes then:

H2 (W) =
{
d̄ ∈ �1(Ω, �2 (R,R)) | (9) holds for (C, G) ∈ DΩ and W ∈ R

}
. (11)

Using the previous definitions, we can define the partial-reconstructed set R.
Objective: Find a P-SR of d from (6) inH2 (W) for the semi-norm in (8) with the smallest W2.
Since the set H2 (W) contains an equality constraint, it might be difficult to solve the optimiza-

tion problem (7) with (8)-(11). Using the Lagrange multiplier _F > 0, we propose the following
relaxation:

R2 (W) = argmin
d̄∈� 1(Ω,� 2 (R,R))

{∫
Ω

‖d(C, ·) − d̄(C, ·)‖2H 3C + _F
∬
DΩ
FW ( d̄, C, G)2 3G 3C

}
(12)

where FW ( d̄, C, G) = md̄

mC
(C, G) + � ( d̄(C, G)) md̄

mG
(C, G) − W2 m2d̄

mG2 (C, G). It follows from the previous discus-
sion that R ⊆ R2 (W) and, in a weak-sense R = R2 (W). An element of R2 (W) is a P-SR of d solution
to (6) inH2 (W) for the semi-norm (8). The objective rewrites then as follows.

Rephrased objective: Find a signal d̂ ∈ R2 (W) with the smallest W2.
To the best of the author knowledge, the P-SR solution to an hyperbolic PDE with noisy mea-

surements coming from a network of agents has never been considered in the literature. We propose
to solve this using machine learning as explained in the following section.

3. Learning-based State Reconstruction

This section is divided into two subsections. In the first one, we derive a P-SR problem associated
to (6) without noise. In the second one, the same is discussed with addition of noisy measurements.
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3.1. Neural network solution to the P-SR problem without noise

A neural network of #= neurons designed for a regression problem is the mapping Θ8 ( ®-) =
k(18 + \>8 ®-), where 18 and \8 are the bias and the weight tensors respectively. k is the element-
wise activation function. A densely connected deep-neural network is a neural network with #!
layers, meaning that Θ = Θ1 ◦ Θ2 ◦ · · · ◦ Θ#!

. This neural network is trained on the data-set
(®C, ®G, d(®C, ®G)), meaning that the weights and biases are found as the arguments that locally min-
imizes a loss function L. For regression problems, the loss function is usually chosen to be

1
#data

∑#data
:=1 (d(C: , G:) − Θ(C: , I:))

2 where #data ∈ N is the number of measurements. This is the
Mean-Square Error (MSE) between the observed and estimated outputs. Note that this loss function
is a discretization of the !2-norm of the error on the whole space DΩ.

We cannot measure points all over the domain but only on the image of the operator CH̃ . For
{C: }:∈1,...,#data uniformly distributed in [0, )], {(CF

9
, GF
9
)} 9∈1,...,#F uniformly distributed in DΩ and

_1, _2, _W > 0, an equivalent discretization of the cost function in (12) is:

L®C ( H̃, d̃,Θ) =
_1
#data

#data∑
:=1



d̃(C:) − CH̃ (C: )Θ(C: , ·)

2 + _2
#F

#F∑
9=1

(
F (Θ, CF

9
, GF
9
)
)2
+ _WW2. (13)

L is divided into three parts:
1. the first term is the traditional MSE over the measurements.

2. the second term (often called the physics MSE) does not rely on measurements but only
depends on the weights and biases of the neural network, it is derived using automatic differ-
entiation (Baydin et al., 2017) based on the dynamic of the system. As stressed in Raissi et al.
(2019),it can be seen as a regularization agent, preventing over-fitting by disregarding non
physical solutions and reducing the impact of the noise by enforcing the model. The choice
of the weight _2 depends then on the confidence we have in the model and the sparsity of the
dataset.

3. the minimization of W2 such that the solutions of (9) are close to the solutions of (1).

The second term of the previous objective function was introduced by Lagaris et al. (1998);
Psichogios and Ungar (1992) where the authors used a neural network to provide a solution to a
differential equation. It has been investigated more recently in Raissi et al. (2019) under the name
”Physics-informed deep learning” where it has been extended to robust parameter identification.

Using a backpropagation algorithm, we train the neural network by locally solving the following
optimization problem:

R#=
= argmin
11,...,1#!

, \1,..., \#!

L®C ( H̃, d̃,Θ). (14)

Using a neural network to solve this problem is reasonable since, as shown in Sirignano and
Spiliopoulos (2018), it has a convergence property recalled below.

Theorem 1 In the case _W = 0, the following holds:

lim
#= ,#data,#F→∞

L®C ( H̃, d̃,Θ) = 0 and lim
#= ,#data,#F→∞

(
inf

d1∈R#= ,d2∈R2 (W)

∬
DΩ
(d1 − d2)2

)
= 0.

The proof is given in the extended version of that paper and is similar to the one of Theo-
rems 7.1 by Sirignano and Spiliopoulos (2018). The previous theorem means that Θ in (14) is an
approximation of a P-SR and if the number of neurons tends to infinity, it tends to be a P-SR in
H2 (W).
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Figure 2: Block diagram of the neural network for P-SR with noise. The dashed arrows refer to
values used for training the neural network. Green variables are a priori choices while the
red ones are the measurements.

3.2. Neural network solution to the P-SR problem with noise

First, assume that =d is a realization of a Gaussian distribution with mean ` and standard deviation
f. The current optimization problem (14) implies the minimization of a MSE, consequently, the
variance of the noise on the agents’ trajectories is minimized. The second part of the cost function
enforces the signal to be a solution to the noiseless model keeping a low variance as well. Such an
implementation performs well and rejects the unbiased noise =d (Raissi et al., 2019).

In the biased case, if ) is large enough, we get L®C ( H̃, d̃, d + Y`) = #
(
f2 + (1 − Y)`2) + >0(Y).

Consequently, Y small and ` ≠ 0 yield L®C ( H̃, d̃, d+Y`) < L®C ( H̃, d̃, d) and d is not a local minimizer.
One solution to this issue is to consider instead the loss function L®C ( H̃, d̃ − =̄d,Θ) where =̄d ∈ R# .

To deal with the noise =H , the neural network architecture has to be modified. In that case,
one need to propose a similar architecture with some physics cost on F̃, leading to the diagram in
Figure 2. There are then two neural networks that are trained simultaneously. Θ is the same as in
the previous part and the second one, Φ, estimates H̃. Naturally, the loss function is:

L̃®C (F̃, d̃) = L®C (Φ, d̃ − =̄d,Θ) +
#data∑
:=1

_3 ‖Φ(C:) − F̃(C:)‖2

#data × #
+
#G∑
;=1

_4




G(Φ, CG
;
,Θ

(
C
G
;
,Φ(CG

;
)
)


2

#G × #

where L®C is defined in (13), =̄d ∈ R# , _3, _4 > 0 and G( H̃, C, d̃) = ¤̃H(C) −+ ( d̃(C)).

Remark 3 The physics cost related to the trajectories of the agents is adding some artificial bound-
ary data. Consequently, the measurements can be sparser for a similar trajectory estimation.

3.3. Numerical implementation

3.3.1. NETWORK ARCHITECTURE

It is well-known that some solutions of (1) are discontinuous while solutions of (9) are usually not.
Nevertheless, they may have fast variations. The neural network Θ must handle both shock and
rarefaction waves while Φ represents an absolutely continuous function.

Φ takes one input (the time C) and has # outputs (the positions of the agents). Since the solution
is absolutely continuous (it is piece-wise �1), the best is to combine some ReLu and tanh activation
functions. To keep a simple structure, one can then consider two dense neural networks with differ-
ent activation functions such as ReLu and tanh. They are summed and weighed at the end to give
the final output. There are 3 hidden layers, each with 2# neurons for each sub-network.
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For Θ, the architecture is more complex. Since we are considering a viscous PDE, the solutions
are continuous and using the tanh as an activation function seems a good choice for several reasons:

1. A dense neural network with tanh activation functions can deal with almost-shock waves
since Θ(C, G) = tanh (:)B (C, G)) where )B is the trajectory of a shock wave. If : is chosen very
large, then there is a very steep slope along the curve )B (C, G) = 0.

2. It can deal with rarefaction waves as well since in this case the solution is �−1(G/C) (Evans,
1998, Section 11.2) which is continuous since � is �1 and � ′ < 0.

Consequently, the number of nodes can be related to the number of waves in the solution. On the
contrary, the number of layers deals with the inference between these waves. In conclusion, the
number of nodes is related to the length-space while the number of layers reflects the time-window.
Choromanska et al. (2015) showed that having a neural network with many variables usually leads
to better convergence. As said previously, the neural network should not overfit the data because
of the regularization agent so we can consider a large network with 8)/100 layers made up of
20!/7000 neurons each.

3.3.2. TRAINING PROCEDURE

First of all, since the space and time intervals are not of the same order of magnitude, it is better to
standardize the dataset before training. Indeed, that leads to a faster convergence of the optimization
procedure to a more optimal solution (Goodfellow et al., 2016).

Similarly to what was done in Raissi et al. (2019); Lagaris et al. (1998); Sirignano and Spiliopou-
los (2018), the best solver for this problem seems to be the BFGS algorithm (Nocedal and Wright,
2006, Chap 6). Nevertheless, it is quite slow so one can consider speeding it up with a pre-training
using Adam (Kingma and Ba, 2015). Another issue comes with the choice of the different _. It
appears that the effect of this choice decreases when we split the training into several steps, leading
to the following procedure:

1. Let _1 = _2 = _W = 0 and _3 = 1, _4 = 0.5. We then estimate precisely the trajectories of the
agents and we modify the value of the density along these curves. We train using the BFGS
algorithm with low requirements such that the convergence is rapidly obtained.

2. Then, we train the value of the density without modifying the trajectories. For that, we fix the
Φ neural network and we use first Adam and then BFGS with _1 = 1, _2 = 0.1, _W = _3 = 0
and _4 = 0.25. This step takes more time and fixes the values of the density at its boundaries
while starting to enforce the physics of the PDE inside the domain.

3. Finally, we optimize using BFGS only and _1 = 1, _2 = 1, _W = 0.1, _3 = 1 and _4 = 0.5.
We focus on this step on the noise reduction and we minimize the coupled system proposed
in Figure 2. Since the trajectories are close to their optimal values, this step changes mostly
the values of the density inside the domain, trying to keep a low value of W.

This procedure seems, in general, to be a good starting point for such a problem since it follows the
iterative procedure described in Bertsekas (2014). The weights values have to be designed in each
case and the one used here leads to the lowest computed generalization error in our case.
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4. Traffic flow theory and simulation results

4.1. Traffic flow theory

The simplest model for traffic flow on a highway is given by the continuity equation, which is
nothing more than the conservation of mass (Evans, 1998, Chapter 11). This model has been derived
by Lighthill and Whitham (1955); Richards (1956) and it results in the so-called LWR model:

md

mC
(C, G) + md

mG
(d+) (C, G) = 0, (C, G) ∈ R+ × R (15)

where d : R+×R→ [0, 1] is the normalized density of cars. It can be represented as the probability
distribution of a car at a given position G at time C. + : [0, 1] → R+ stands for the equilibrium
velocity of a car depending on the density around. The LWR model assumes, similarly to Green-
shields et al. (1935), that + = + 5 (1 − d), where + 5 > 0 is the free flow speed. With this choice,
(15) transforms into the following scalar hyperbolic PDE for (C, G) ∈ R+ × R:

md

mC
(C, G) ++ 5 (1 − 2d(C, G)) md

mG
(C, G) = 0. (16)

In the context of traffic flow, we are considering that there are some vehicles – called Probe
Vehicles (PV) – capable of sensing the density around them using the distances to their neighbors,
cameras (Chellappa et al., 2004; Kang and Kum, 2020) or radar sensors (Sun et al., 2006). The
state reconstruction problem without noise is solved in finite-time by Delle Monache et al. (2019);
Barreau et al. (2020) for instance. The results in our case are shown in the following subsection. A
full study on this example is conducted in Liu et al. (2021).

4.2. Simulation results

We are studying here the P-SR problem of (16) using probe vehicles. The real density is obtained
from a Godunov scheme (LeVeque, 1992) with random initial and boundary conditions. From
the GitHub repository (Barreau and Liu, 2020), one can see that shocks and rarefaction waves are
making the reconstruction difficult. The reconstruction is evaluated in two cases with a neural
network coded using Tensorflow 1.15 (Abadi and al., 2015). The first scenario considers the system
without noise. The second case contemplates =d as an unbiased Gaussian noise with a standard
deviation of fd = 0.2 and =H as a Brownian motion generated from a normal distribution with
zero mean and a variance fH = 2. 20 P-SR are done using a naive BFGS Raissi et al. (2019);
Sirignano and Spiliopoulos (2018) and 20 others using the training procedure described earlier. The
computations are done on a Intel Core i5-8365 CPU @ 1.60GHz and 16 GB of RAM computer.
The computation time and the normalized error are displayed in Figure 3.

One can see that the reconstruction has a small generalization error in general. The error is
coming from discrepancies for small-time C because of the effect of the unknown initial condition.
But, after a while, the reconstruction error is close to zero between the PVs except on the shock
trajectories where the neural network is unable of reproducing the steep variation. The modified
training has a larger computation time (10 times larger in average) but a smaller and more consistant
generalization error (4 times smaller in average with a standard deviation is 3 times smaller). That
means the modified training procedure is indeed more accurate and robust to the neural network
initialization at the price of a much larger computation time.

9
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Figure 3: Computation time and error depending on the training algorithm.

5. Conclusion & Perspectives

In this paper, we proposed the partial-state reconstruction problem of a hyperbolic equation using
only Lagrangian measurements and we applied it to the special example of traffic flow estimation.
To that extend, we used physics-informed deep learning to counterbalance the small number of
measurements and increase the robustness. The simulations showed that noise was indeed rejected.

This is preliminary work and we propose many perspectives. First of all, the neural network can
be improved by considering a more specific architecture (Hochreiter and Schmidhuber, 1997). One
can also look into the direction of a decentralized reconstruction algorithm, that would effectively
reduce the computational burden while increasing the sensitivity to noise. The roles of the _ have
not been explored in the paper, however, it appears that the speed of convergence highly depends
on these values. A theoretical study on the role of these multipliers should be done to get a better
understanding of the optimization process. Finally, one can also consider second-order models
which are more adapted to traffic flow (Aw and Rascle, 1995; Zhang, 2002).
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