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Abstract

Mathematical models are fundamental building blocks in the design of dynamical control
systems. As control systems are becoming increasingly complex and networked, approaches
for obtaining such models based on first principles reach their limits. Data-driven methods
provide an alternative. However, without structural knowledge, these methods are prone to
finding spurious correlations in the training data, which can hamper generalization capabili-
ties of the obtained models. This can significantly lower control and prediction performance
when the system is exposed to unknown situations. A preceding causal identification can
prevent this pitfall. In this paper, we propose a method that identifies the causal structure
of control systems. We design experiments based on the concept of controllability, which
provides a systematic way to compute input trajectories that steer the system to specific
regions in its state space. We then analyze the resulting data leveraging powerful techniques
from causal inference and extend them to control systems. Further, we derive conditions
that guarantee the discovery of the true causal structure of the system. Experiments on
a robot arm demonstrate reliable causal identification from real-world data and enhanced
generalization capabilities.

1 Introduction

When learning models for dynamical control systems, we ideally would like to obtain models that (i) gener-
alize well to new domains, (ii) are interpretable, and (iii) computationally efficient. However, generalization
to new domains and interpretability are particular weaknesses of current black-box machine learning meth-
ods (Schölkopf, 2022; Rudin, 2019). We address this problem by first identifying a control system’s causal
structure and subsequently using this structural knowledge for model learning.

As the understanding of causality differs depending on the domain, we first provide some intuition of what
kind of structure we seek to identify. For this, following Eichler (2012), we consider two notions. The first is
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temporal precedence: causes precede their effects. Temporal precedence is the typical causality notion used
in systems theory (Hespanha, 2018, p. 31). However, here, we mainly focus on the second notion, physical
influence: manipulating causes changes the effects. In other words, we seek experimental routines and tests
that enable control systems to learn (i) what is the influence of their internal states on one another, and (ii)
which of their inputs influence which internal states.

Incorporating the causal structure into the model learning problem targets the three characteristics of ideal
models outlined above. A key reason for the shortcomings of most current machine learning algorithms
concerning those characteristics is that they mostly rely on a pure statistical analysis of the data (Pearl,
2018). Thus, when considering stochastic systems and finite sample sizes, these algorithms will, due to spu-
rious correlations, typically find connections between variables, although those variables do not influence one
another based on the underlying physical equations. This can lead to catastrophic errors when extrapolating
outside the training data, thus, diminishing generalization capabilities. Further, such models are less inter-
pretable since it is unclear whether connections between variables in the model indicate a causal influence
or merely spurious correlation found in the training data. A causal analysis mitigates both problems since it
identifies which variables actually have a causal influence on each other. Incorporating this knowledge into
the model learning problem yields more interpretable models that generalize better to new domains (Pearl
& Mackenzie, 2018). Lastly, when only connections between variables that actually have a causal influence
on one another are considered, this also reduces the model’s parameter space. Therefore, the causal analysis
also helps make the model computationally more efficient.

In this paper, we propose an algorithm that automatically identifies the causal structure of a control system.
The problem of inferring causal structure from observational data, i.e., given data for which we cannot
influence the data generating process, has been addressed using various methods, see Spirtes et al. (2000);
Peters et al. (2017) for an overview. For control systems, solely relying on observational data is not necessary.
Such systems are equipped with an input, which they can use to actively conduct experiments for causal
inference. Causal inference from experiments, or interventions, has also been studied, most prominently
in the context of the do-calculus (Pearl, 1995). However, there it is assumed that state variables can be
directly influenced by the input, which is often not possible in control systems. In control systems, it is
essential to consider a proper notion of controllability, i.e., how the system can be steered to particular
regions in the state space through appropriate input trajectories. To the best of our knowledge, such
notions have not been considered yet in the causality literature. In the literature on model learning and
system identification, we find many techniques for learning mathematical models for control systems (Ljung,
1999; Nguyen-Tuong & Peters, 2011; Schoukens & Ljung, 2019). In system identification, the problem of the
exploding number of parameters for black-box methods has, for instance, been addressed using regularization
techniques (Schoukens & Ljung, 2019). While these methods can reduce the number of parameters, they may
exclude parameters representing a causal influence or include parameters representing spurious correlation
depending on the regularization parameter. Thus, the obtained models may fall short on generalization and
interpretation capabilities.

Contributions. In summary, existing methods from causal inference do not consider a proper notion of
controllability, while existing methods from system identification cannot give formal guarantees on finding
the true causal structure. In this paper, we bridge this gap and present an algorithm that identifies a control
system’s causal structure through an experimental design based on a suitable controllability notion and a
subsequent causal analysis, for which we can provide formal guarantees. For the causal analysis, we leverage
powerful kernel-based statistical tests based on the maximum mean discrepancy (MMD) (Gretton et al.,
2012). Since the MMD has been developed for independent and identically distributed (i.i.d.) data, we
extend it by deriving conditions under which the MMD still yields valid results and by coming up with a
test statistic for hypothesis testing, despite non-i.i.d. data. In terms of controllability, we investigate three
different settings: (i) exact controllability, where we can exactly steer the system to a desired position, (ii)
stochastic controllability, where we can only steer the system to an ε-region around the desired position,
and (iii) the special case of linear systems with Gaussian noise that are controllable in the sense of Kalman
(Kalman, 1960a), as they represent a widely studied class of systems. We demonstrate the proposed method’s
applicability by automatically identifying the causal structure of a robotic system and a simulated, nonlin-
ear quadruple tank system. Further, we show improved generalization capabilities for the robotic system
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and reduced computational complexity for the quadruple tank system, both inherited through the causal
identification.

2 Related Work

To the best of our knowledge, no other algorithm seeks to identify the causal structure of a dynamical
control system through experiments based on a suitable controllability notion. However, several works in
causal inference aim to infer the causal structure of dynamical systems, and several methods in system
identification seek to reduce the parameter space or identify structural properties of control systems. In this
section, we discuss those works.

Causal inference for dynamical systems. Causal inference in dynamical systems or time series has been
studied in Demiralp & Hoover (2003); Eichler (2010); Moneta et al. (2011); Malinsky & Spirtes (2018) using
vector autoregression, in Peters et al. (2013) based on structural equation models, in Entner & Hoyer (2010),
using the fast causal inference algorithm (Spirtes et al., 2000), and in Salvi et al. (2021) and Quinn et al.
(2011), applying kernel mean embeddings and directed information, respectively. In Pfister et al. (2019), the
authors develop a procedure for learning the causal structure of kinetic systems. A more extensive overview
of causal inference methods that can be applied to time-series data, with a particular focus on Earth system
sciences, is provided in Runge et al. (2019a). While all these methods make causal inference for dynamical
systems, none of them investigates experimental design. Instead, they aim to infer the causal structure from
observational data and, thus, need additional assumptions to arrive at statements about the causal structure.
Dynamical systems, as considered in this work, can be actively influenced through a control input. Hence,
we can design experiments and do not need to rely on the data being sufficiently rich.

Experimental design. A well-known concept for causal inference from experiments is the do-calculus. In
the basic setting, a variable is clamped to a fixed value, and the distribution of the other variables conditioned
on this intervention is studied (Pearl, 1995). Extensions to more general classes of interventions exist, see,
e.g., Yang et al. (2018); Shanmugam et al. (2015), but they consider static models, which is different from the
dynamical systems studied herein. Causal inference in dynamical systems or time series with interventions
has been investigated in Eichler (2012); Peters et al. (2022); Mooij et al. (2013); Rubenstein et al. (2018);
Sokol & Hansen (2014). However, therein it is assumed that one can directly manipulate the variables,
e.g., by setting them to fixed values or forcing them to follow a trajectory, which is typically impossible in
practice. None of those works considers various degrees of controllability, which is the case in this paper.
Thus, they are not readily applicable to control systems.

Model selection and regularization. As an alternative to directly testing causal relations between
variables, several methods exist that identify a dynamic model, trading off model complexity and accuracy.
Typically, this is done by letting the algorithm select from a set of candidate models. In system identification,
the Akaike information criterion (Akaike, 1973) and the Bayesian information criterion (Schwarz, 1978) are
two well-known examples of such methods. In neuroimaging, there are dynamic causal models (Friston
et al., 2003; Stephan et al., 2010). A third family of methods are symbolic regression techniques (Bongard
& Lipson, 2007; Schmidt & Lipson, 2009; Brunton et al., 2016). In all cases, the true causal structure of the
system can only be revealed if a model representing this structure is part of the candidate models. Further,
they typically use a regularization parameter to find a trade-off between model complexity and accuracy.
This parameter punishes model complexity (e.g., the number of parameters) and rewards goodness of fit.
Thus, it also depends on the specific choice of this regularization parameter whether or not these algorithms
find a model representing the system’s true causal structure.

Structure detection in dynamical systems. Revealing causal relations in a dynamical system can be
interpreted as identifying its structure. Related ideas exist in the identification of hybrid and piecewise affine
systems (Roll et al., 2004; Lauer & Bloch, 2018). These approaches try to find a trade-off between model
complexity and fit but cannot guarantee to find the true causal structure. Further methods that identify
structural properties of dynamical systems can be found in topology identification (Materassi & Innocenti,
2010; Shahrampour & Preciado, 2014; van den Hof et al., 2013) and complex dynamic networks (Boccaletti
et al., 2006; Liu et al., 2009; Yu, 2010). Those works seek to find interconnections between subsystems
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instead of identifying a system’s inner structure as done herein. Moreover, while the mentioned works often
rely on restrictive assumptions such as known interconnections or linear dynamics, our approach can deal
with nonlinear systems and does not require prior knowledge.

Kernel mean embeddings. For causal inference, we will leverage concepts based on kernel mean embed-
dings, which have been widely used for causal inference (Peters et al., 2017; Chen et al., 2014; Lopez-Paz
et al., 2015). A downside of those methods is that they typically assume that data has been drawn i.i.d.
from the underlying probability distributions. Extensions to non-i.i.d. data exist (Chwialkowski & Gretton,
2014; Chwialkowski et al., 2014), but rely on mixing time arguments. Dynamical systems, as investigated
in this work, often have large mixing times or do not mix at all (Simchowitz et al., 2018). Therefore, these
types of analyses are not sufficient in this case.

3 Problem Setting and Main Idea

We consider dynamical control systems of the form

x(t) = f(x(0), u(0 : t), v(0 : t)) (1)

with discrete time index t ∈ N, dynamics function f , state x(t) ∈ X ⊂ Rn, state space X , input u(t) ∈
U ⊂ Rm, input space U , and v(t) ∈ Rn an independent random variable sequence. The notation (0 : t) here
denotes the sequence u(0), u(1), . . . , u(t). In the following, we will omit this notation and simply write u or v
if we consider the whole trajectory. The description of the system in equation 1 is different from the standard,
incremental version x(t+ 1) = f̃(x(t), u(t), v(t)). Specifically, equation 1 emphasizes the dependence of x at
time t on the initial state. Equation 1 can readily be obtained by iterating f̃ starting from x(0).

We will lend notation from the do-calculus (Pearl, 1995) for causal inference. In this notation, P(x(t) |
do(xi(0) = xI

i(0))) defines the conditional probability distribution of x(t) given that we set the initial
condition of the ith component of the state vector x to a specific value xI

i(0) while all other components of
x and the inputs u are left unaffected. In this article, we show how such do-conditional distributions can
be realized in dynamical systems when considering a suitable notion of controllability and how we can use
them for causal inference.

3.1 Problem Setting

The system description from equation 1 is stochastic and, hence, induces a probability distribution P(x)
over trajectories x. Based on this, we define non-causality adapting standard notation from the do-calculus
(Pearl, 1995) to dynamical systems as in equation 1:
Definition 1 (Global non-causality). The state variable xj does not cause xi if P(xi | do(xj(0) = xI

j(0))) =
P(xi | do(xj(0) = xII

j (0))) for all xI
j(0) and xII

j (0). The superscripts I and II denote two experimental designs,
i.e., different choices of xj(0). Similarly, uj does not cause xi if P(xi | do(uj = uI

j)) = P(xi | do(uj = uII
j ))

for all uI
j and uII

j .

The main objective of this article is to develop an algorithm to test for non-causality in the sense of definition 1
with theoretical guarantees. That is, we seek to test whether the initial condition of xj respectively the input
trajectory uj changes the probability distribution of the resulting xi trajectory. The do-operator denotes
that we force xj to a specific initial condition and uj to be a specific input trajectory, while all other initial
conditions and input trajectories remain fixed between experiments. While this is a common assumption
of the do-calculus, in dynamical systems, we cannot just set state variables to specific values. Instead, we
need to consider a proper notion of controllability. In the following, we discuss how the do-operator can be
applied to dynamical systems, i.e., how we can, based on an appropriate controllability notion, steer state
variables toward specific values as required to test for non-causality. Subsequently, we develop an algorithm
that identifies for each pair xi and xj and for each pair xi and uj of a control system as in equation 1,
whether or not both variables are non-causal according to definition 1.
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Exp I

Exp II

xI
j(0)

xII
j (0)

xI
1...n\j(0) = xII

1...n\j(0),
uI = uII

xI
i

xII
i

MMD

Figure 1: Experimental design for causal inference. We design two experiments, where all initial conditions
and input trajectories are constant except for xj(0). If the resulting trajectories of xi are different in both
experiments, we have evidence that the change in xj(0) caused this change.

3.2 Main Idea

For causal inference, we will exploit that we can influence equation 1 through u. To make the notion of how
we can influence the system precise, we adopt controllability definitions for stochastic systems (Sunahara
et al., 1974; Bashirov & Kerimov, 1997):
Definition 2. The system described by equation 1 is said to be completely ε-controllable in probability η in
the normed square sense in the time interval [0, tf ] if for all desired states xdes and initial states x(0) from
X , there exists an input sequence u from U such that Pr{‖x(tf)− xdes‖2

2 ≥ ε} ≤ 1− η, with 0 < η < 1.

A variety of methods exist to identify or learn models for systems as in equation 1, e.g., Gaussian process
regression (Williams & Rasmussen, 2006) or fitting linear state space models using least squares (Ljung,
1999). In the following, we assume that we can obtain an estimate f̂ of the investigated system in equation 1
(including an estimate of the distribution of v(t)) using techniques from system identification and model
learning. The concrete method that is used to obtain f̂ is independent of the developed causal identification
procedure. However, in later sections, we will specify requirements the model estimate f̂ needs to satisfy. This
model estimate f̂ , obtained without further assumptions or physical insights, will, due to the stochasticity
of equation 1, almost surely entail spurious correlation and suggest causal influences that are actually not
present in the physical system. Nevertheless, it will allow us to (approximately) steer the system to specific
initial conditions and start experiments from there.

We propose two types of experiments to test for causal relations. For the first type, we investigate whether xj

causes xi. We conduct two experiments (denoted by I and II) with different initial conditions xI
j(0) 6= xII

j (0),
while all others are kept the same (cf. figure 1). This can be formalized as

xI
`(0) = xII

` (0) for all ` 6= j, xI
j(0) 6= xII

j (0), uI
`(t) = uII

` (t) for all `, t. (2a)

By comparing the resulting trajectories of xI
i and xII

i , we can check whether the change in xj(0) caused a
different behavior. For checking the similarity of trajectories, we will use the MMD, whose mathematical
definition we provide in the next section. The second type of experiments is analogous to the first, but
instead of varying initial conditions, we consider different input trajectories uI

j 6= uII
j ,

xI
`(0) = xII

` (0) for all `, uI
`(t) = uII

` (t) for all ` 6= j, for all t, uI
j(t) 6= uII

j (t) for all t. (2b)

Remark 1. Note that for the testing experiments, we design open-loop trajectories. That is, the input cannot
depend on the system’s current state. This is essential since it creates independent trajectories for which we
can leverage the MMD as a similarity measure.

3.3 Road-map

We propose an algorithm that consists of two steps: (i) we design experiments, and (ii) we analyze the
resulting data using the MMD. The data obtained from these experiments must fulfill specific requirements
to allow for proper causal inference. In the next section, we provide the mathematical definition of the
MMD and deduce the requirements on the experimental data. We then subsequently develop a suitable
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experimental design based on the controllability notion stated in definition 2. We state conditions under
which this experimental design yields data from which the MMD can provably infer the true causal structure
in the infinite sample limit and derive a hypothesis test for finitely many samples. Until here, we focus on
a rigorous convergence analysis. However, this requires us to do many experiments on the real system. In
section 5, we propose a heuristic algorithm that is more efficient in terms of the number of experiments
and computations but forgoes some of the guarantees. Lastly, in section 6, we demonstrate the method’s
applicability on a real robotic system and a quadruple tank process and present comparisons with a sparse
identification and a causal discovery method on a synthetic linear example.

4 Causal Identification for Dynamical Systems

We will now develop the causality testing procedure. First, we introduce the MMD (Gretton et al., 2012),
which we shall use as a similarity measure. The MMD can be used to check whether two probability
distributions P and Q are equal based on samples drawn from these distributions. Let X and Y be samples
drawn i.i.d. from P and Q, respectively. Further, let H be a reproducing kernel Hilbert space (Sriperumbudur
et al., 2010), with canonical feature map φ:X → H. The MMD is defined as

MMD(P,Q) = ‖EX∼P[φ(X)]− EY∼Q[φ(Y )]‖H. (3)

The feature map φ can be expressed in terms of a kernel function k(·, ·), where k(x, y) = 〈φ(x), φ(y)〉H.
If the kernel is characteristic, we have MMD(P,Q) = 0 if, and only if, P = Q (Fukumizu et al., 2008;
Sriperumbudur et al., 2011). In the remainder of the paper, we always assume a characteristic kernel (e.g.,
the Gaussian kernel).
Remark 2. In general, also other measures that compare probability distributions may be used for our
algorithm. An overview of such methods is provided in Sriperumbudur et al. (2012). A popular example
would be the Kullback-Leibler divergence (Kullback & Leibler, 1951). In this paper, we propose to use the
MMD since it allows us to compare probability distributions without actually estimating them, provides
theoretical guarantees, and can be computed efficiently.

In the following, we derive conditions that allow one to provably identify causal relations. We investigate
three settings. First, we discuss the case where we can precisely steer the system to desired initial conditions
(i.e., ε = 0 in definition 2). We then extend this to ε > 0, which requires a stricter controllability definition.
Finally, we show that for linear systems with additive Gaussian noise, a widely studied class of systems, the
conditions stated by Kalman (Kalman, 1960a) are sufficient, and the identification is substantially easier.

4.1 Exact Controllability

When considering control systems, instead of obtaining single i.i.d. samples from stationary distributions,
we receive sequences of random variables sampled from a stochastic process as in equation 1. This data is
often non-i.i.d.. The objects of interest, whose distributions we want to compare, are then the xi trajectories
obtained from two different experimental settings. To simplify notation, we denote a trajectory obtained from
the first setting by xI

i and the joint probability distribution over the trajectory states by PI, and equivalently
for xII

i and PII. We sample from PI and PII by designing two experiments as in equation 2 with fixed length
T and repeating each experiment m times. That is, we obtain 2m sequences of T random variables sampled
at discrete intervals of fixed length (i.e., t→ t+ 1 always has the same length). These samples we denote by
xI

i,xII
i ∈ Rm×T . Note that (i) all m sequences are sampled from the same distributions PI and PII, (ii) while

the distributions are non-stationary along time, the distributions for multiple experiments of fixed length T
are identical, and (iii) all m sequences are independent of each other. The MMD then reads

MMD(xI
i,xII

i ) = ‖ExI
i
∼PI [φ(xI

i)]− ExII
i
∼PII [φ(xII

i )]‖H. (4)

If we now design experiments using equation 2, we can check the similarity of xi trajectories with equa-
tion 4. Following Szabó & Sriperumbudur (2018), if we use a characteristic kernel in equation 4, the general
properties of the MMD test are still valid given that the initial conditions xI(0) and xII(0), respectively the
input trajectories uI and uII, are i.i.d., which is the case for our design. That is, MMD > 0 suggests that the
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distributions of the trajectories are different, so we can conclude that there is a causal influence. However,
the other direction is less straightforward: for a system as in equation 1, the MMD may be zero, even though
variables are dependent, as can be seen in the following example:
Example 1. Assume a control system with x1(t+ 1) = x1(t)x2(t) and x2(t+ 1) = u(t), and an input signal
u(t) that is different from 0. If we choose x1(0) = 0, the trajectory of x1 will, despite the fact that x2 clearly
has a causal influence on x1, always be 0 no matter the initial condition x2(0).

To address this, we define the concept of local non-causality:
Definition 3 (Local non-causality). Let Xnc ⊂ X and Unc ⊂ U with Xnc ∪ Unc 6= ∅. The state variable
xj does locally not cause xi if P(xi | do(xj(0) = xI

j(0))) = P(xi | do(xj(0) = xII
j (0))) for all xI

j(0) and
xII

j (0) given that the sequence x is entirely in Xnc and the sequence u is entirely in Unc.1 Similarly, the input
variable uj does locally not cause xi if P(xi | do(uj = uI

j)) = P(xi | do(uj = uII
j )) for all uI

j and uII
j given

that x is in Xnc and u in Unc.

The non-causality becomes global if Xnc = X and Unc = U . To properly test for causal relations, we need
to ensure that the experimental design in equation 2 yields initial conditions and input trajectories that are
not inside Xnc and Unc. For this, we propose to design experiments based on the estimated model f̂ . In
particular, we utilize simulated trajectories based on the model f̂ , which we denote by (x̂ | f̂) and where
for each t we have x̂(t) = f̂(x̂(0), u, v̂). We then need to make the following assumption about the system
described by equation 1 and the estimated model f̂ :
Assumption 1. Consider a dynamical system as in equation 1 for which Xnc ∪ Unc 6= ∅. Consider further
two independent experimental designs following equation 2 with initial conditions xI(0), xII(0) and input
trajectories uI, uII for the first, and initial conditions xIII(0), xIV(0) and input trajectories uIII, uIII for the
second experiment. Assume that all individual inputs u(t) that are part of uIII or uIV are in Unc and that all
states x(t) that are part of the simulated trajectories (x̂III | f̂) or (x̂IV | f̂) are inside Xnc. Further, assume
that for the first experiment there exists some u(t) or some x(t) that is not part of Unc respectively Xnc. For
such cases, we assume MMD(x̂III

i , x̂IV
i | f̂) < MMD(x̂I

i, x̂
II
i | f̂).

This assumption does not require that f̂ captures the causal structure. That is, if variable xj does not cause
variable xi, the model f̂ may still suggest that they are causally related—such modeling errors will then be
accounted for through the identification procedure we propose in this paper. However, we require that f̂
captures that the influence of xj on xi is lower in regions in which they are locally non-causal. Intuitively, the
assumption says that if xi does not influence xj in certain parts of the state/action space, our model may, due
to spurious correlation, still assign some influence of xi on xj in those regions. Nevertheless, we expect the
model to assign a stronger influence in regions where the influence stems not only from spurious correlations
but also from an actual physical influence of xi on xj . Given a reasonable choice of system identification or
model learning technique and a sufficiently rich excitation signal, this assumption will typically be satisfied
in practice, as shown in the example below. It further follows that simulated trajectories in regions of local
non-causality have a smaller MMD than trajectories in other regions.
Example 1 (cont). Given assumption 1, if we simulate experiments using equation 2a and compute the
MMD for the resulting x̂1, the MMD will be lower if we choose x̂1(0) = 0 than for any other choice of x̂1(0).
To validate assumption 1, we identify the system using a regularization based nonlinear system identification
algorithm called sparse identification of nonlinear dynamics (SINDy) (Brunton et al., 2016). By exciting the
system for 500 time steps and using the SINDy implementation from de Silva et al. (2020), we receive a model.
Simulating the MMD for different initial conditions x1(0) for xI

2(0) = −10 and xII
2 (0) = 10 then reveals that

the MMD has a minimum at x1(0) = 0 (cf. figure 2), i.e., the identified model satisfies assumption 1. We
will introduce the finite sample approximation for the MMD used in figure 2 in section 4.4 and we provide a
further example to empirically verify assumption 1 for a system with a hysteresis in appendix B.

We now specify the experimental design. To avoid regions of local non-causality, we propose to maximize
the MMD given the model estimate. Thus, for checking whether xj causes xi, we choose input trajectories

1In general, there may exist different X ij
nc for each combination of xi and xj (and likewise for Unc). We can also cover this

case. However, we omit it here to simplify notation.
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Figure 2: MMD of simulated experiments with different initial conditions x1(0) for the system from exam-
ple 1. The MMD has a minimum at x1(0) = 0, i.e., it reflects the local non-causality. The finite sample
approximation M̂MD

2
of the MMD used in this figure will be introduced in section 4.4.

of length T and initial conditions that solve

max
xI(0),xII(0),uI,uII

MMD(x̂I
i, x̂

II
i | f̂)

subject to xI
`(0) = xII

` (0) for all ` 6= j uI
`(t) = uII

` (t) for all `, t.
(5a)

We will discuss how to handle this optimization problem in practice in section 5.2. In particular, in practice,
we typically do not require a global solution to equation 5a. If we want to check whether uj causes xi, we
choose input trajectories and initial conditions by solving

max
xI(0),xII(0),uI,uII

MMD(x̂I
i, x̂

II
i | f̂)

subject to xI
`(0) = xII

` (0) for all ` uI
`(t) = uII

` (t) for all ` 6= j, t.
(5b)

Before stating our main theorem, we need one further assumption. Given the system model from equation 1,
we could also have systems for which the influence of xj on xi becomes only apparent after a certain number
of time steps. To guarantee that we identify the true causal structure, we need to assume that this delay is
at most equal to the length of an experiment T .
Assumption 2. Consider a pair (xi, xj) for which xj has a causal influence on xi as per definition 3. We
assume that changes of xj, when outside of regions of local non-causality, cause a change in xi after at most
T discrete time steps.

We can now state the main theorem:
Theorem 1. Consider a completely ε-controllable system described by equation 1 with ε = 0 that fulfills
assumptions 1 and 2. Let experiments be designed according to equation 5 for a fixed experiment length T
and repeated infinitely often (i.e., we have xI

i,xII
i ∈ Rm×T with m → ∞). Then: MMD(xI

i,xII
i ) = 0 if, and

only if, xj respectively uj does not cause xi as per definition 1.

Proof. Let variables be non-causal. Then, we have by definition 1, P(xi | do(xj(0) = xI
j(0))) = P(xi |

do(xj(0) = xII
j (0))). That is, the distribution of xi in both experiments is equal. Thus, MMD(xI

i,xII
i ) = 0

follows from Gretton et al. (2012). Now, assume MMD(xI
i,xII

i ) = 0. This implies that the distribution of xi is
equal in both experiments (Gretton et al., 2012), i.e., P(xi | do(xj(0) = xI

j(0))) = P(xi | do(xj(0) = xII
j (0))).

This could be the case because (i) xi and xj are non-causal or (ii) we have that x ∈ Xnc and u ∈ Unc. Due
to assumption 1 and equation 5, there exists a t for which either x /∈ Xnc or u /∈ Unc. Thus, we are in case
(i) and xj does not cause xi. The proof for uj and xi follows analogously.

Remark 3. Assumption 1 ensures that, if we design experiments using the optimization algorithm in equa-
tion 5, we are not inside a region of local non-causality. However, even if we weaken the assumption, the
claim of theorem 1 would still hold. Since equation 5 finds the experiment design that maximizes the MMD,
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the algorithm only fails if our model estimate assumes the influence of one variable on the other to be strongest
in regions where there is actually no causal influence. Given a reasonable model class and excitation signal
for the initial model estimation, this should not occur in practice. We still keep assumption 1 in its stronger
form as it allows us to also make causal inference in practical settings where we may not be able to globally
solve equation 5.
Remark 4. Instead of doing multiple experiments of fixed length, one might consider doing one long exper-
iment. This design has several disadvantages. First, if the process is stable, the probability distribution can
become independent of the initial conditions over time. Then, causal influences are only visible during the
transient. Second, if we deal with non-ergodic systems, where time and spatial average are not the same,
we only have a valid testing procedure if we do multiple runs of each experiment. Lastly, doing multiple
experiments ensures that the different runs are independent of each other. Data generated by a single long
experiment can be correlated, and obtaining a valid test is way more involved (Solowjow et al., 2020).

4.2 ε-Controllability

For a stochastic system as in equation 1, it is in general impossible to steer the system exactly to the initial
conditions suggested by equation 5; i.e., we need to resort to controllability with ε > 0 (cf. definition 2).
Nevertheless, even in such cases, it is still possible to guarantee the consistency of the causality testing
procedure. However, we need a stricter definition of controllability.
Definition 4. Let the system given in equation 1 be ε-controllable according to definition 2, and consider
some arbitrary, but fixed x∗`,des. Then, the system given in equation 1 is said to be completely ε-controllable
in distribution if, for any x(0) and any xdes with x`,des = x∗`,des, there exists an input sequence u(0 : tf) such
that x`(tf) always follows the same distribution; i.e., P(x`(tf)) = P∗ for some P∗ that does not depend on
x(0) or any component of xdes except x`,des = x∗`,des and Pr{‖x(tf)− xdes‖2

2 ≥ ε} ≤ 1− η, with 0 < η < 1.

In other words, the definition states that, for any x(0), we can generate input trajectories that guarantee that
the fixed component x∗`,des of xdes is matched in distribution. Linear systems with additive Gaussian noise
that are controllable following Kalman (1960a) are also controllable in the sense of definition 4, as we show in
the appendix. We further need to make an assumption about the initial conditions suggested by equation 5.
To steer the system to those initial conditions without ending up in a region of local non-causality, we need
that states that are ε-close to those initial conditions are not in a region of local non-causality.
Assumption 3. For the initial conditions suggested by equation 5, we assume that there exist open balls
with radius

√
ε centered around each element of xI(0) and xII(0) that are outside of the local non-causality

sets.

This assumption is not very strong since equation 5 suggests initial conditions for which the influence of
xj respectively uj on xi is maximal. Thus, it is unlikely that these initial conditions are close to regions
of local non-causality. The main reason why this assumption is needed is to exclude corner cases in which
the causal influence only exists in single points of the state and input space. In such cases, the probability
of successfully steering the system to those points is zero. However, considering the variables as non-causal
may then anyway be reasonable. Equipped with these three assumptions, we can now state:
Corollary 1. Consider a system as in equation 1 that is completely ε-controllable in distribution according
to definition 4 and fulfills assumptions 1, 2, and 3. Let experiments be designed as in equation 5 for a
fixed experiment length T , trajectories that steer the system to the initial conditions of the experiments be
chosen such that P (xI

`(0)) = P (xII
` (0)) for all ` 6= j, and experiments be repeated infinitely often. Then:

MMD(xI
i,xII

i ) = 0 if, and only if, xj respectively uj does not cause xi according to Definition 1.

Proof. Let variables be non-causal. Then, we have P(xI
`(0)) = P(xII

` (0)) for all ` 6= j, thus, also the
distribution of the obtained xi trajectories is equal and we have MMD(xI

i,xII
i ) = 0 (Gretton et al., 2012).

Now, assume MMD(xI
i,xII

i ) = 0. This implies that the distribution of xi is equal in both experiments
(Gretton et al., 2012). By assumption 1, existing local non-causalities are reflected by the model and thus,
equation 5 will suggest experiments outside of such regions. Assumption 3 ensures that we can steer the
system to those regions. Thus, if distributions are equal, non-causality must be global as in definition 1.
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4.3 Linear Systems

Local non-causality as in definition 3 is a nonlinear phenomenon. If we assume equation 1 to be linear time-
invariant (LTI) with Gaussian noise v(t), we can reveal the true causal structure without the optimization
procedure in equation 5, making this case substantially easier. For an LTI system, equation 1 reads

x(t) = Atx(0) +
t−1∑
i=0

Ai(Bu(t− 1− i) + v(t− 1− i)), (6)

with state transition matrix A ∈ Rn×n, input matrix B ∈ Rn×m, and v(t) ∼ N (0,Σv). The system in
equation 6 is controllable as per definition 4 if it satisfies the classical controllability condition from Kalman
(1960a), i.e., if the matrix

(
B AB . . . An−1B

)
has full row rank, as we show in lemma 3 in the appendix.

We can then state the following theorem, whose proof is provided in the appendix:
Theorem 2. Assume an LTI system as in equation 6, whose A and B matrices satisfy Kalman’s con-
trollability condition. Let experiments be designed as in equation 2a and equation 2b, respectively. Then:
MMD(xI

i,xII
i ) = 0 if, and only if, xj respectively uj does not cause xi as per definition 1.

4.4 Test with Finite Samples

Until here, we derived guarantees in the infinite sample limit. In practice, we can only carry out finitely
many experiments, i.e., we have finitely many samples of the random variable sequence xi. Thus, we need a
finite sample approximation of the MMD.
Lemma 1. Consider m experiments with fixed length T , i.e., xi ∈ Rm×T but now we also have m <∞. An
unbiased empirical estimate of the squared population MMD can be computed as

M̂MD
2
(xI

i,xII
i ) = 1

m(m− 1)

m∑
r 6=s

(k(rxI
i,

sxII
i ) + k(rxII

i ,
sxII

i )− k(rxI
i,

sxII
i )− k(sxI

i,
rxII

i )), (7)

where rxI
i denotes element r of the xi trajectories from experiment I.

Proof. The m trajectories for xI and xII are independent and follow PI and PII, respectively. Thus, we are
in the same setting as in (Gretton et al., 2012, lem. 6) and the proof follows as shown therein.

For a finite sample approximation, we, in general, have MMD2(xI
i,xII

i ) > 0 even if PI = PII.2 Thus, we need
to do a hypothesis test and derive a test statistic. We assume the null hypothesis

H0: PI = PII (8)

and obtain the test statistic from the following result.
Lemma 2. Assume 0 ≤ k(rxI

i,
sxII

i ) ≤ K. Then

PrxI
i
,xII

i
{M̂MD

2
(xI

i,xII
i )−MMD2(PI,PII) > γ} ≤ exp

(
−γ2m2

8K2

)
,

where m2 := bm/2c. The hypothesis test of level α for the null hypothesis in equation 8 has the acceptance
region

M̂MD
2
(xI

i,xII
i ) <

(
4K√
m

√
log(α−1)

)
.

Proof. The m trajectories for xI and xII are independent and follow PI and PII, respectively. Thus, the proof
follows from theorem 10 and corollary 11 in Gretton et al. (2012).

2Note that the unbiased estimate in lemma 1 can even become negative, cf. the discussion after lemma 6 in Gretton et al.
(2012).
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5 Implementation

The results in section 4 show that we are able to detect whether the variables xj or uj have a causal
influence on xi. In practical implementations, two challenges remain: first, we want to minimize the number
of experiments we need to carry out on the physical platform. Second, we may be unable to obtain a global
solution to equation 5.

5.1 Heuristic Test with Finite Samples

The test statistic provided in lemma 2 enjoys a theoretical foundation. However, the threshold decreases as
m−1/2, i.e., we need many experiments to not be overly conservative. While more efficient test statistics exist
(e.g., achieved through subsampling as discussed in section 6 of Gretton et al. (2012)), generating all this
data through experiments on real-world systems is often undesirable, e.g., because it is time-consuming and
may cause excessive wear and tear on the hardware. Thus, we propose an alternative test statistic that can
be obtained from the model estimate f̂ . This alternative test statistic is heuristic and forgoes the theoretical
properties but is efficient to implement and yields good results in practice, as we show in section 6.

We estimate a model f̂i,nc that assumes xi and xj respectively uj are non-causal (i.e., we do not use the
data xj respectively uj when estimating f̂i,nc). We propose to use this model to decide whether to accept
the null hypothesis of xi and xj respectively uj being non-causal. That is, we replace our current model f̂i

for state component xi with f̂i,nc if

M̂MD
2
(xI

i, x
II
i ) <E[M̂MD

2
(x̂I

i, x̂
II
i | f̂i,nc)] + ν

√
Var[M̂MD

2
(x̂I

i, x̂
II
i | f̂i,nc)]. (9)

Expected value and variance in equation 9 can be estimated through Monte Carlo simulations. For these
simulations, we use the true initial conditions xI(0) and xII(0). That way, we account for uncertainty due to
unequal initial conditions between experiments. The significance level of the test can be adjusted through ν
using Chebyshev’s inequality (Chebyshev, 1874).

5.2 Experimental Design

The framework for testing causality between state variables is summarized in algorithm 1 (and works analo-
gously for inputs). After having obtained an initial model (see ll. 1-2 in algorithm 1), we run equation 5a to
find initial conditions and input trajectories for testing non-causality of one specific combination of x` and
xj (l. 6). The optimization in equation 5a may be arbitrarily complex or even intractable, depending on the
chosen model class. However, finding a global optimum of equation 5a is not necessary. The goal of the opti-
mization procedure is to avoid regions of local non-causality. We thus optimize equation 5a until it is above
a threshold δ1 to be confident that we are not in a region of local non-causality. In practical applications,
we can often already achieve this through a reasonable initialization of the optimization problem, i.e., by
choosing initial conditions for xj as far apart as possible. We then run the designed experiment and collect
the data (l. 7). Ideally, we would like to use data from this single experiment to test for the causal influence
of xj on all other state components. Thus, we check for which xi the experiment yields an expected MMD
that is higher than a second threshold δ2 and do the hypothesis test for all of those (ll. 9-13).

6 Evaluation

We evaluate the framework on three systems. First, we identify the causal structure of one arm of the robot
Apollo (Kappler et al., 2018) shown in figure 3 in section 6.1. Then, we demonstrate the causal identification
of a simulated quadruple tank process (cf. figure 5) in section 6.2. In both cases, we present the general
setup and results in the following, while we defer implementation details to the appendix. Lastly, we discuss
a synthetic linear toy example. We use this example to highlight once more the importance of considering
a notion of controllability and to compare our method to a sparse identification and a causal discovery
algorithm3. For all experiments, we use a Gaussian kernel to compute the MMD.

3Code for both simulation examples is available at https://github.com/baumanndominik/identifying_causal_structure.
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Algorithm 1 Pseudocode of the proposed framework.
1: Excite system with input signal, collect data
2: Obtain f̂ through black-box system identification
3: for xj in x do
4: xtest = [x1, . . . , xn] . states to be tested for non-causality
5: for x` in xtest do . design experiment to test whether xj causes x`

6: Run equation 5a until E[M̂MD
2
(x̂I

`, x̂
II
` | f̂)] > δ1

7: Run causal experiments, collect data
8: for xi in xtest do . The experimental designed for xj and x` might

also yield a valid test for other x
9: if E[M̂MD

2
(x̂I

i, x̂
II
i | f̂)] > δ2 then . If the empirical MMD is above the threshold

for some other xi, also test that xi

10: Obtain f̂i,nc
11: Obtain test statistic via Monte Carlo simulations
12: if equation 9 holds then . independence test
13: f̂i = f̂i,nc

14: Delete xi from xtest

Figure 3: The robot showing initial postures for two experiments.

6.1 Robot Experiments

We consider kinematic control of the robot; that is, we can command desired angular velocities to the joints,
which are then tracked by low-level controllers (taking care, among other things, of the robot dynamics)
(Berenz et al., 2021). As measurements, we receive the joint angles. The goal of the causal identification is
to learn which joints influence each other and which joints are influenced by which inputs. We consider four
joints of the robot arm in the following experiments. From the robot arm’s design, we know its kinematic
structure, which is described by φ̇i = ui for each joint, where φi denotes the angle of joint i and ui the
control input. That is, we expect each joint velocity φ̇i to depend only on the local input ui and not other
variables. While the dynamics are approximately linear, we do not rely on this information and are thus
in the setting discussed in section 4.2. In the following, we will investigate whether our proposed causal
identification can automatically reveal this structure.

Following algorithm 1, we start by identifying a model f̂ . In this experiment, we estimate a linear state-
space model. As expected, the initial model suggests that all joints are linked to each other and all inputs
due to spurious correlations. We then design experiments for causality testing, example trajectories of
such experiments are shown in figure 4 (left). The empirical squared MMD of the resulting trajectories is
compared with the test statistic. The trajectories in figure 4 (left) already suggest that the experiments are
in line with the kinematic model: while the two trajectories of joint 1 for different initial conditions of joint
3 are essentially equal (blue dashed and green dotted lines overlap), the trajectories of joint 3 for different
choices of the third input are fundamentally different. This is also revealed through the proposed causality
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test. The middle plots of figure 4 show the empirical squared MMD (left-hand side of equation 9) and the
test threshold (right-hand side of equation 9) for the experiments that were conducted to test the influence
of the initial conditions of the third joint (top) and of the third input signal (bottom) on all joints. As
can be seen, the causal identification reveals that the third joint does not influence any other joint, and
the third input only affects the third joint. Note that the third joint’s trajectories are obviously different
when choosing different initial conditions for the third joint. However, since this is expected, we subtract
the initial condition in this case to investigate whether the movement starting from these distinct initial
conditions differs. The remaining experiments (results are contained in the appendix) yield similar results.
In summary, the causal identification successfully reveals the expected causal structure.

The experiment design in equation 5 requires us to solve an optimization problem. Nevertheless, algorithm 1
introduces two parameters, δ1 and δ2. These can be used to stop the optimization early in case the predicted
MMD is high enough for us to be confident that we are not in a region of local non-causality (δ1) and that
we can use the design to test for all influences of a joint or input signal (δ2). To design δ1 and δ2, we can
look at the system’s noise level and choose them some orders of magnitude higher. As discussed in section 5,
a high predicted MMD can often already be achieved through sophisticated guesses, i.e., by choosing initial
conditions far apart from each other and diverse input signals. We follow this approach. When testing
for the influence of the third joint on others and choosing initial conditions that are far apart, we predict
MMDs of around 0.5. The model we estimate initially for the robot arm has a noise standard deviation
below 1× 10−4. That is, the predicted MMD is way above the noise level of the system and way above the
MMDs we find in experiments. Thus, for any choice of δ1 and δ2 below 0.5, we can confidently accept this
experiment design. If we were even more conservative and chose them above 0.5, we would need to optimize
the experiment design further.

To investigate the generalization capability, we compare predictions of the model f̂init obtained from the
initial system identification and the model f̂caus that was learned after revealing the causal structure. We
use the same training data to estimate the model parameters in both cases. However, for f̂caus, we leverage
the obtained knowledge of the causal structure when estimating parameters. In contrast, for f̂init we do not
take any prior knowledge into account. As test data, we use an experiment that was conducted to investigate
the influence of the initial condition of joint 3 on the other joints and let both models predict the trajectory
of joint 1. For this experiment, the initial angle of joint 3 is close to its maximum value, a case that is
not contained in the training data. As can be seen in figure 4 (right), the predictions of f̂caus (blue) are
very close to the true data (green, dashed), i.e., the model can generalize well, while the predictions of f̂init
deviate significantly.

6.2 Quadruple Tank Process

The experimental demonstration in the previous section showed that the presented algorithm can successfully
identify a real-world robotic system’s causal structure. However, the causal structure is relatively straight-
forward, and dynamics are approximately linear. To stress the method’s ability to perform similarly well
on more complex structures and with nonlinear dynamics, we now consider the quadruple tank system from
Johansson (2000), illustrated in figure 5. Its continuous-time dynamics are given by

ẋ1 = − a1
A1

√
2gx1 + a3

A1

√
2gx3 + ζ1

A1
u1

ẋ2 = − a2
A2

√
2gx2 + a3

A2

√
2gx4 + ζ2

A2
u2

ẋ3 = − a3
A3

√
2gx3 + 1− ζ2

A3
u2

ẋ4 = − a4
A4

√
2gx4 + 1− ζ1

A4
u1,

(10)

where xi denotes the water level of tank i, ui the flow rate of pump i, g the gravitational constant (9.81m s−2),
and the remaining constants as in figure 5. The dynamics of the quadruple tank process are, thus, clearly
nonlinear. That is, we cannot expect good performance if we approximate them using a linear state-space
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Figure 4: Causality tests and model evaluation for the robotic system. Plots on the left show example
trajectories of two experiments, in the middle the experimental MMD and the test threshold for joint 3, and
on the right predictions based on the initial model and on the refined model after the causal identification.
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Figure 5: Schematic of the quadruple tank process from Johansson (2000).

model. Therefore, we discretize the system and use Gaussian processes (GPs) to model the dynamics, see
Williams & Rasmussen (2006) for an introduction and details. In particular, we model each state of the
system with a GP, where each GP uses all states and inputs to predict its assigned state variable at the next
time step.

We proceed similarly as for the robot experiments. We select initial conditions through sophisticated guesses,
i.e., far apart from each other. In a simulation, we can set initial conditions and do not need to steer
the system there. However, to be more realistic, we sample initial conditions from a normal distribution
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Figure 6: Causality tests for the quadruple tank system. The plots show the results of the experiments testing
the influence of the third tank on all others (left) and the influence of u1 on all tanks (right).

with mean equal to the selected initial conditions and variance of 1× 10−2. Thus, we only consider ε-
controllability.

Results of the testing procedure are shown in figure 6. The left plot shows test statistic and experimental
MMD for the third tank’s influence on all others. It reveals that the third tank influences itself and the
first tank, which is in line with the schematic in figure 5 and the dynamics in equation 10. The right plot
illustrates the test statistic and experimental MMD for the influence of u1 on the tanks. Also these results
are in accordance with figure 5, as the experiments suggest that u1 influences all but the third tank. The
remaining results are collected in section D in the appendix. Similarly as the ones in figure 6, they reveal
the causal structure that can be inferred from figure 5.

In this case, the causal identification results in a reduction of computational complexity. Especially for the
third and the fourth tanks, which are only influenced by u2 respectively u1 and by themselves, the input
dimension of their corresponding GPs decreases from 10 to 3. The complexity of standard GP regression
grows with O(n3) with the number of datapoints n. Thus, if we can reduce the dimensions that need to
be considered and, with that, the number of data points that we use for the regression by 70% as in this
example, we can considerably reduce the computational complexity.

6.3 Synthetic Example and Comparison

Lastly, we present a synthetic, linear example. We consider an LTI system as in equation 6, with

A =

0.9 −0.75 1.2
0 0.9 −1.1
0 0 0.7

 B =

0.03 0 0
0 0.06 0

0.07 0 0.05

 (11)

and Gaussian noise with standard deviation 1× 10−4. For this example, we apply algorithm 1 without the
need for the optimization procedure since the example is linear. Again, we want to stress the importance of
an appropriate notion of controllability. That is, instead of assuming that we can set the system to initial
conditions, we always steer the system to the initial conditions required for that experiment. For this, we
employ an approach to set-point tracking that has, for instance, been discussed in Pannocchia et al. (2005).
Given a desired state xdes, we seek a feedback control law of the form u = Mxdes + Fx, i.e., a control law
that depends both on the desired state and the current state. We obtain the gain matrix F using standard
methods from linear optimal control (Anderson & Moore, 2007), in particular, the linear quadratic regulator
(LQR). Thus, we can rewrite the incremental dynamics of the system as

x(t+ 1) = Ãx(t) +BMxdes + v(t), (12)

where Ã := A + BF . We now choose the feedforward term M such that the reference is matched in
stationarity, i.e., we want to achieve

x = (I − Ã)−1BMxdes. (13)
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Figure 7: Comparison of prediction capabilities. In blue predictions of the true model obtained after causal
identification, in green the model obtained from SINDy with parameter choices from Brunton et al. (2016).
We do not compare to PCMCI in the numerical experiment since PCMCI only reveals which causal influences
exist, but not how strong they are, i.e., different from our algorithm and SINDy, it does not return a full
system model that can be used in simulations.

Thus, we need

M = ((I − Ã)−1B)−1 (14)

to track the reference point. To compute M , we use the matrices Â and B̂ of the estimated model f̂ . We
start the experiment once ‖x(t)− xdes‖2 < 0.01.

Analyzing the resulting data with the MMD lets us, similar as before, infer the true causal structure. In
particular, the causal analysis reveals that x1 does not cause x2 nor x3, x2 does not cause x3, and u2 does
not cause x3.

In addition to those results, we compare our method with a sparse identification method and a causal
discovery algorithm for this linear example. In both cases, we excite the system for 100 000 time-steps with
a chirp as an input signal.

First, we use SINDy, as in example 1, to identify the underlying discrete-time system4. Sparse identification
algorithms seek to find a trade-off between model complexity and goodness of fit. Thus, for such algorithms,
a parameter needs to be selected to indicate how important accuracy is compared to complexity. When
applying SINDy to the synthetic system, its success in finding the true causal structure depends on the
choice of this parameter. We start with the parameter settings that were used for a three-dimensional linear
example in Brunton et al. (2016). For those settings, the algorithm does not recognize the influence of u1
on x1, i.e., the first row of the B matrix consists of zeros. In figure 7, we show the effects that this error can
have by comparing predictions of the true model obtained after the causal identification with predictions
of the model obtained from SINDy. For this, we set u1 = 10, u2 = 0, and u3 = −14 and simulate both
models for 100 time steps. As the SINDy model does not reflect the influence of u1 on x1, it assumes that
x1 does not move. However, the model obtained after the causal identification reflects this influence and,
thus, correctly predicts the movement of x1.

Only when lowering the threshold parameter can SINDy recover the true causal structure of the system.
This stresses the general shortcoming of sparse identification methods when identifying the causal structure
of a control system. Depending on the parameter settings, they may or may not recover the true causal
structure. However, their general purpose is different. They seek a trade-off between model complexity and
accuracy. Thus, neglecting a causal link with a comparably weak influence might be the desired outcome.
In contrast, we seek the true causal structure, independent of how strong the influence is.

4We use the implementation provided in de Silva et al. (2020).
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Second, we compare our algorithm to the PCMCI5 algorithm proposed in Runge et al. (2019b)6. This
algorithm focuses on detecting causal influences from time-series data. That is, it does not yield an identified
system matrix but discovers which variables have a causal influence on which others. When again exciting
the linear system with a chirp signal and running the PCMCI algorithm, we receive an output that we can
interpret as

x1(k + 1) = a1x1(k) + a2x2(k) + a3x3(k) + b1u1(k)
x2(k + 1) = a4x1(k − 1) + a5x2(k) + a5x3(k) + a6x3(k − 2) + b2u2(k) + b3u3(k − 1)
x3(k + 1) = a7x1(k − 4) + a8x3(k) + b4u1(k) + b5u3(k),

(15)

where all weights ai and bi are non-zero. Besides, the algorithm discovers an influence of x1 on u3. However,
since such links were ruled out by design for the other algorithms, we neglect this here. Nevertheless, also
the equations as stated above are not in line with the actual matrices in equation 11. For instance, following
equation 15, the variable x1 has a causal influence on x2 and x3 through the non-zero factors a4 and a7.
However, given the upper-triangular structure of the A matrix, x3 is not influenced by any other state
variable apart from itself. Similarly, also a4 should be zero. Thus, the algorithm does not reveal the true
structure of the system.

7 Conclusion

We presented a method that identifies the causal structure of dynamical control systems by conducting
experiments and analyzing the generated data with MMD-based techniques. It differs from prior approaches
to causal inference in that it uses a controllability notion that is suitable to design experiments for control
systems. We evaluated the method on a real-world robotic system and a simulated quadruple tank system.
Our algorithm successfully identified the underlying causal structure of both systems, which in turn allowed
us to learn a model that accurately generalizes to previously unseen states while reducing computational
complexity.
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A Proof of theorem 2

An LTI system with Gaussian noise follows a normal distribution, whose mean and variance are given by

E[x(t)] = Atx(0) +
t−1∑
i=0

AiBu(t− 1− i) (16a)

Var[x(t)] =
t−1∑
i=0

AiVar[v(t− 1− i)], (16b)

where we assume Var[v(t)] = Σv for all t. For such systems, we will first show that if equation 16a obeys the
controllability conditions stated by Kalman, the system is also controllable according to definitions 2 and 4.
Lemma 3. The system in equation 6 is completely ε-controllable in distribution if the deterministic part
obeys the controllability condition stated in Kalman (1960a).

Proof. The expected value in equation 16a represents the deterministic part of the system. Thus, according
to Kalman (1960a), we can design an input trajectory that steers equation 16a to any point in the state
space. Since we do not assume constraints on the input or the state variables, the desired state can be
reached with a trajectory within q <∞ time steps (cf. deadbeat control (Kalman, 1960b; Emami-Naeini &
Franklin, 1982)). That is, starting from any x(0) ∈ X we can steer the system state toward x(q) !=xI in q
time steps and obtain the distribution

E[x(q)] = xI

Var[x(q)] =
q−1∑
i=0

AiΣv.

The probability of
∥∥x(q)− xI∥∥2

2 being larger than ε is given by the cumulative distribution function of the
normal distribution.
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Proof of theorem 2. We can now prove theorem 2. Since the variance of equation 6 solely depends on the
number of time steps, which is equal for all experiments, distributions can only be different because of their
means. We start with experiments that are designed according to equation 2a. In this case, for distributions
to be equal, and, thus, for variables to be non-causal, we need

ei

(
AtxI(0) +

t−1∑
i=0

Ai(Bu(t− 1− i)
)

= ei

(
AtxII(0) +

t−1∑
i=0

Ai(Bu(t− 1− i)
)
,

where ei ∈ Rn is the unit vector (i.e., a vector with zeros and a single 1 at the ith entry). Since input
trajectories are equal, this boils down to

eiA
txI(0) = eiA

txII(0).

Essentially this means that the component ij of At needs to be 0. This is clearly the case, if there is no
influence of xi on xj , i.e., in case variables are non-causal, we have MMD = 0. The event of component ij
of At being 0 by chance, even though xj has a causal influence on xi, has probability 0. Thus, we have that
variables are non-causal if MMD = 0.

For experiments that are designed according to equation 2b, initial states are equal and, in case variables
are non-causal, we have

ei

t−1∑
i=0

Ai(BuI(t− 1− i) = ei

t−1∑
i=0

Ai(BuII(t− 1− i).

Similar as before, we have equal distributions and, thus, MMD = 0 if entries in the AiB matrices relating
xi and uj are 0, i.e., if there is no causal influence. The other direction holds since the event of the relevant
entries being 0 by chance has probability 0.

B Further Example for Assumption 1

We provide a further example to empirically validate assumption 1. In practice, regions of local non-causality
are often due to hysteresis effects. For instance, a resting body first needs to overcome static friction. That
is, when the velocity is zero, the input signal needs to overcome a threshold to actually influence the velocity.
In particular, we consider the system

x(k + 1) =


(

1 0.01
0 1

)
x(k) +

(
0

0.1

)
u(k) + v(k) if x1(k) 6= 0 ∨ |u(k)| > 0.1

x(k) else,
(17)

where the state is 2-dimensional, the input is scalar, and v(k) is a normally distributed random variable
with standard deviation 1× 10−4. We excite the system with a ramp function starting at zero and going
until two and learn a GP model. For the GP model, we use a Gaussian kernel for which we optimize the
hyperparameters. We then assume the initial condition of both state variables to be zero and compute the
MMD of simulated trajectories for 100 step inputs, with uI ranging from 0.05 to 5 and uII = −uI. The
results confirm our findings from example 1 since also here assumption 1 is satisfied (see figure 8).

C Further Results of the Robot Experiments

We first provide implementation details for the experiments presented in section 6. The initial model estimate
is obtained by exciting the system with a chirp signal for 30 s and using the generated data to learn a linear
state-space model (cf. equation 6) with least squares. The obtained matrices are

Ainit ≈


0.868 −0.132 0.754 −0.491
−0.132 0.868 0.754 −0.491
−0.132 −0.132 1.754 −0.491
−0.134 −0.134 0.76 0.508

 Binit ≈


0.075 −0.056 −0.031 0.022
0.074 −0.055 −0.031 0.022
0.074 −0.056 −0.03 0.022
0.075 −0.056 −0.032 0.022

.
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Figure 8: Simulated MMD for the hysteresis system in equation 17. Similar as for example 1, also here we
see that assumption 1 is satisfied.

Initial conditions and input trajectories for the causality testing experiments are obtained through sophisti-
cated guesses, as discussed in section 5.2. The found initial conditions and input trajectories yield expected
MMDs orders of magnitude above the system’s noise level for all joints. Thus, we need only eight experi-
ments to identify the causal structure. We design input trajectories of 100 time steps for each experiment,
repeat the experiment ten times, and use collected data from all experiments for hypothesis testing. While
the squared MMD is always positive, the empirical approximation in equation 7 can become negative since
it is an unbiased estimate. For the test statistic in equation 9, we estimate the variance using 100 Monte
Carlo simulations and obtain the expected value through a noiseless simulation. We use ν = 1, but as we
will see in the results, the empirical MMD is, in all cases, orders of magnitude below or above the threshold.
Thus, more conservative choices of ν would yield the same outcome.

In tables 1 and 2, we present the results of all causality testing experiments conducted on the robotic platform
shown in figure 3. As for the results discussed in section 6, we always have a clear decision on whether to
accept or reject the null hypothesis: The MMD found in experiments is always orders of magnitude larger
or smaller than the test statistic. Also here, we find that all joints can be moved independently of each
other and are affected by exactly one input. When exploiting the revealed causal structure for identifying
the system matrices, we obtain

Acaus =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 Bcaus ≈


0.013 0 0 0

0 0.007 0 0
0 0 0.01 0
0 0 0 0.01

.

D Further Results of the Quadruple Tank Experiments

We discretize the quadruple tank system with a time-step of 100ms. We choose Ai = 50 cm2 for all tanks,
a1,2 = 0.242 cm2, a3,4 = 0.242 cm2, and the valve parameters ζ1,2 = 0.5. For the initial model learning, we
excite the system for 5000 time steps. During excitation, the input is sampled from a univariate distribution
with an interval [0, 60]. We use the generated data to learn a GP with a Gaussian kernel for each state
variable. Having identified a model, we follow algorithm 1 to identify the causal structure. As for the robot
experiments, we repeat each experiment 10 times and use 50 simulations to estimate the standard deviation.
We choose ν = 10 in equation 9 to avoid false positives. The results are collected in tables 3 and 4.
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Table 1: Results of the causal structure identification for a robot arm. Causal influences of joints on each
other.

Joint → Experimental Test
Joint MMD statistic

x1 → x1 0 1.65× 10−4

x1 → x2 0 1.79× 10−4

x1 → x3 0 2.39× 10−4

x1 → x4 2.43× 10−13 1.61× 10−4

x2 → x1 0 5.6× 10−7

x2 → x2 −2.8× 10−18 4.58× 10−7

x2 → x3 0 3.56× 10−7

x2 → x4 1.82× 10−13 6.91× 10−7

x3 → x1 0 5.81× 10−7

x3 → x2 0 4.54× 10−7

x3 → x3 −1.38× 10−18 6.16× 10−7

x3 → x4 1.29× 10−16 5.2× 10−7

x4 → x1 0 4.99× 10−7

x4 → x2 0 4.66× 10−7

x4 → x3 9.63× 10−15 5.8× 10−7

x4 → x4 −5.44× 10−15 5.8× 10−7

Table 2: Results of the causal structure identification for a robot arm. Causal influences of inputs on joints.
Input → Experimental Test
Joint MMD statistic

u1 → x1 0.04 1.18× 10−5

u1 → x2 0 5.38× 10−7

u1 → x3 0 6.51× 10−7

u1 → x4 0 4.47× 10−7

u2 → x1 0 5.09× 10−5

u2 → x2 0.04 1.15× 10−5

u2 → x3 3.51× 10−14 5.95× 10−7

u2 → x4 3.51× 10−14 4.67× 10−7

u3 → x1 2.31× 10−13 5.26× 10−5

u3 → x2 1.4× 10−13 4.28× 10−5

u3 → x3 0.04 1.18× 10−5

u3 → x4 2.25× 10−12 4.36× 10−7

u4 → x1 0 4.47× 10−5

u4 → x2 0 5.11× 10−5

u4 → x3 0 5.69× 10−7

u4 → x4 0.04 6.58× 10−4
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Table 3: Results of the causal structure identification for a quadruple tank system. Causal influences of the
tanks on each other.

Tank → Experimental Test
Tank MMD statistic

x1 → x1 2.78× 10−1 9.81× 10−4

x1 → x2 7.39× 10−6 9.55× 10−5

x1 → x3 1.47× 10−5 9.78× 10−5

x1 → x4 9.45× 10−5 1.01× 10−3

x2 → x1 3.57× 10−6 2.35× 10−5

x2 → x2 2.74× 10−1 4.58× 10−4

x2 → x3 2.32× 10−6 4.31× 10−6

x2 → x4 3.54× 10−5 1.41× 10−4

x3 → x1 1.62× 10−1 1.29× 10−4

x3 → x2 5.36× 10−6 3.28× 10−4

x3 → x3 3.44× 10−1 2.75× 10−4

x3 → x4 9.59× 10−6 3.46× 10−5

x4 → x1 4.28× 10−6 4.04× 10−5

x4 → x2 1.45× 10−1 8.74× 10−5

x4 → x3 2.35× 10−6 6.56× 10−6

x4 → x4 3.57× 10−1 1.42× 10−4

Table 4: Results of the causal structure identification for a quadruple tank system. Causal influences of
inputs on tanks.

Input → Experimental Test
Tank MMD statistic

u1 → x1 1.8× 10−1 1.01× 10−4

u1 → x2 8.04× 10−3 8.74× 10−5

u1 → x3 2.46× 10−8 3.8× 10−5

u1 → x4 1.56× 10−1 8.61× 10−5

u2 → x1 7.55× 10−3 9.86× 10−5

u2 → x2 1.78× 10−1 1.12× 10−4

u2 → x3 1.58× 10−1 3.77× 10−5

u2 → x4 5.44× 10−6 4.46× 10−5

25


	Introduction
	Related Work
	Problem Setting and Main Idea
	Problem Setting
	Main Idea
	Road-map

	Causal Identification for Dynamical Systems
	Exact Controllability
	e-Controllability
	Linear Systems
	Test with Finite Samples

	Implementation
	Heuristic Test with Finite Samples
	Experimental Design

	Evaluation
	Robot Experiments
	Quadruple Tank Process
	Synthetic Example and Comparison

	Conclusion
	Proof of theorem 2
	Further Example for Assumption 1
	Further Results of the Robot Experiments
	Further Results of the Quadruple Tank Experiments

